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Abstract

Introduction and overview

THERE ARE NO UNEXPECTED TUNNEL NUMBER

ONE KNOTS OF GENUS ONE

MARTIN SCHARLEMANN

. We show that the only knots that are tunnel num-

ber one and genus one are those that are already known: 2-bridge

knots obtained by plumbing together two unknotted annuli and the

satellite examples classi�ed by Eudave-Mu~noz and by Morimoto-

Sakuma. This con�rms a conjecture �rst made by Goda and Ter-

agaito.

: June 2, 2001.

Research supported in part by an NSF grant, the Miller Institute, and RIMS

Kyoto.

1.

There are many useful ways of indexing the complexity of knot types:

crossing number, bridge number, tunnel number, genus, etc. Often the

relationship between these indices is unclear, and sometimes it is clear

that there is no relationship. Thus, for example, tunnel number one

knots may be of arbitrarily high genus (e. g. torus knots) and genus

number one knots may be of arbitarily high tunnel number (e. g.

doubles of complicated knots.) Given two indices of complexity it's

natural to ask a sort of complementary question: how unusual is it

for a knot (other than the unknot) to be of minimal complexity with

respect to both indices? For example, how rare is it that a knot have

both genus one and tunnel number one?

It's easy to construct examples of knots of this type. Plumb together

two twisted unknotted annuli. The boundary is typically knotted and

the union of the annuli is visibly a genus one Seifert surface. If we

imagine hanging the union of annuli from a single peg we see that its

boundary is naturally a 2-bridge knot and therefore has tunnel number

one. See Figure 1. It is known that these are the only 2-bridge knots

of genus one (cf [BZ, Proposition 12.25]).

Are there other examples of genus one tunnel number one knots?

Morimoto and Sakuma [MS] and independently Eudave-Mu~noz [EM]

classi�ed satellite knots which have tunnel number one. They have a
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concrete description and can be naturally indexed by a 4-tuple of inte-

gers. In [GT], Goda and Teragaito determined which of these satellite

knots have genus one and made the conjecture that these knots com-

plete the list of knots that have both genus one and tunnel number

one. The conjecture was con�rmed by Matsuda [Ma] for any knot that

admits a (1 1) decomposition; that is, for any knot which is 1-bridge

on an unknotted torus.

The central objective of this paper is to prove the Goda-Teragaito

conjecture in complete generality. The strategy will be to use thin

position to show that any tunnel for a genus one knot can either be

isotoped to lie on a genus one Seifert surface, or isotoped to form an

unknotted loop. In the latter case, it is shown that the knot admits a

(1 1) decomposition and Matsuda's argument applies. In the former

case, it follows from work of Eudave-Mu~noz and Uchida [EU] that

is a 2-bridge knot.

In retrospect, [GST] and [ST1] can be viewed as the �rst two steps

of the program. In [GST] we show how thin position can be used

to understand unknotting tunnels for unknotting number one knots.

In particular, we show that if and then are put in the thinnest

possible position, then is level. If is a loop, then Matsuda's theorem

applies. Otherwise, we show in [ST1], either is 2-bridge or there is a

well-de�ned invariant 2 which, unless it is 1, ensures that the

tunnel can be moved onto a minimal genus Seifert surface. So all that

remains is to consider the case in which = 1, which we do here.

In the case that = 1 and the tunnel is not an unknotted loop, it

will be shown that there is another useful way of describing on the
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Suppose is a -curve in with edges . In
, denote the corresponding meridians by . Suppose

is a primitive curve in (i. e. it intersects some essential
disk in in a single point) and intersects each of the meridians

always with the same orientation and so that some minimal
genus Seifert surface for intersects only in . Arrange
the labelling and orientations of the edges and meridians so that, geo-
metrically as well as algebraically,

.

Then we say that (or ) is presented on as a quasi-
cable.

boundary of the genus 2 handlebody = ( ). That is, there is

a di�erent spine for , namely a � curve , with these properties:

The graph can be put in general position in in such a way

that ( ) remains in thin position.

intersects each meridian of each edge of always with the same

orientation.

is thinner than the graph .

A minimal genus Seifert surface for intersects only

in = .

A combinatorial argument will show that if intersects each merid-

ian more than once then ( ) 2. Assuming that ( ) = 1

and cannot be isotoped to , the program then will be to �nd the

thinnest spine satisfying the conditions above (plus a more technical

condition called the \wave condition"). For such a graph we know that

intersects one of the meridians in only one point. We will argue, via

thin position, that the cycle obtained by deleting this meridian is un-

knotted. It will follow that has a (1 1) decomposition, so Matsuda's

result applies.

2. ( )

Consider a graph as just described. Notice that the condition on

meridians of edges of can be interpreted as follows: and each

edge of can be oriented so that always runs along a given edge

in the direction consistent with that edge's orientation. In particular,

intersects these meridians algebraically as well as geometrically in

some + points. With this in mind, we establish the more general

de�nition (and notation):

�

= ( )

=

= 1

=

= +

( ) ( )



R

Z

R Z

Z Z Z

R

Z

Z

Corollary 2.2.

4 MARTIN SCHARLEMANN

� ?

�

� �

� �

�

�

?

� ?

� ?

� ?

� � ? ?

2

2

2 2

+

+

+

+

2

0

3

0

0 0

0

0

+ +

+

0

+

0
3

0

3
0

+

+

+ +

2 2 2

� � f g

� �

2

2

� �

� \

�

\ [

� �

�

�
� �

� � [ [

� � � � � �

Suppose is presented on as a quasi-cable,
with . Then there are at least two arcs of that
are oriented from to (and of course two then oriented from
to ).

