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SIMPLICIAL TRIANGULATION OF NONCOMBINATORIAL 

MANIFOLDS OF DIMENSION LESS THAN 9 


MARTIN SCHARLEMANN 

ABSTRACT. Necessary and sufficient conditions are given for the sim- 

plicial triangulation of all noncombinatorial manifolds in the dimension range 

5 < n < 7, for which the integral Bockstein of the combinatorial triangulation 

obstruction is trivial. A weaker theorem is proven in case n = 8. 

The appendix contains a proof that a map between PL manifolds which 

is a TOP fiber bundle can be made a PL fiber bundle. 

0. Two of the oldest and most difficult problems arising in manifold 
theory are the following: 

(i) Is every manifold homeomorphic to  a simplicial complex? 
(ii) Is every simplicia1 triangulation of a manifold combinatorial (i.e. must 

the link of every simplex be a sphere)? 
Among the consequences of the fundamental breakthrough of Kirby- 

Siebenmann [9] was that at least one of these questions must be answered nega- 
tively, for there are topological manifolds without combinatorial (PL) triangulations. 

The existence of a counterexample to  the second question is equivalent to  
the following conjecture: There is some homology m-sphere K, not PL equivalent 
to Sm such that the p-fold suspension Z P K  is homeomorphic to s m + P .  

Siebenmann shows that if the answer to  question (i) is affirmative for mani- 
folds of dimension n > 5, then the following hypothesis is true for m = n - 3: 

Hypothesis H(m). There is a PL homology 3-sphere K such that ZmK " 
S",and K bounds a PL manifold of index 8 (mod 16) (i.e. the Rochlin invariant 
of K is nontrivial). 

Furthermore, if hypothesis H(2) is true, then all orientable 5-manifolds are 
simplicially triangulable [15] . 

The purpose of this paper is t o  prove 

0.1. THEOREM.Let N" be a connected closed noncombinatorial manifold 
of dimension 5 <n <8,  and let kN fH ~ ( N ;Z2) be the obstruction to the 
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existence of a PL structure on N. Suppose the integral Bockstein homomorphism 

p: H"(N;2,) -+H'(K 2)  

maps kN to zero. Then 
(i) For 5 < n < 7 hypothesis H(n - 3) is a necessary and sufficient con- 

dition for the existence of a simplicia1 triangulation of N. 
(ii) For n = 8 ,  kN U kN = 0 and hypothesis H(2) together imply that N 

is simplicially triangulable. 

REMARK1. We do not assume that N is orientable. However, the assump- 
tion P(kN) = 0 is an orientability assumption of sorts. See $ 1. If N is simply 
connected, then P(kN) = 0 implies that N has the homotopy type of a PL mani-
fold [4]. A pleasant corollary of the theorem is that for n = 5, if wl(N)  a k(N) 
= 0, hypothesis H(2) is sufficient for N to have a triangulation. 

ADDEDIN PROOF (FEBRUARY R. Edwards has announced that for 1976). 
m > 4, Z ~ K ~S m + 2 .  Using this result, Matumoto and Galewski-Stern have 
announced necessary and sufficient conditions for the triangulation of all n-
manifolds, n > 5. 

Operating under the assumptions of Theorem 0.1, the argument proceeds as 
follows: 

$ 1. It is possible to represent kN by a codirnension 4 smoothable submani- 
fold with smooth orientable normal bundle. 

$2. Any such bundle has a simplicial triangulation which restricts to an 
exotic PL structure on the sphere bundle boundary of the total space. The tri- 
angulation is constructed by defining a space X, showing that X is homeomorphic 
to  the bundle space, and simplicially triangulating X in the required manner. 

$3. The proof of Theorem 0.1. 
I would like to thank the referee for suggestions leading to considerable 

abbreviation of the original manuscript. 

1, Representing triangulation obstructions by submanifolds. The following 
well-known observation is used throughout the proof. 

Suppose a connected closed m-manifold M is imbedded in a closed m + p 
manifold N with normal pdisk bun'dle $0.Let i(M) be the p - 1 sphere bundle 
boundary of 4M),i :  M -+N the inclusion, e: H*(N, N -M) +P(J(M), ti(M)) 
the excision isomorphism and j :  (N, a)--* (N, N -M) the inclusion of pairs. 
Let U EHP($M), ti(@; Z2) be the Thom class of qM)and [MI EH,(M; Z2) 
the fundamental class of M. 

1.1. LEMMA. The Poincard dud of  i, [MI in N is the image of U under the 
composition 
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NOTATION. For any space X let r: H*(X; Z) +H*(X; Z,) be the mod 2 
reduction homomorphism. Throughout the paper the notation e and j will always 
refer to excision homomorphisms and inclusion maps of pairs, respectively. 

The following theorem is the central result of this section. 

1.2. THEOREM. Let Nn be a connected closed n-manifold, 5 < n < 8,  atzd 
let kN EH4(N; Z2) be the obstruction to the existence of a PL structure on N. 
men the following conditions are equivalent: 

(i) There is an imbedding of a connected smooth n - 4 manifold M A N  
such that M has an orthogonal oriented (i.e. SO(4)) normal bundle in N with 
w4 = 0 and the image in H, -,(N; 2,) of the fundamental Z2 homology class 
[MI of M is Poincard dual to kN. 

(ii) P(kN) = 0. For n = 8, kN U kN = 0. 

PROOFOF 1.2. (i) * (i). Let F(M) be the oriented orthogonal normal 
bundle to  M in N with sphere bundle boundary &M), and let U be the Thom class 
in H4($M), qM);2). By Lemma 1 .l, i*[MI is Poincard dual to j*e- 'r(U) in N. 
Hence kN = j*e-'r(~). Since the Bockstein is natural, pkN = j*e-'pr(U) = 0. 