Proof.
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The fact that is primitive ensures that and are relatively prime,

so unless = = 1. Given , there is a straightforward algo-

rithm to describe the order in which intersects the three meridians

(see for example [OZ]): Consider a line in of slope that is dis-

joint from the lattice . Choose a segment that projects to a simple

closed curve in the torus . Then the order in which intersects

respectively lines of the form + is the order in

which intersects respectively the meridians . This has the

useful corollary:

( )

2

Since 2 the corresponding arc crosses at least two

vertical lines . Since , in between such crossings must

cross at least one horizontal line .

In order to appreciate the point of De�nition 2.1 it's useful to ob-

serve that any pair ( ) can be presented as a ( ) quasi-cable for

any relatively prime non-negative pair ( ). Consider the following

construction. There is a natural embedding of a punctured torus in

with two properties:

is transverse to with =

For example, ( ) is a copy of intersecting ( ) in a longi-

tudinal copy of ; just let be the complement of a disk in ( ).

In the punctured torus choose two non-parallel normally oriented

essential arcs and . Once ( ) is minimized by isotopy,

will intersect each arc , always with the same orientation. Indeed,

given ( ) non-negative and relatively prime it's easy to �nd such arcs

and to choose their normal orientation so that = and = .

One of the two choices for a third essential arc in that is not

parallel to or will have the property that = + . Let be

the genus two handlebody obtained by thickening slightly, so

= ( ). We can then regard as the neighborhood of a �-graph

, with two vertices (one for each component of ( ))

and three edges , each dual to its cognate arc. The natural

meridians for , namely = , = and =
are the meridians required to give the structure that presents ( )

as a ( ) quasi-cable.
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Suppose the pair is presented as a quasi-
cable on with both . If there is a sphere so that

is in general position with respect to
intersects both of the cycles and

each component of the -manifold is essential in .

Then .

Proof.

colored

So if any pair ( ) can be presented as a ( ) quasi-cable, what is

the point of the construction? The point will be to use general position

between and a surface in as a short-hand way of describing in which

meridians we will allow and the surface to intersect. If we view in

this way, then any time the 1-complex is put in general position with

respect to a surface , it will automatically be true that

is a collection of meridian disks, each parallel to one of .

The �rst lemma may clarify the point:

( ) ( )

2

1

( ) 2

One might conjecture that this is the simplest case of

a more general result, perhaps describing how the continued fraction

expansion of determines a lower bound for the genus of .

We have seen in Corollary 2.2 that ( ) at least twice

switches from crossing (perhaps repeatedly) to crossing (and

vice versa).

To simplify the number of cases we need to consider, note �rst that

we can slit open the part of corresponding to , lengthening

while shortening until is so short that it is disjoint from .

So, with no loss of generality, we may as well assume that intersects

both of the segments but not .

Once this is done, the components of consist of three types:

subarcs of , subarcs of , and a single component that contains

together with all four ends of the two edges Then intersects

each of the segments in an even number of points. Let denote

the component of that is exactly half-way along as measured

by intersections with . That is, an arc in starting from a point in

and ending in will intersect in the same number of points no

matter which way along it runs. Denote by the analogous point

in .

The knot is similarly split up into segments by , some

parallel to segments of , some to segments of and some

lying on ( ). Any subsegment of that is a union of components

of the �rst (resp. second) type will be said to be + (resp. .)
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Claim 1:

Proof of Claim 1:

Claim 2:
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Remembering that is oriented, each segment of ( ) can be

described as one of three types:

1. components of that run from an end of to an end of

2. components of that run from an end of to an end of

3. components of that run from an end of to the other end

of

(There are no components of ( ) that run from to since

.) We will say that these three types of segments of are

colored 0 0 0 respectively. The notation is meant to suggest that

in clockwise rotation, the color changes from + to , etc.

Since all components of are essential in , cannot be a disk.

We will suppose ( ) = 1 and arrive at a contradiction.

There are various ways that the 1-manifold can lie in . If

any component is a closed curve, then the complement of the closed

curve is a simple pair of pants (i. e. a 3-punctured sphere) so all arc

components of intersection must be parallel to each other. If there are

no closed curves, the arcs of fall into (at most) three classes of

parallel arcs in . We will assume for the purposes of this argument

that consists of three such classes of parallel arcs in ; if there

are fewer classes of parallel arcs, the same method works, but more

easily.

Abstractly, the three families of parallel arcs of in give

= the structure of a hexagon , in which opposite sides are

connected via arcs of intersection that are parallel in . See Figure 2.

Each end of such an arc of intersection lies in a meridian disk of ,

corresponding to a point of ; if two ends of arcs of intersection lie

in the same meridian, we say that the ends .

Opposite ends of the same arc of cannot have the

same label.

Since = always crosses each meridian with

the same orientation, a normal orientation induced on the intersection

arc by a normal orientation of would have to have opposite

direction at each end of the intersection arc.

Suppose and are intersection arcs parallel in ,

connecting opposite sides and of the hexagon . Suppose further

that the labels of at and at are the same. Then both are

+-labels and all labels lying between the ends of the on one of the

are +-labels. On the other side, between the ends of the , there is

exactly one subsegment of -labels.
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If there were a counterexample, choose and

to be as close as possible (among parallel arcs of intersection in )

among all such counterexamples. They cannot be the same intersection

arc, by Claim 1. We now show they cannot be adjacent intersection

arcs in . For if they were, then the segments of and that lie

between them would correspond to parallel segments of on .