It remains to  show that for n = 8, kN U kN = 0. Note first that if v(M) is 
the total space of the normal bundle, v(M) is smooth. Hence kN pulled back to 
v(M) is 0, or i*(kN) = 0. Let x be the Poincard dud of kN. Since n = 8, kN U 

kN = O  if andonlyifkN n x =  0. But kN n x =  kN n i , [ W  =i,(i*kN n [MI) 
= 0. 

(i) * (i). Since 0(kN) = 0 there is an at in H~(N; 2) such that r(a) = kN. 
Since n < 8 it follows from [18] that there is a map N +MSO(4) which pulls 
back the Thom class of MSO(4) to a. 

For n < 8 f can be made TOP transverse to BSO(4) in MSO(4) [8] so that 
f -'(BSO(~)) = M is an m-manifold with normal SO(4) bundle in N. M is smooth- 
able and w4 of the normal bundle is trivial since m < 3, and by standard argu- 
ments i,[M] is Poincard dual to kN. 

In [13] a codimension 4 TOP transversality theory is developed which here 
implies that when n = 8 we may take f -'(BS0(4)) = M to be a homology mani- 
fold equipped with an open neighborhood W such that the inclusion W -M -+ W 
has the homotopy type of a 3-spherical fibration over M and the Thom class U in 
H~(w,W -M) satisfies kN =j*r(U). Since kN U kN = 0 and j* is an isomor-
phism in dimension 8 i t  follows easily that kNIW = 0 and so W is smoothable. 
Hence by smooth transversdity, M can be a smooth manifold, W an SO(4) normal 
bundle and again i, [MI is dual to  kN . 

To show w4 = 0 it suffices to show r(U) U r(U) = 0 [lo].  Since j*e-' is 
an isomorphism in dimension 8, this folIows immediately from kN U kN = 0. 

It is well known that in all dimensions M may be assumed connected, and 
the proof is complete. 
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2. Simplicia1 triangulation of oriented 4-disk bundles. Once the triangu- 
lation obstruction is represented by a smooth manifold M with normal bundle E, 
we hope to simplicially triangulate near M in such a way that the simplicial tri- 
angulation extends to a PL triangulation away from M. 

In case N is non-PL and n = 8, there is hope for this procedure only if 
w4($) = 0. For consider the following portion of the Thom-Gysin cohomology 
sequence for (Z2 coefficients) 

The image of the fundamental class in HO(M) under J, is w4(@ [lo, Theorem 121. 
If w4(8 # 0,then p* is an isomorphism and, since p* is induced by the 

i*
inclusion H3(M) 'H3(g) -H3(i),i* is an isomorphism. The classification of 
PL structures is natural with respect to codimension 0 inclusions [9] so i must 
induce an isomorphism between PL structures on r a n d  on a collar neighborhood 
of g. By the product structure theorem [6] i then induces an isomorphism be- 
tween PL structures on { and on g. That is, any PL structure on g is the restric- 
tion of some PL structure on f. 

However, if w4(~ )  = 0 then the cokernel of i* is Z,, and there are 
order(H3(M; Z2)) isotopy classes of PL structures on .$ which do not extend to 

2.1. THEOREM.Let be an oriented smooth closed 4-disk bundle over a 
connected closed smooth manifold M m  of dimension rn = 2 ,3 ,4 ,  and let g be 
the sphere bundle boundary of % Assume w4(f) = 0 and there is a homology 
3-sphere satisfying H(m 4- 1) for m = 2, 3 or H(2) for m = 4. Then at least one 
of the order H3(M; Z2) PL structures on 4 which do not extend to PL triangu-
lations of g does extend to a simplicia1 triangulation. 

REMARKS. At the end of this section we consider how many of these PL 
structures on g extend simplicially. 

It is well to recall in the following that hypothesis H(m) for a homology 
sphere K implies that cone(K) x R m  - is a manifold [3] . 

A. Proof of 2.1. Preliminary remarks and notation. The primary obstruc- 
tion to trivializing g lies in H~(M; n,(S0(4))). There is an m - 2 manifold J 
smoothly imbedded in M such that the inclusion of its fundamental Z2 homology 
class [J] represents the Poincard dual to this obstruction 1181. If the obstruc- 
tion is trivial, let J be a trivially imbedded (m - 2)-sphere for rn = 3, 4 and a 
point for m = 2. By a well-known argument, we may assume J is connected for 
m = 3,4.  Since, for m = 2, H2(M - (point)) = 0, we may assume J is connected 
in this dimension also. 

NOTATION(SEE FIGURE 1). 
p g - g .  
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K = homology sphere satisfying H(i) for relevant i. 
cK cone on K with vertex *. 
?K cK -K = open cone on K. 
iv(4 = normal open tubular neighborhood of J in M of radius i = 1 , 2  for 

some fixed Riemannian metric on M. 
iJ0 = closure of i v (4  in M. 
i$(J) 5 iF(Q - iv(J). 
a= For some Riemannian metric on K x (0,l ) ,  iD is a closed 4-disk PL 

imbedded in K x (0,1) C ?K of radius i = 1,2. 
p center of D. 
iD = interior of iij. 
j~ jD - iD. 
iq = (M - v (4 )  x iD C (M - v(4)  x cK, a trivial normal bundle to the 

imbedding (M - v(J)) x { p ]  3 (M - y(f))  x cK. 
i5j = (M - v(J)) x iD, the closure of iq. 

i+ (M - v(J)) x i~ 5 i5j - iq. 
[MI 5 fundamental homology class of Hm(M; Z2). 

B. Construction of spaces X and x'. By 1.1 the first obstruction to triv- 
ializing t is in 

i* i*i m a g e ( ~ 2 ( ~ ,  J;  Z2)  ---+ Z2)) kernel(^^(^; Z2)  -H~(M f ) ) ,M - H ~ ( M ;  = -
so the first obstruction to trivializing over M - v(f)  vanishes. The higher 
obstructions lie in H 3 ( ~- v(J); n2 (SO(4))) and H ~ ( M- v(J); n,(S0(4))). The 
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first group vanishes because 7r2(S0(4)) = 0 and the second because H ~ ( M- v(J)) 
= 0. Hence tI(M - v(J)) is trivial. 