This is obvious unless the component of on which the segments of

lie is , i. e. the segments are colored 0. But even if the segments

are colored 0, then the fact that this is a counterexample forces both

segments to be colored 0 , or both 0 or both 0 , so they are in fact

parallel on . Now follow a standard argument that traces its

origins to [GL] or [Sc]: Consider the union of the sphere , the single 1-

handle subsection of corresponding to the segments in the between

the intersection arcs, and a 2-handle whose core is the rectangle in

lying between the two intersection arcs. (See Figure 3.) This de�nes a

Heegaard splitting of a punctured Lens space (2 1) = , lying in

, clearly an impossibility.

Since and are not adjacent, we can consider the intersection

arcs and adjacent to and but closer together. Since the

intersection arcs and are not a counterexample, either the

have di�erent labels at = 1 2 or they have the same labels but

the count of segments colored 0 or 0 between them changes. Either

outcome is only possible if the segments between and on

are colored 0, for both = 1 2 and at least one, say , is colored 0

or 0 , say 0 . Then is colored either 0 (and the labels of the

at are di�erent for = 1 2) or is also colored 0 . Consider �rst

the former case, is colored 0 . This immediately implies that both
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Claim 3:

Proof of Claim 3:
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of the initial labels were +-labels. If another segment colored 0 lies

between and on then an intersection arc adjacent to it would

be a counterexample closer to than is. So we deduce that all

labels on between the are +-labels. Because and are a

counterexample, another segment colored 0 must lie between and

on . Then there is also one colored 0 between and . In

order for an intersection arc adjacent to it and the intersection arc

not to be a counterexample, there must be a segment on even closer

to that is colored 0 . Between it and the segment colored 0 lies

every label colored +. Opposite to this segment on every label is

colored +, since no 0 or 0 color appears on between and .

So for any of these intersection arcs, whatever the label is on , there's

a parallel intersection arc with that label on and between them lies

no label 0 or 0 . This creates a closer together pair of intersection

arcs that are a counterexample, a contradiction. See Figure 4.

If instead , like , is colored 0 , then the labels of the at are

the same for = 1 2 and, since these arcs are not a counterexample,

they must be +-labels, all the labels on one side between the must be

+-labels, but on the other side there must be a switch to -labels. But

this produces exactly the same contradiction as before: all the labels

on one side are +-labels and an entire sequence of +-labels appears on

the other side. Hence there can be no counterexamples, completing the

proof of claim 2.

Segments corresponding to (or ) cannot appear on

opposite sides of (including corners).

If appeared on opposite sides, it would im-

mediately contradict Claim 2. Suppose appeared on opposite sides

of . Choose those occurences that are closest together (as measured

by arcs between them) and let and denote the arcs adjacent to

those occurences of that are closer together. Let = . If
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the number of arcs between the is less than 2 it would contradict

Claim 2, since neither side could then have any -labels. If the number

of arcs between them is no less than 2, then the fact, from Claim

2, that one side consists entirely of +-labels would ensure that another

label occurs even more closely to the opposite , contradicting

the choice of segments that are closest together. Suppose �nally

that there are between 2 and 2 arcs between them. Then,

by Claim 2, on one side between them will be a segment colored 0

or 0 and on the other a segment colored 0 . Moreover, the arcs

adjacent to these segments and closer together would have the same

+-label but would have no -labels between them on either side, again

contradicting Claim 2.

Two segments, one corresponding to each of cannot

occur on the same side of (including corners.)

Let = . If both types of occur on

one side, say then that side is incident to at least ( + ) 2 arcs and

contains a segment of type 0 or 0 . Also, from Claim 3, the opposite

side can be incident to neither type of -interval. Since the are

incident to the same number of arcs, this means that contains some

segment of the form 0 0 or 0 , say 0 . In fact, it must be of the

form 0 since otherwise its having length ( + ) 2 would force a

segment to appear. For the same reason, the 0 segment in must be

opposite a segment in that lies between a label and the 0 label.

The arcs adjacent to the 0 and 0 segments and closer together

would have the same +-label but would have no -labels between them

on either side, again contradicting Claim 2.
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Following Claim 4, we can think of each side of as either a +-

side, a -side or blank, depending on whether a copy of or no

at all appears.. Moreover, by Claim 3 opposite sides can't both be

+-sides or both be -sides and (a crucial point) following Corollary

2.2, at least 4-sides have signs, alternating around as + + .

Combining these facts, the only possible signing of the sides of is,

in order, + + (with some orientation of ). Now

the fact that the two adjacent blank sides have no sign whereas their

adjacent sides have di�erent signs means that the total number of arcs

intersecting those two blank sides must be less than ( + ) 2. On the

other hand, the adjacent sides opposite these blank sides have signs

+ and which guarantees that their combined length is greater than

( + ) 2. The contradiction proves the lemma. See Figure 5.

The requirement that 2 in the above lemma is central to the

proof, of course, since it guarantees the repetitions in patterns around

that lead to the combinatorial contradiction. Nonetheless, there

are important situations in which the results of Lemma 2.3 hold true

even when = 1.

The easiest example to see requires a preliminary construction. Sup-

pose ( ) is presented as a ( ) quasi-cable on with regular neigh-

borhood , and and consider the 4-punctured sphere � obtained from

by removing copies of the meridians and . Then the bound-

ary of � consists of two copies of and two copies of , one on

each side of the circle �. The arcs of � are oriented to ow

from one side of to the other. The slopes of these arcs naturally

de�ne another circle � with the property that each arc of

intersects exactly once and = 2. See �gure 6. (Actually,
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The moves on just described, which change the pre-

sentation of from that of a quasi-cable to, respectively,
a quasi-cable or a quasi-cable are called

on and respectively.

Suppose the pair is presented as a quasi-
cable on with . If there is a sphere so that

is in general position with respect to
intersects both of the edges and but is disjoint from

each component of the -manifold is essential in .