,!f is obtained from Z~(M- v(J)) by adjoining ZlY(J) along ElP(J) by a 
bundle equivalence. Since F~(M- v(J)) and 277 are bundle equivalent (they are 
both trivial bundles over M - v(J)) we may attach a bundle, equivalent to RqJ'), 

along 2:1P(J) by a bundle equivalence gli(J) --+ 2flP(J) and thereby ex- 
tend 277 to a disk bundle over M equivalent to g. Denote this bundle 2 r  and 
denote by X the space obtained ffom (M - v(4) x cK after this attachment. 
(Recall that 2; C (M - v(J)) x cK.) The extension of 2 5  to the bundle 2 r  in- 
cludes in its interior an extension of { C 277 to a disk bundle over M equivalent 
to Z. We denote this bundle F' C 21' C X (see Figure 2). 

2: to 

Away from (M - v(J)) x * C (M - v(4) x cK, X is always a manifold, 
and points in (M - $4)x * have neighborhoods homeomorphic to Rm x cK. 
Therefore, under hypothesis H(m + I), X is a manifold except possibly near 
qJ) x * C P(4 x cK. 

Under hypothesis H(m), X is a manifold with boundary, for points in 
P(4 x * have neighborhoods which are homeomorphic to Rm-' x cK. In this 
case a X  = [(M - 2v(J)) x K] U Y, where 

We will denote [(M - 2 v Q )  x K] U Y by a x ,  whether or not X is a manifold. 
Let U be the interior of an open collar neighborhood of Y in X. That is, 

if Y x (- 1, 11 parameterizes the collar, let U be the image of Y x (- 1, 1). It 
is clear from the construction that such a collar exists. Note that under hypoth- 
esis H(m + I), Y contains all the points of a X  near which a X  may fail t o  be 
Euclidean. We intend, assuming H(m + l), t o  split U by a genuine manifold 
and discard the piece lying between the split and Y. The result will be a mani- 
fold X' which can be substituted for X in much of the later argument. 

Since K is a homology sphere, (X, ax)is a homology manifold pair 
regardless of any suspension assumptions made about K. In particular, (X, aX)is 
always a Poincart pair. 
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The following observation of H. King allows us to split U. Let CAT be a 
manifold category (DIFF, TOP or PL): 

2.2. LEMMA. Let (C, ac) be a compact pair of topological spaces such 
that aC is a CAT manifold. If C x R is a CAT manifold of dimension > 6 and 
a(C x R) == aC x R then there is a CAT manifold Nand a CAT homeomorphism 
N x R " C x R .  

PROOFOF 22. See [S] for proof. Here King observes that the portion P 
of C x R lying between C x (0)and an n - 3 neighborhood of an end of C x 

R, when crossed with I, is a compact manifold. Therefore P has the homotopy 
type of a finite complex, and so the obstruction in Ko(nl(C)) to  splitting C x R 
vanishes. See [16]. 

U is homeomorphic to Y x (- 1, 1) and a Y = 2il(J) x K is a manifold, so 
under assumption H(m + 1) there is a manifold N such that U is homeomorphic 
to N x (- 1, 1). Let i? denote N with a small closed collar of a N  removed. 
Modify X by removing fi x (0, 1). Call the resulting manifold with boundary x'. 
The portion of aX lying "over" 2 5 0  has been changed from the nonmanifold Y 
to the manifold obtained from N by attaching to aN the cobordism between aN 
andaygivenby removingaN x (-1,O) from aN x (-1, l ) = a Y  x (-1, 1 ) ~ 
aY x (- 1, 11. Revert to N as notation for this manifold. Note that: 

(i) a N " a Y ~ 2 t i ( J )  x K, 
(ii) X' is a manifold with boundary. 

The following lemma explains our interest in X. 


23. LEMMA.X - 5' is a homotopy product.(1) 

2.4. COROLLARY.Under assumption H(m) [resp. H(m + I)] the manifold 
X - 5' [resp. X' - 5'1 is an h-cobordism 

where p is an s3x I fiber bundle equivalence 

Now 2 r l q ~ )  - ,$'lF(J> is homeomorphic to the actual product g'j3(~)x I,so in 
order to verify 2.3 it suffices to show that W E  (M - v(J)) x (cK -D) is a 
homotopy product from W1 (M - v(4) x D to W23 [(M -HJ)) x f l  U 

[i(J)x (cK - 2D)] re1 4J) x (B-D) ir(4 x D x I. That is, we must show 

(I )  A Poincard triple (C;Y1. Y2) is a homotopy product if the inclusions Y I G Care 

homotopy equivalences. 
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that the inclusions Wi -+Ware homotopy equivalences. This will follow from 
two facts (see [19]) 

(a) HAW, wi;z[nl(Wl)= 0. 
(b) The inclusions induce isomorphisms nl(Wi)-+n,(W) with base points 

in i(J) X (2D -D). 
PROOFOF (a). By general position nl(cK -D) nl(cK - {point)) * 

nl (cK) = 0. Therefore n1(W)"nl (M - v(J)). 
Since the inclusion D -+cK is a homotopy equivalence, H,(cK -D, aD; Z) 

= 0 by excision. Hence H,(W, W1;Z[nl(M- v(J)]) H,(W, W, ;  Z[nl(W)])= 
0. By Poincard duality He( W, W2;Z[nl( W ) ] )  = 0, so H,(W, W2;Z[n,(W)]) = 0. 
This proves (a). 

PROOFOF (b). Let x, ql  and q, be points in XJ), aD and K respectively. 
1 

Since n,(cK -D) = 0,  the inclusion induces an isomorphism nl(aD, q l )  -+ 
n,(cK -D, q,). Hence the inclusion induces an isomorphism nl(Wl, (x, q , ) )  1 
nl(w, (x*q,)). 

A path in {x }  x (cK -D) from (x, q , )  to (x, q,) provides a natural iso- 
morphism nl(W, (x, q,)) - nl(W, (x, q,)). It therefore suffices to show that 
nl (Wz ,(x, q,)) -+ nl ( W ,  (x, q,)) is an isomorphism. 

By Van Karnpen's theorem nl(W2, (x, q2)) is the push-out of the following 
diagram. 

n,(i(J) x K, (x, q,)) -n,((M -~ ( 4 )x K, (x, q2)) 

A copy of M - v(J) is imbedded in (M - v(J)) x K as (M - v(J)) x {q,). 

A standard argument now shows 


n,((M -v(4)x {q,}, (x, q2)) -+ nl(W2, (x, q,)) is an isomorphism. 

Since n,(cK -D, q2)  = 0, the inclusion also induces an isomorphism 


n,((M -40) x {qzl ,  (x, q,)) n,(W, (x, q,)). 
-+ 

This proves (b) and hence 2.3. 

25. PROPOSITION. (i) Assuming H(2) then X is a manifold with boundary 
and there is a PL triangulation of aX which extends to a simplicia1 triangulation 
of X but does not extend to a PL triangulation of X. 

(ii) Assuming H(m + 1 )  and m = 2,3 then X' is a manifold with bound- 
ary and there is a PL triangulation of ax' which extends to a simplicia1 triangula- 
tion of X' but does not extend to a PL triangulation of x'. 

We delay the proof of 2.5 briefly. 
PROOFOF THEOREM2.1 ASSUMING PROPOSITION2.5. PL adjoin to the PL 
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triangulated aX (resp. ax') a PL triangulated h-cobordism H with Whitehead tor- 
sion the negative of the torsion of the h-cobordism from aX  (resp. ax ' )  to i' (see 
1111). By 2.4 the resultant manifold will be C;' with a topological s-cobordism 
adjointed to t'. By the TOP scobordism theorem, this manifold will be homeo- 
morphic to g. We so identify it. .$ is then sirnplicially triangulated by a triangula- 
tion which is PL near f.  

Since H is an h-cobordism between aX (resp. ax')and 4 there are 1-1 corre- 
spondences between PL structures on aX (resp. ax'), i,and H. Thus a PL exten-
sion of the triangulation near t to all of C; would induce a PL extension of the PL 
triangulation of aX (resp. ax ' )  to all of X. This would contradict 2.5, and so 
verifies 2.1 assuming 2.5. 

C. Tnhgulating X and X': A proof of 2.5. It was observed in 52.B that 
H(m) (respectively H(m + 1)) implies that X (resp. x')is a manifold with bound- 
ary. Clearly H(2) implies H(m) for m greater than 2. This proves the first asser- 
tion of both parts of 2.5. The second assertion is the heart of this paper. 

The following lemma shows that if aX (resp. ax')  is a manifold, aX (resp. 
ax')is a PL manifold. First note that the manifold aU " aY x (-1, 1) = 
2i(J) x K x (-1, 1) has a natural PLstructure-the product of the Whitehead 
structure on i(J)and the unique structures on K and (-1, 1) [20]. 

2.6. LEMMA.If U is a manifold (e.g. under hypothesis H(m + 1)) then the 
natural PL-structure near a U extends to all of U. 

PROOFOF 2.6. By construction the natural structure extends to all of U, 
except possibly across that portion of U which is mapped by the collar projection 
U Y to 3 (4  x * C Y. By an argument similar to that in 1.1 it follows that 
the dual in e f ( u ;Z2) of the obstruction in H ~ ( u ,aU;Z2) to extending the 
natural structure on aU  to all of U is represented by p-'(fi(J) x *) and so is 
carried by p to the element a in Hm-'(Y;Z2) represented by the manifold 
i(J) x * C P(J) x (cK -D). In order to verify 2.6, it suffices therefore to show 
that a is null-homologous in Y. Let L be a line in cK - 2 0  connecting * to some 
{q )  in 2d.  Then P(J) x L is a homotopy in Y between $(a  x * and the cross- 
section i ( 4  x { q )  of the bundle 2k1li(J). Thus i(4x { q )  also represents a. 

From obstruction theory we know that any two cross-sections of 2t11il(J) 
can be homotoped together except possibly over a 3-cell of 5(J), where the differ- 
ence in cross-sections defines an element of n3(fiber of 2g' "s3)"2. If this 
obstruction is trivial mod 2 the cross-sections represent the same homology class 
in Hm -,(2C1li(~); Z2). Thus a is represented by any cross-section of 2i11fi(4 for 
which the obstruction in H ~ ( ~ ( J ) ;  2)to the existence of a homotopy of this 
cross-section to  3(J) x { q )  is trivial mod 2. 

Recall we are assuming w4(6') = 0. w4(g') is the Z2 reduction of the ob- 
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struction in H~(M;  Z) to constructing a cross-section to 4' [lo].  But there is a 
cross-section of 2g' (viz. (M - v(J)) x {q)) over M - v(J) which restricts to i(J) 
x {q). Therefore the obstruction to extending this cross-section over v(J), re- 
duced mod 2, lies in the pre-image of w 4 ( ~ )under the homomorphism 

Since M and J are connected, and m < 4, this is an isomorphism, and the Z2 
reduction of this obstruction is therefore trivial. Some cross-section of t1lfi(J) 
therefore does extend over v(J), a cross-section for which the obstruction in 
H3(;(J); 2) to homotoping to P(J) x {q) has trivial Z2 reduction and therefore 
still represents a. The extension of the cross-section over v(J) then provides a 
null-homology in Y of the class a. This completes the proof of 2.6. 

REMARK. By the product structure theorem, 2.6 is true for N. If Y is a 
manifold, it is true for Y also. 