Then .

Proof.

there are two candidates for ; the other is obtained by vertical re-

ection.) If we discard the meridian of and replace it with

then the associated �-graph is one obtained from by a Whitney

move. ( ) is still presented as a quasi-cable on but now of type

( + ). With the new structure, the old is discarded, the old

becomes also the new and the old becomes the new .

There is a similar move in which is cut up along and , the

meridian is discarded and the new graph presents ( ) as a

( + ) quasi-cable.

( ) ( )

( + ) ( + ) standard

Whitney moves

( ) ( )

1

1

( ) 2

Perform a standard Whitney move on so that afterwards the

new �-graph presents ( ) as a ( + ) quasi-cable. Since was

disjoint from this has no e�ect on and, since + 2

Lemma 2.3 applies.
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Suppose the pair is presented as a quasi-
cable on , . If there is a sphere so that

is in general position with respect to

intersects but is disjoint from and
each component of the -manifold is essential in .

Then .

Proof.

In a related but more complicated case, the combinatorics is so close

to that of an actual cable knot that the arguments are considerably

easier than those above.

( ) ( )

1

1

( ) 2

Suppose, as in the proof of Lemma 2.3, ( ) = 1. The

case 2 is already settled, so we assume = 1. Set = ,

necessarily even; then = ( +1) 4 and the number of edges

of is ( + 1) 2. Of the intervals in , ( + 1)( 1) lie

on segments of , contain in their interior, and exactly one

contains . Call the last the \special" component. We now consider

how these intervals are distributed around the hexagon described

in the proof of Lemma 2.6 above. First note that he two vertices

corresponding to the corners of the hexagon (when reidenti�ed to give

) either lie on the same or opposite sides of , depending on whether

( + 1) 2 is even or odd, and this in turn determines whether the

number of intersections of any edge of with is even or odd. The

upshot is that every edge of intersects with the same parity and

that parity is determined by the parity of ( + 1) 2.

The combinatorial argument gets easier as gets larger, since in-

tervals cooresponding to the same components of appear more

often. So for brevity we just do the case = 1 2 (and of course = 1)

and merely outline the argument. (In fact the argument for these cases

also instantly gives as well all cases in which + 1 is a multiple of 2 or

3.)

When = 1 there are 2 segments in and it follows that, ex-

cept perhaps for the special component, centers of opposite edges in

represent the same segment of , for there are exactly as many in-

tersection points with (namely ) going one way around between

them as the other. At most one of these three opposite pairs contains

the special component, so the other two display lens spaces (2 1) in

, a contradiction. The only way to avoid this contradiction is if only

two (opposite) sides of intersect , so all arcs in are parallel

in , and the special component appears in the center of this band of

parallel arcs. This only transfers the contradiction: if we let be the

annulus which is the complement in of the single band containing

all the parallel arcs of then it is easy to see that lies on
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Suppose the pair is presented as a quasi-

cable on , . If there is a sphere so that

is in general position with respect to
intersects but is disjoint from and and

each component of the -manifold is essential in .

Then .

Suppose the pair is presented as a quasi-
cable on . If there is a sphere so that

is in general position with respect to

the boundary of the punctured solid torus obtained by attaching a

single component of ( ) to . Moreover, the components of

are oriented so that they form parallel circles in . This implies that

, together with an annulus in , form a Klein bottle in , another

(related) contradiction.

When = 2 then = 3 so the number of edges in is

3 2 3. There are two cases:

If each edge of intersects the same number of times (as our

parity discussion guarantees will happen when = 2), then each triple

of corners of the hexagon (corresponding to a vertex of the punctured

torus when it's reassembled) represent the same interval of , or per-

haps the special segment. At least one of the triples doesn't contain

the special segment, and the hexagon in cut o� from by the arcs

of adjacent to these corners, together with and the segment

of the hexagon is incident to describe the spine of a Lens space

(3 1) , a contradiction.

If some edges of intersect more often than others (so 4 and

so 12), then consider a longest pair = 1 2 of opposite edges

of (length here is shorthand for the number of points of intersection

with ). Picturing these opposite sides as the top and bottom of the

hexagon, consider the distance in between the left ends of the .

Our choice of edge guarantees that it is less than 1 3 the circumference

of , that is . Similarly for the right hand ends. It follows

readily that there are at least two rectangles in , cut o� by a pair

of adjacent arcs of running between the that either make up

part of the spine of an (2 1) or contain the special component.

At most one can contain the special component, leading to the same

contradiction.

The same argument, with the roles of and switched and

replacing + 1, shows

( ) ( )

1

1

( ) 2

Essentially the same argument applies in a slightly di�erent setting:

( ) ( )
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intersects each of in a single point and
each component of the -manifold is essential in .

Then either also or .

Proof.

Suppose the pair is presented as a quasi-
cable on with . If there is a sphere so that

is in general position with respect to
intersects and in a single point and

each component of the -manifold is essential in .

Then either also or .

Proof.

1

= 1 ( ) 2

Here the intervals of that are incident to constitute

two adjacent \special" components. Since we can take 3

(it's necessarily odd, since the hypothesis guarantees that its ends lie

on opposite sides of ) then 8. Then the combinatorial

arguments of Lemma 2.6 applies with little change.

We can switch the roles of and in the above proofs, at the cost

of raising to 2:

( ) ( )

1

1

= 1 ( ) 2

We need only consider the case = 1. Let = ,

necessarily odd. Then = ( +1)+2. In fact, ( 1) segments

lie parallel to segments of , 2 +2 segments (in sequential pairs)

are incident to the point and one of these sequential pairs (called

the \special pair") are incident to the point . Much as before, we

set = 2 3 as the most di�cult but also roughly representative cases.