Now we construct the triangulation of X. Choose a Whitehead triangulation 
of M, which we denote WI, so that M - 2v(J) is a PL subcomplex IM - 24.91, 
and choose a Whitehead triangulation IKI of K. IM - 2v(J)l x clKl is a cell com- 
plex. Let IM - 2v(J)I x clKl here denote a simplicia1 complex obtained from this 
cell-complex by subdivision in which no new vertices are introduced (see [12, 
Chapter 21). 

The following series of assertions show that under assumption H(2) some 
subdivision of this triangulation may be extended to all of X. Later the assertions 
are modified to apply to X' under assumption H(m + I), m = 2,3. 

Let P,, ptj represent the bundle projections in 2 w  and 2 r  respectively. 
Denote X - ((M - 2qJ)) x cK) by X12i&l) and X - ((M - 2v(J)) x cK) by 

X12v(J). 
ASSERTION1. The natural fibering 

Tof  2 i ( 4  x cK over J extends to a fibering X123(J) -+J with contractible fiber F. 
PROOFOF ASSERTION1. X12qJ) = ( 2 q 4  - v(J)) x cK Up YIqJ) for 

some bundle equivalence p:  F'li(4 -+ XJ) x 2D, Since p is a bundle equivalence, 
the projections 

and 

i1~v(J)-%v(J) -%J 

coincide on Fl;(J) I(J) x 215. These maps defme the required fibering 
Since the fiber of ;(J) is S' ,the fiber F of this projection is homeomorphic to 
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((s' x I) x cK) U,- (D2 x D4). Here p i s  a homeomorphism (s', 1,2@ + 

(aD2, D4). An easy calculation shows that F is contractible, proving Assertion 1. 
The fiber bundle projection Trestricts to a fiber bundle projection Y U 

(2i(J) x cK) +J. We denote this restriction by f: 
ASSERTION2. Under assumption H(m + I), the interior of the mapping 

cylinder Z(f) is a manifold. 
PROOFOF ASSERTION2. Away from J the interior of the mapping cylinder 

is just (Y U (2i(J) x cK)) x R. Since dimension (2i(J) x R) is m, all of these 
points have Euclidean neighborhoods under assumption H(m + 1). 

Near a point on J the mapping cylinder is homeomorphic to cone (aF) x 
~ m - 2,where F is defined in Assertion 1. The five lemma and Van Kampen's 
theorem show that aF is simply connected and has the homology of S5. A homo- 
topy equivalence aF+S5 may therefore be defined by collapsing the comple- 
ment of a Stell  in aF to a point. 

Under assumption H(m + 1) aF x Rm-' is a manifold, for in aF any 
vertex * lies in the cross-product of * with an S' fiber of i(f) or 23(J), hence has 
neighborhood homeomorphic to cK x R m .  By [3, Corollary 21 , Cm- '(aF) 
s', SO cone(aF) x R ~ - ~is locally Euclidean. This proves Assertion 2. 

ASSERTION3. Under assumption H(2) the manifold obtained by attach- 
ing the mapping cylinder Z@ to X -X12v(J) = (M - 2q.9) x cK along 23(J) x 
cK is homeomorphic to X 

PROOFOF ASSERTION3. According to Assertion 1, X12qJ) fibers over J 
with fiber F. But under assumption H(2) both aF and F are manifolds. We have 
shown that aF is a homotopy 5-sphere and F is contractible. By the Poincard 
theorem, F % D6 " cone(aF). The group of the D6 bundle X12F(J) is AutTop(B6). 
There is a natural imbedding of AutTop(aB6) in AutTop(B6) induced by coning. 
The topological version of the Alexander trick shows that the quotient group 
A U ~ ~ ~ ~ ( B ~ ) / A U ~ ~ ~ ~ ( ~ B ~ )is contractible. Hence X12qJ) is equivalent to the 
disk bundle got by coning on the fibers of its sphere bundle boundary. This space 
is clearly Zm. This proves Assertion 3. 

ASSERTION4. Under assumption H(2) the mapping cylinder Z@ has a 
simplicia1 triangulation which restricts to a subdivision of 12i(J)I x clKI on 2i(J) 
x cK and which is a PL triangulation on Y. 

PROOFOF ASSERTION4. The projection 12i(J)I x clKl --, I%(J)l is cer- 
tainly a piecewise linear map of polyhedra. So is the PL manifold fiber bundle 
projection 12ir(J)1 --* J. 

The PL structure on 21(4 x K given by the triangulation 12i(J)1 x KI ex-
tends to a PL structure of Y by the remark following Lemma 2.6, and such an 
extension may be chosen so that the TOP bundle f y  = f lY: Y --+ J is a PL bun- 
dle. This follows from the bundle straightening theorem of the Appendix. We 
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have the commutative diagram of piecewise linear maps of polyhedral: 

inclusion
l2i(J)I x IKI -Y 

By [12,  Theorem 2.151 Y and J may be triangulated and 12+(J)1 x clKl subdivided 
so that all maps are simplicial. The mapping cylinder of a simplicial map is sim- 
plicial [17,  p. 1511, and so the assertion is proven. 

We now embark on proofs of versions of these four assertions for X' when 
m = 2 , 3 .  

For m = 3, J is a circle. Fundamental use is made of the following theorem 
which Browder and Levine [ I ]  originally proved in the smooth category. It may 
also be verified in PL and TOP by use of PL and TOP transversality and handle- 
body theory. 

2.7. THEOREM(BROWDER-LEVINE).Let W be a compact connected CAT 
manifold of dimension n > 6 and f: W --+ S' a map such that 

(i) f la W -,S' is a CAT fiber bundle; 
(ii) f#: n,(W) --* nl (S1) is an isomorphism. 

Then the universal cover % of W has the homotopy type of  a finite complex if 
and only iff is homotopic re1 aW to a CAT fiber bundle map. 

REMARK. Iff is homotopic re1 aW to a fiber bundle map with fiber F 
then E - F  XR. 