When = 2 there are an odd number of arcs in , since 2

is odd and so there are an odd number of arcs incident to each edge.

The extra \special" segments in mean that the intersection arc of

that lies in the center of each pair of oppsoite sides of does

not have its ends at the same point of intersection of with (an

immediate contradiction via its normal orientation) but it does mean

that adjacent to each such central arc, at opposite ends, are segments

of that are parallel to the same segment of . This would

exhibit, as usual, the absurd (2 1) . This contradiction is only

avoided if each side of intersects in exactly one point. But this

means that = 6, so = 1 as required.

When = 3 then, since the number of arcs in is 1 3, not

all edges of intersect the same number of times. We may as well

restrict to the case 3 so there are at least 7 arcs in . If

there is a single pair of longest edges, each must then intersect at

least 5 times. It's easy to see in this case, that wherever the adjacent

special edges lie, they cannot disrupt the existence of at least one pair

of opposite intervals of (among those lying in these longest sides)
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Knots thinly presented on handlebodies

De�nition 3.1.

De�nition 3.2.

De�nition 3.3.

De�nition 3.4.

e P

L ; S

h S x; y S

P t h t

S x; y

h

e h e

e

h edges

v

v v Y

v v �

S

h edges

�

h edges Y

� Y

t < : : : < t

t ; : : : ; t

s ; i n t < s < t

W P s P s :

S

h

that correspond to the same component of and so constitute

part of a Lens space (2 1) . Similarly, if there are two pairs

of opposite longest sides, then each must be of length at least 3 and,

wherever the adjacent special components lie, they cannot disrupt the

existence of a similar Lens space contradiction from at least one pair

of opposite longest sides.

3.

In [GST, Section 2], we extended Gabai's notion of thin position for

knots to include also certain types of graphs in 3-space. We briey re-

view (and incidentally somewhat extend) that development here, since

it will be an important ingredient of our argument.

Choose a height function : = and let

( ) = ( ).

�

(a) �

(b) �

(c) �

-vertex

-vertex

Standard Morse theory shows that any �nite trivalent graph in

can be in�nitesimally isotoped so that it is in normal form.

maxima �

minima �

regular

critical points �

critical values critical heights

�

1

�

(�) = 2(� ( ) (�) ) + (� ( ) (�) )

�

�

A �nite trivalent graph is in normal
form with respect to if

For each edge the critical points of are nondegenerate
and lie in the interior of ,
The critical points of , and the vertices of , all occur at
di�erent heights.
At each (trivalent) vertex of either two ends of incident edges
lie above (we say is a ) or two ends of incident edges
lie below (we say is a )

The of consist of all local maxima of
and all -vertices. Similarly, the of consist of all local min-
ima of and all -vertices. A maximum (resp. minimum) that

is not a -vertex (resp. -vertex) will be called a maximum
(resp. minimum). The union of the maxima and minima (hence in-
cluding the vertices) are called the of and their heights
the or .

Let be the successive critical heights of
and suppose are that subset of levels at which vertices occur.

Let be generic levels chosen so that . De�ne
the width of to be

A thin position of a graph is a normal form
(with respect to ) which minimizes the width of .
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Remark:

De�nition 3.5.

De�nition 3.6.

S h
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@� h K
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K K

@�

F; @F S � ; @�

h F

@F h

h F h

h F

h @F

h F

h @F Y h @F

� h

F

Suppose is a graph, in normal form with respect to
, and is a simple closed curve. Then is in normal

form on if each critical point of on is non-degenerate, and
occurs near an associated critical point of in . Furthermore,

the number of critical points of has been minimized via isotopy of
in .

A properly imbedded surface

is in normal form if

each critical point of on is nondegenerate,
is in normal form with respect to

no critical point of on int occurs near a critical height of
on ,
no two critical points of on int occur at the same height,
the minima (resp. maxima) of at the minima (resp. max-
ima) of are also local extrema of on , i.e., `half-center'
singularities,

the maxima of at -vertices and the minima of at
-vertices are, on the contrary, `half-saddle' singularities of on
.

In practice, the chief property of a thin positioning of a

graph � that we will need is this: The positioning becomes thinner if

a maximum is pushed below a minimum, but the width is una�ected

by pushing one maximum above or below another maximum, or one

minimum above or below another minimum. See [GST, Section 3] for

details.

A graph � in normal form with respect to can be thick-

ened slightly to give a solid handlebody (�) . Standard tech-

niques allow us to take a neighborhood so thin that the height func-

tion ( (�)) has the obvious Morse structure: very near any regular

maximum (resp. minimum) of � there are two non-degenerate critical

points of ( (�)), one a saddle just below (resp. above) and one a

maximum (resp. minimum) just above (resp. below). Similarly, just

above (resp. below) a -vertex (resp. -vertex) there is a single saddle

singularity. When we refer to a regular neighborhood of (�) of � we

will always mean a thickening with this property. Slightly abusing no-

tation, (�) will denote the closed complement of (�). We will

be concerned with simple closed curves on (�) and with properly

imbedded surfaces in (�).

�

(�)

(�)

� (�)

(�)

( ) ( (�) (�))

1.

2.

3. ( )

�

4. ( )

5.

�

6.
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De�nition 3.8.
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Lemma 3.10.
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is in bridge position if there is a level sphere, called
a for the bridge position, that lies above all minima of
and below all maxima.