Denote X I - ((M - 2qJ) )  x cK) by x112S(J) and X' - ((M - 2v(J)) x cK) 
by X112v(J). 

ASSERTION1'. For m = 2 ,  3 the natural fibering 

f~extends to  a fibering N --+J. 
PROOFOF ASSERTION1'. The assertion is obvious for m = 2 ,  since then 

J consists of a single point. 
fy


For m = 3, J "s'. By Assertion 1, p,pl extends to a fibering Y -J. 
The map f y  induces an isomorphism on fundamental groups since the fiber Fy is 
simply connected. [cy'(s' x (cK - 2 0 ) )  Up ( D ~x S3) ,  where p is a homeo- 
morphism (s', 2 d )  *( a ~ ~ ,S3) .  See proof of Assertion 1.1 By definition 
Y x R N x R, SO the universal covers of Y and N have the same homotopy 
type. The composition 
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inclusion P1 fyN - Y x R - Y - - + J  
then satisfies the hypothesis of 2.7, and Assertion 1' follows from the conclusion 
of 2.7. 

We denote by f '  the bundle map N U (2;(J) x cK) -4J which is defined 
to be equal to fN on N and p,pl on 2ri(J) x cK. 

ASSERTION2: Under assumption H(m + 1) and m = 2, 3, the interior of 
the mapping cylinder ZCf') is a martifold. 

PROOFOF ASSERTION 2'. Once we know that a fiber o f f '  has the homo- 
topy type of S5 ,  the proof follows exactly as did the proof of Assertion 2. 

Let FNand Fy be the fibers of fN and fy  respectively. The universal 
covers 2 and are then FN x R and Fy x R respectively. By definition there 
is a homeomorplzism h: N x (- 1, 1) --, Y x (- 1, 1) such that near aN x (- 1, 1) 
p, = hp,: aN x (-1, 1) --+ (-1, 1) and fNpl = fyplh:  N x (-1, 1) --+J. 
Hence FN x R x (-1, 1) is homeomorphic to  Fy x R x (-1, 1) by a homeo- 
morphism which respects projection to R x (-1, 1) near aFN x R x (-1, 1). 

Thus there is a homotopy equivalence g: FN--,Fy which is a homeomor- 
phism near aFN. 

Now aF of Assertion 2 was obtained by adjoining cK x S' to Fy along 
their boundaries by a homeomorphism we will denote {: K x S' aFy.aF 
was there shown to have the homotopy type of S5. The fiber o f f '  is obtained 
by adjoining cK x S' to FNby a homeomorphism 5': K x S' -+ aFNsuch that 
{ = g{'. It follows from the 5-lemma and Van Kampen's theorem that the fiber 
o f f '  has the homotopy type of S5. This proves Assertion 2'. 

ASSERTION3'. Uizder assumption H(m + 1) and for rn = 2, 3 the manifold 
x' obtained bv attaching in the natural way the mapping cylinder Zv ' )  to X' -
X112v(J) = (M - 2 q J ) )  x cK along 2ir(J) x cK is homeomorphic to X'. 

PROOFOF ASSERTION3'. We will show that ~ ' 1 2 q J )  and ZCf') are s- 
cobordant re1 boundary; that is, there is a manifold C such that a C  = X112T(J) 
U,, ZCf'), where h is the natural identification of the boundaries a(X112$J)) = 

N U (2i(J) x cK) 'a Z 0 ,  and such that the inclusions X112i;(J) --+ C and 
ZCf') -+ C are simple homotopy equivalences. Note that whereas X112$J) and 
ZCf') may not be manifolds along their boundaries, a C  will be a manifold because 
2i(J) x cK is bicollared in aC. 

Observe that x112$J) has the homotopy type of X12F(J) which, by 

Assertion 1, has the homotopy type of J. Similarly Z v ' )  has the homotopy type 
of J (indeed collapses to J). Furthermore the inclusion of N U (2i(J) x cK) in 
x1l2T(J) or ZCf') clearly induces an isomorphism on fundamental groups. Hence 
n,(aC) -2' for m = 3 and nl(aC) = 0 for rn = 2. 

Therefore the universal covers of both X112i;(J) and ZCf') are contractible, 
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and the universal cover of aC is obtained by adjoining these in the natural way 
along the universal cover of N' U (2+(4 x cK). By the proof of Assertion 2' the 
universal cover of N' U ( 2 x 4  x cK) has the homotopy type of s'. It follows by 
Van Kampen's theorem and the 5-lemma that the universal cover of aC has the 
homotopy type of s6. 

By Theorem 2.7 when m = 3 and trivially when m = 2, aC fibers over J 
with fiber a homotopy s6,hence an actual s6. The induced 0' bundle is then 
the required s-cobordism C. (Recall there is no Whitehead torsion for al(Q = 0 
or Z.) 

Extend the s-cobordism C by the product s-cobordism over X'  -X112v(4 = 

z' -Z(fl).  The result is an s-cobordism between X' and which is a product 
cobordism between ax' and aT' = ax'. The assertion then follows from the 
TOP s-cobordism the orem. 

ASSERTION4: Under assumption H(m + 1) and for m = 2, 3 the mapping 
cylinder ~ ( f ' )has a simplicial triangulation which restricts to a subdivision of 
12+(41 x clKl on 2+(4 x cK and which is a PL triangulation on N. 

PROOFOF ASSERTION4'. The proof is exactly that of Assertion 4, except 
in case m = 3 the PL version of 2.7 is used instead of the bundle straightening 
theorem of the Appendix to deduce that fN: N +J of Assertion 1' may be 
assumed PL. 

In order to conclude the proof of 2.5 it suffices to  show that the PL struc-
ture on aX (resp. ax')which we have defined does not extend to a PL structure 
over all of X (resp. x'). 