Given in normal form and a level sphere for at
a generic height, let and denote the balls which are the closures
of the region above and below respectively. An upper disk (resp.
lower disk) for is a disk transverse to such that

, where is an arc imbedded on , is

an arc properly imbedded in , and a small product
neighborhood of lies in (resp. ) i.e., it lies above (resp. below)
.

upper cap lower cap

Suppose is a graph, in normal form with respect to
the height function , and is a normal form simple closed curve on

. If is also in thin position (as a knot in ) with respect to
, then we say that is .

Suppose is a graph, in normal form with respect to
the height function , is an incompressible surface in
normal form and is thinly presented on . Suppose a
maximum and a minimum of occur respectively at heights and
with . Then there is a generic level sphere ,
so that every arc component of is essential in .

Proof.

The meaning of \near" in (3.) is probably best thought of

informally, but the technical requirement (for, say, the critical height

of a maximum of �) is this: No critical point of on the interior of

occurs at a height between the levels of the maxima of (if any) near

and the level of the saddle point of (�) near . Standard Morse

theory ensures that, for � in normal form, any properly imbedded

surface ( ) can be put in normal form.

�

dividing sphere

�

�

(�)

= (�) =

(�) =

Note that int( ) may intersect in simple closed curves. An in-

nermost such simple closed curve cuts o� a disk that lies either above

or below . Such a disk is called an or . For the

moment, these caps will be unimportant.

A natural occurence of upper (or, symmetrically, lower) disks is this:

According to De�nition 3.6, a maximum of near a maximum of �

is a half-center singularity on . In particular, a sphere just below

this maximum will cut o� an upper disk from .

�

(�)

thinly presented on (�)

�

(�)

= (�)

= ( )

We have seen that a sphere just below ( ) cuts o� an upper

disk from and that a sphere just above ( ) cuts o� a lower disk from

. The seminal point of thin position (see [G]) is that there cannot
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Corollary 3.11.

Lemma 3.12.
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e e e e m m
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S �

B

P K B

Suppose the pair is thinly presented as a
quasi-cable on with both .
Then .

Proof.

Suppose is a knot which is thinly presented on a as a
quasi-cable on . Suppose has been made as thin as possi-

ble subject to this condition. Suppose furthermore that the complement
is a genus two handlebody.

Then is in bridge position.

Proof.

simultaneously (even at a critical point of on the interior of ) be

both an upper and a lower disk, for these disks could be used to push

a maximum of below a minimum, thinning . Hence there is a

generic height between and for which the level sphere = ( )

cuts o� neither an upper nor a lower disk from . But this means

there can be no arcs of which are inessential, for an outermost

such inessential arc would cut o� either an upper or a lower disk from

.

Combining Lemma 3.10 with the central lemma of the previous sec-

tion, we have this corollary:

( ) ( )

2

( ) 2

Let and be the highest maxima of, respectively, the

cycles and . Similarly, let and be the re-

spective lowest minima of these cycles. Let = and

= . Since is in both cycles, we know that any point

on lies below and above , so . Since 0, and are

(near) the heights of, respectively, maxima and minima of . Choose a

level sphere as in Lemma 3.10 between and . By construction, such

a level sphere lies at a height between the maximum and minimum of

each of the cycles and and so intersects both of them.

Now apply Lemma 2.3.

( )

( )

The proof is analogous to that of [GST, Proposition 4.4]. Sup-

pose that is not in bridge position. Then there is a level sphere

that lies between a sequential pair of critical levels for , a maximum

just below and a minimum just above . Maximally compress

in the complement of . The resulting meridional planar surface ~ is

incompressible in the handlebody ( ) so each component is paral-

lel to a subsurface of ( ) (see [Mo]). Since the boundary components

of ~ are meridians of ( ), each component of ~ can be completed to

a sphere in , and the piece of lying in one of the balls bounded by

that sphere is an unknotted tree (possibly just an arc) in the ball.

For concreteness, choose an innermost such ball and suppose it lies

above ~. Then every arc of lying in has at least one maximum in
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e e

e
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K @� ./ p ./

K �
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. If is a single arc , then isotope that arc to lie in ~. The arc

in ~ can be chosen to be disjoint from those disks which are the results

of the compressions that created ~ from , so in fact then lies in .

After this isotopy, the width of is reduced (since a maximumhas been

pushed below whatever minimum lay just above ) and that of is

not increased (since each arc of still has at most one maximum.)

This argument shows more: any arc of must have one

maximum in , for otherwise a disk of parallelism between that arc

and ~ (guaranteed by [Mo]) could be used to reduce the number of

critical points on , contradicting the assumption that is in thin

position, hence in minimal bridge position.

If the tree contains only maxima (including perhaps -vertices),

then pushing one to ~ would push it below the minimum that we know

lies (elsewhere) just above ~, again thinning . So we know that ~

contains at least one minimum and, since it can't be a minimum of ,

it must be a -vertex, with ends of descending into it. Similarly,

if both vertices are in then both must be -vertices. Since

is a tree, at most one of lies in so we can assume that, say,

intersects . Also intersects since otherwise would contain

a minimum in . Let be the arc in consisting of the end of of

and the end of at the -vertex. Then the parallelism between

and an arc on ~, guaranteed by Morimoto's theorem [Mo]) describes

how to pull the end of down to change the vertex into a -vertex.

This thins .

4.

We will need a second way in which can be viewed as lying on a

neighborhood of a normal form graph in . Let be the \eyeglass"

graph, obtained from two circles and by attaching an edge

running between them. If is imbedded in then a regular neigh-

borhood ( ) of is a genus two handlebody that can be described

as follows: Take two solid tori and with cores the loops and

and meridian disks and respectively, and join them together by

a 1-handle with core and meridian .

We will sometimes refer to as the bridge between the cycles and

.

( ) presented as a -eyeglass on

= 1

= 2

= 1
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De�nition 4.2.

Proposition 4.3.
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./
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S

S

Y �

Y

� Y �

Y

�

K p ./

./

K

e

p e

./

always intersects with the same orientation.

associated
quasi-cable

Suppose a height function is de�nd on . A cycle
in is if it has exactly one minimum and one maximum.
An eyeglass graph is in if any minimum that
does lie above a regular maximum (resp. maximum that lies below a
regular minimum) is a -vertex at the minimum (resp. -vertex at the
maximum) of a vertical cycle. A vertical cycle whose minimum is a
-vertex is called an extended maximum. One whose maximum is a
-vertex is called an extended minimum. Such a -vertex or -vertex

is called a of the extended maximum (resp. minimum). A

level sphere that lies above all minima and extended minima (except
perhaps a base -vertex) and below all maxima and extended maxima
(except perhaps a base -vertex) is called a for the
extended bridge position. See Figure 7

Suppose is thinly presented as a -eyeglass on ,
whose closed complement is also a genus two handlebody. Suppose that

is made as thin as possible, subject to the condition that it thinly
presents . Then either

is vertical,
and is vertical, or

is in extended bridge position.

Less formally, can be described as the band-sum, via a band run-

ning once along the bridge 1-handle, of a longitude of and a ( )

cable of . Note that if is presented as a -eyeglass on and

( ) is a handlebody, then is tunnel number one: Since goes

just once through a meridian of we can isotope = ( ) in ,

\vacuuming" up with until is simply a longitude of .

It's easy to see that any knot presented as a -eyeglass is also pre-

sented as a ( 1 1) quasi-cable on the same underlying handlebody

. The di�erence is in how meridians are chosen to de�ne the graph

that is a neighborhood of. The correspondence is given by = ,

= while the meridian disks and intersect in a single arc.

That is, the di�erence of the two graphs is a simple Whitney move.

The graph obtained from this way is called the ( 1 1)

and the disk in just described that becomes the meridian

will be called the pre-cable disk in .

Recall that a graph is in bridge position if every maximum lies above

every minimum. Following [ST2], we will extend this notion in the case

of an eyeglass graph.

vertical

extended bridge position

base vertex

dividing sphere

1.

2. = 1

3.
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Moreover, in the last case, is disjoint from some dividing sphere
for .
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The proof follows the same line of argument as the proof of the

main theorem of [ST2]. We only need to verify that the argument

there does not interfere with the thin presentation of . In fact, the

argument here is simpler because some of the more complicated steps

in [ST2] are required only after a step that, in our case, clearly thins

or shows that e. g. is vertical.

So suppose thinly presents but is not in extended bridge po-

sition. We've noted above that is a tunnel number one knot so we

know that is in bridge position. So if a maximum of lies be-

low a minimum, either the maximum is a -vertex or the minimum

is a -vertex, or both. So there are at most two level spheres with

the property that each lies just below a minimum and just above a

maximum. Let be the sphere or pair of spheres with this property.

Compress as much as possible in the complement of and call the

result .

A path in = ( ) between meridians is if the correspond-

ing path in is embedded. It is shown in [ST2] that there is a disk

in whose boundary is the union of a path in and an arc

in . Moreover the interior of is disjoint from and either is a

regular path that is disjoint from some meridian of or has both its

ends at the same point of and runs once around either or

. Consider each possibility in turn.

The path is a regular path that is disjoint from some

meridian of .

Say lies below . By general position we can assume that is

disjoint from the disks in which are the remains of the compressing

disks of , so in fact lies on . If does not pass through a vertex

of then just use to isotope the arc of that contains to

. During the isotopy, as perhaps passes through (though

not through ), may get thicker, but once it reaches it will have

been thinned, since all that remains of its internal critical points is
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one minimum, which will have been brought up above the level of the

maximum just below . The move similarly cannot thicken .

Essentially the same argument applies even when passes through

a vertex. is used to slide an end of one of the edges incident to the

vertex down to perhaps thereby just extending and not a�ecting

the bridge structure of . In any case is thinned and is not

thickened.

has both its ends at the same point of and runs

once around either or .

Much as in the previous case, can be used to move the cycle

or together with the end of between and the cycle to . Unless

the cycle was already vertical, this move (once the cycle is tilted again

to restore genericity) will thin and will not thicken . So we can

assume the cycle is vertical. This means we are done, unless in fact the

cycle is and 2. This case only arises if intersects but not

since if it is disjoint from both, we can appeal to [Mo] directly to get a

disk as in Case 1. (Unless, of course, some component of intersects

in exactly one point of . But then would be planar.)

Now note that, unless the maximum just below is a -vertex max-

imum of the move on just described pushes a minimum of

(on ) past a maximum of , contradicting the thin position of .

We deduce that the one and only maximum just below is in fact a

-vertex maximum of . If consists of more than one sphere, we

could repeat the same argument, just using the component to which

we have not just pushed . But that would lead to the contradiction

that the -vertex maximum of also lies just below the other plane.

We deduce that is a single plane. We have shown then that, aside

from the base -vertex of , only minima lie below . Moreover, just

above is a minimum and at no other level does a maximum lie below

a minimum. It follows that is in extended bridge position.

It remains to show that is disjoint from some dividing sphere.

Much of the proof mimics [ST2]. We suppress most of the technical

details, except to note that many of the technical problems do not arise

in our context. Most importantly, if is a dividing sphere and there are

disjoint lower and upper caps, then pushing a vertical cycle which is,

say, an extended maximum down past a minimum would immediately

thin , even if (as discussed in [ST2]) passing other maxima might

thicken . We deduce that in our context disjoint lower and upper

caps cannot arise for elementary reasons.