Let Rm be an open m-disk in M - 2v(J). If the PL structure on aX (resp. 
ax')  did extend over all of X (resp. x') then the codimension zero open imbedded 
submanifold Rm x cK C ((M - 2v(J)) x cK) C X' C X would inherit a PL struc-
ture extending the natural PL structure on Rm x K. Siebenmann shows that this 
is impossible [IS, Theorem 2, Assertion 21. This completes the proof of 2.5 and 
so of 2.1. 

Theorem 2.1 suffers a weakness which must be surmounted to obtain any 
triangulation results on 8-manifolds. For m = 3,4 there may be PL structures on 
& which do not extend to simplicia1 structures on g. Theorem 2.1 has shown only 
that at least one which does not PL extend does extend simplicially. There is a 
trick presented later which allows the triangulation of the 7-manifolds of Theorem 
0.1 anyway, but the situation is more serious for 8-manifolds, when m = 4. We 
show here that the problem reduces to an existence problem for s-cobordisms; 
later sufficient s-cobordisms will be created. 

Let p be the bundle projection f' -4M and i: aX U --+ X - E' the in-
clusion. There is a natural injective map H~(M;z2)&H ~ ( ~ x ;Z,)defined as 
the composition of the injective map d ( ~ ;  Z,) and the isomor- Z,) L-H~(('; 
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phism 

By an s-cobordism between manifolds M and M f  with boundary we will 
mean an s-cobordism which restricts to a product cobordism between aM and a ~ ' .  

Let W be a topological s-cobordism W from M - v(J) to  a smooth manifold 
Ij;?. Consider the composition d of the maps 

2.8. LEMMA. Let cr in H~(w,a W)be the obstruction to extending the 
smooth s t r u c t u ~  on a W  to all of W. Then, assuming H(2), the PL triangulation 
of ax corresponding to pd(cr) extends to a simplicial triangulation of X. 

PROOFOF 2.8. Let W' be the union of W x cK and (X12qJ)) x I along
%(ax I x cK = X12ir(f) x I. Then W' is an s-cobordism between X and a mani- 
fold A Whitehead triangulation of and the procedure above provide a sim- 
plicial triangulation of which is PL near ax By the topological s-cobordism 
theorem, W' is homeomorphic to X x I. 

Let p , :  (W, aW) x K --+ (W, aur) be the projection. The obstruction in 
lY3(ax; Z2) t o  making aW' - (X U r)= ax x I a PL concordance between aX 
and a z i s  then the image of a under the composition 

By naturality this is pfd(or). Clearly p?d(cr) and p*d(cr) are cohomologous in 
X - t'. Hence p:d(cr) = p*d(cr). 

REMARK. If M - v(J) can be retriangulated re1 ir(J) with obstruction d(a) 
we get the same conclusion, but M has such a low dimension in the applications 
that this is not known to be possible. 

3. The proof of the main Theorem 0.1. 
Case I. n = 5. This is treated by Siebenmann [15]. He assumes N is orien- 

table, in which case P(N;2)has no 2-torsion and consequently P ( ~ ( N ;Z2)) = 0. 
He requires orientability to  ensure that the Poincard dual to kN in H1(N; Z2) 
can be represented by a circle with normal SO(4) bundle. According to 1.2, if 
P(kN)= 0 the Poincard dual of kN can be represented by an imbedded circle 
with orientable normal bundle, and Siebenmann's proof is applicable. 

Case 11: n = 6, 7, 8. By 1.2, the Poincard dual to kN may be represented 

as the inclusion of the fundamental class of some connected smooth submanifold 
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M with oriented orthogonal normal bundle v(M).That is, kN is the image of the 
nontrivial element of H4(v7M), +(M);Z2)  under the homomorphism 

e- i* 
H4(F(M), ;(MI; Z2) H 4 ( ~ ,N -M ;  Z2) -,H4(xZ2). 

The restriction of kN to N -M is therefore trivial by exactness in the cohomology 
sequence of (N, N -M). By naturality of the triangulation obstruction, N -M 
is PL triangulable. By the product structure theorem [6], the PL structure on 
N -M is isotopic to one which restricts to a PL structure on +(M). 

By [9], the isotopy classes of PL structures on +(M) are in 1-1 correspon-
dence with H3(+(M); Z2). 

Case IIa: n = 6. The following is a portion of the Thom-Gysin sequence 
for (P(M), +(M)), coefficients in Z2.  

Since M is connected, H 3 ( 1 ; ( ~ )  H'(M) "Z 2 ,  so there are two possible 
PL structures on 5(M). One PL structure is that which PL extends to all of v(M), 
induced by the natural Whitehead PL structure on the smooth manifold F(M). 

By 2.1 there is a PL structure (+(M))= which is not isotopic to the White- 
head structure but some PL triangulation of (1;(M)), does extend to a simplicial 
triangulation of $M). Hence, in either case, some PL triangulation of N - v(M) 
extends to a simplicial triangulation of F(M), and N is homeomorphic to a simp- 
licial complex. 

Case IIb: n = 7. The relevant portion of the Thorn-Gysin sequence is 

Since H3(J4) 'HO(w'Z2,  H3(+(w)  'Z 2  $ Z,, and there are now four PL 
structures possible on +(M). Since image@*) Z,, two of these PL structures 
extend to PL structures on F(M). By 2.1 one of the other PL structures has a 
PL triangulation which extends to  a simplicia1 triangulation of F(M). We now 
show that the image of the restriction H'(N -M) -f: H3((iM)) is Z2. It follows 
that with a correct choice of a PL structure on N -M the restriction of the 
structure to 5(M) is not the one PL structure which may not extend either sim- 
plicially or piecewise-linearly to 3(M). 

If i,: H3(M) --,H3(N) (all coefficients are Z2) fails to be injective, kN = 
0 by 1.1 so N is PL triangulable and we are done. If the map is injective, i f * :  
H~(N)-+ H3(F(M)) is surjective. 

H (N)---------+ H (N - v(M))

I I 
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is a commutative diagram. Since the bottom map is injective H ~ ( N- v(M))-+ 

H 3 ( 1 ; ( ~ ) )has image at least 2 , .  As this suffices, we leave to the reader the task 
of showing that the image is exactly Z2  as claimed. This completes the proof 
for n = 7. 

Case IIc. n = 8. Let M be any smooth Cmanifold, possibly with boundary. 
Following [ 2 ] ,say that two s-cobordisms W and W' from M to a smooth mani- 
fold are equivalent if there are smooth s-cobordisms V and V' with a2 W = a ,  V, 
a, W' = a ,  V' and a homeomorphism of W U V onto W' U V' which is the iden- 
tity on M = a ,  W and a diffeomorphism from a2 V to a ,  V'. 

Let Mk denote the connected sum of M and k copies of s2 x s 2 .  
In [I41 we prove the following theorem. 

3.1. THEOREM. There is an integer k such that for any compact 4-mani- 
fold M there is a 1-1 correspondence between H ~ ( M ,aM; Z 2 )  and equivalence 
classes of s-cobordisms of Mk to a smooth manifold. 

REMARKS. The equivalence is generated by selecting a representative W of 
the s-cobordism class and mapping the obstruction to extending the smoothing 
of a W to all of W by the composition 

Here q is the natural projection Mk -+ M. 
It is also shown that for M orientable, k = 1. 
Return to the case M C N representing the Poincar6 dual of kN. Let D4 

be a smooth open 4-disk in M - ;(a.  Then v(M) is trivial over D ~ .Perform 
surgery in the ambient manifold v(A4)lD4 -R* on k trivial smooth circles in D~ 
(k as defined in 3.1). The result of the surgery is to change M to Mk and v(M) 
to q*(v(M))" v(Mk), the normal bundle of Mk in N. 

Note that [Mk], the fundamental Z2 homology class of Mk,  is homologous 
in N to [MI, via the cobordism given by the surgery. Hence N -Mk is PL tri- 
angulable and, as above, we may assume that ~ ( M k )has a PL structure for which 
it is a PL submanifold of N -Mk and that this structure does not extend to 
F(Mk). It remains to show that this PL triangulation extends to a simplicial tri- 
angulation across i;(Mk). 

The remarks preceding 2.1 show that the difference between C(Mk) and the 
structure which has been shown to simplicially extend is represented in H ~ ( ; ( M ~ ) )  
by p*(6) for some 6 in H ~ ( M ~ ) .BY 2.8 it suffices to produce a topological co- 
bordism W from Mk - v ( a  to a smooth manifold such that the obstruction to 
extending the smooth structure on aW to all of W is mapped by d to 6 .  The re- 
marks following 3.1 show that, since H ~ ( M ,  v ( 4 )  T,H3(M) is onto, the required 

I * 
cobordism exists. This completes the proof. 
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Appendix. The bundle straightening theorem. The following theorem was 
used in Assertion 4 of the proof of Proposition 2.5. 

THEOREM.Let f: Mm -eQ be a map of PL manifolds such that 
(i) f is a topological fiber bundle. 

(ii) There is a PL submanifold N C M such that f is PL near N and f W: 
N --t fo is a PL fiber ,bundle. 

(iii) m - q  Z 5. 
Then there is an isotopy h,: M --+ M re1 N such that ho is the identity and 

fil is a PL fiber bundle. 

PROOFOF THEOREM. Choose a PL triangulation of Q such that fo is a 
full subpolyhedron. 

Suppose inductively that for some 0 4 i 4 q an isotopy has already been 
defined re1 N altering f t0.a PL bundle over a neighborhood of a subcomplex 
Q('-'I of Q containing the ( i  - 1) skeleton and properly contained in the i-
skeleton. Let A be an i-simplex of Q not in Q('-'1. 

Since f is a PL map near N and near f -'(Q('-I)), it follows from the PL 
product structure theorem that M may be isotoped re1 N U f-'(Q('-'I) so that 
f - ' (A )  is a PL submanifold of M [6]. 

Let F denote the TOP fiber off: Since A is contractible there is a homeo-
morphism g: f -'(A) -+F x A such that pzg =f: f -'(A) 4A. 

Let K be the full subcomplex fon A of A and let F' be the fiber of the 
bundle N +fo. Since K is full in A, K is contractible and there is a homeo- 
morphism g': N nf "(A) +F' x K such that p2gt = f: N nf "(A) --,K. 
Then g~p')-': F' x K --+ F x A is an imbedding which commutes with projec- 
tion to A. For a fixed vertex v in K, &')-'IFt x {v )  determines an imbedding 
F' -L* F. By the TOP isotopy extension theorem the trivialization g may be 
altered so that &I)" = i x ide en tit^)^: F' x K --t F x A. 

Since f lN is a PL fiber bundle, g'-'(F' x K )  is a PL submanifold of 
f - ' (A) on which f is a PL map. Since f is a PL fiber bundle over a neighborhood 
of Q('-'I, f -'(aA) is a PL submanifold off - ' ( A )with f V - ' ( ~ A )  a PL map. 
The homeomorphisms g and g' therefore assign PL structures to F x A and 
i(F') x K such that i(F') x K is a PL submanifold of F x A, and F x A is sliced 
near F x aA and i(F') x K [7]. 

By the sliced concordance implies isotopy theorem [7],there is a PL 
structure (F x A)= on F x A and an isotopy h,: F x A 4 (F x A)z from the 
identity to a PL homeomorphism such that p2h, = p2 on a neighborhood of 
(F x aA) U (F' x K) and the projection (F x A)= -.+ A is a PL bundle. 

Damp out the action ofg-'htg: f- '(A) -+f -'(A) through a tubular 
neighborhood of f  -'(A) in M, and denote the resultant isotopy of M by Kt. 
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Since Kt is an isotopy, the map fit is always a TOP fiber bundle. Moreover fit 
is fixed on a neighborhood of N U Q('-') and fil is a PL fiber bundle over A. 
The theorem then follows by induction over simplices of Q. 
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