In any case, the upshot of the argument in [ST2] is that there is a

dividing sphere that cuts o� from a meridian disk of ( )
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both an upper disk and a lower disk . Moreover the interior of

each is disjoint from .

Consider the components and of ( ) to which and

are incident. If neither nor contain vertices, or if they have

no ends in common, or if together they contain at most one vertex and

they have a single end in common, then it is easy to use and to

push a maximum down past a minimum, contradicting the thinness of

or . Note in particular that if the boundary of one of the disks,

say , goes once around , although the move described may thicken

(cf [ST2]) it does push a minimum of (namely the minimum of

) past a maximum of and so would violate the assumption that

thinly presents .

We now proceed to dispose of the other cases. Suppose that, say,

, contains a vertex and that and have two end meridians in

common. We can assume contains only one vertex, else is disjoint

from and we are done. Then contains a vertical cycle. If that

cycle is or = 1 we are done, so we'll assume it's and that 2.

Either and can be used to make (indeed !) thinner or they

can be used to isotope into . This last move not only makes non-

generic, but it may thicken if winds around . Nonetheless, we

persist, inspired by the proof of [GST, Theorem 5.14]. That argument

shows that, once is level, so the solid torus neighborhood divides

into two disks, an innermost disk component of in or a

disk cut o� by an outermost arc of in can be used to push

a maximum (resp. minimum) of (possibly the maximum near the

end of at ) down (resp. up) through the level of . Afterwards,

can be tilted slightly to restore genericity and thereby to remove

the extra bridges of that may have been introduced when was

made perfectly level. Since a maximum has been pushed down (or a

minimum up) past , it follows that (indeed , since 2) has

been thinned, the usual contradiction.

The possibility remains that and each have a single vertex

and they also have a single end in common (they can't have two ends

in common since the result would be a cycle in containing both

vertices.) Their common end must be a point of , since in

that is the only arc that connects the two vertices; in particular, is

monotonic. In this case, the disks and either could be used to

thin (an immediate contradiction) or they can be used to make

level. If neither component or contains all of , then the move

simply levels . Once again, this move makes no longer generic

and may also thicken , for may wind many times around the edge

. But we continue anyway, inspired this time by the proof of [GST,
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Corollary 4.4.
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Suppose is thinly presented as a -eyeglass on ,
is a handlebody, and has been made as thin as possible.

Then either

is vertical
and is vertical

and is also thinly presented as a quasi-cable on

the associated -graph and is no thicker than .
and the graph is no thicker than .

Proof.

Theorem 6.1, Subcase 3b]. The argument has a number of subcases,

but all result in the following conclusion: a maximum (say) of or

(possibly contiguous to an end of ) can be pushed down to the level

of (or below, if it is not contiguous). Once this is achieved, tilt

slightly to restore genericity, but leave the pushed down maximum at

(or below) the lower end of . The result is a thinning of (indeed

).

The �nal possibility is that the move just described levels all of

because, say, contains . In this case it seems that the

move might pull past other maxima lying below it, thickening

so that, after is tilted to restore genericity, actually ends

up thicker. Nevertheless, it is argued in [ST2] that in fact this does

not happen, or at least, if it does, the extra thickness (and more) can

immediately be removed by a move analogous to that described above

when was levelled. This is established by a somewhat complicated

combinatorial argument on . We won't repeat the argument here.

The upshot is that either ends up thinner, a contradiction, or there

were in fact no maxima between and . But in this last case, all the

minima (including the base -vertex of ) lie below all the maxima,

so is in non-extended bridge position. (Only the base vertex of

lies between and the level plane for this bridge presentation.)

Moreover, all of lies below , verifying the proposition in this case

as well.

( )

1.

2. = 1

3. ( ) 2

4. 2 ( 1 1)

�

5. = 1

The last two possibilities are essentially the same and are

only distinguished by the value of . It's convenient to restrict the

terminology ( ) quasi-cable to the case 1. If we were to extend

that de�nition to (1 0) quasi-cable, then the original graph would

be its natural meaning. See the beginning of Section 5.

Following Proposition 4.3 we only need to consider the case in

which is in possibly extended bridge position and is disjoint from

a dividing sphere. Suppose �rst that is in fact in (non-extended)
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bridge position and, with no loss of generality, suppose lies above

the dividing sphere. Then ascends from the lower -vertex and

either is monotonic or it has one internal minimum and descends into

the other -vertex as well. It's easy to move from one position to the

other without a�ecting the width of either or , so we'll assume for

concreteness that is monotonic. By (perhaps) twisting around the

other two ends at the lower -vertex we can ensure that the meridian

disk for the associated �-graph, namely the pre-cable disk in that

runs the length of , is disjoint from the descending disk incident to

given by the bridge structure. See Figure 8. Then the Whitney move

has no e�ect on the bridge structure (hence the width) of , nor the

width of : a pair of -vertices with an edge between them is replaced

by exactly the same thing.

Now assume that has an extended maximum, say. Since the ex-

tended maximum contains a vertical cycle, we are done immediately

unless the vertical cycle is and 2. Since is disjoint from the di-

viding sphere (say it lies above), it runs monotonically from a -vertex
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Thinning quasi-cables
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splitting sphere

Let be a (not necessarily complete) family of
pairwise disjoint meridian disks for and be a simple closed curve on

isotoped so as to minimize . Suppose an arc component
of has both its ends on a single meridian in the family

and the union of and a subarc of bound a disk in . Then is
a of with respect to . The wave is said to be at the

meridian .
In particular, if is an essential disk in , isotoped so as to min-

imize , then all components of this intersection are arcs,

to the -vertex base of . Since 2 the knot has a maximum at

the -vertex. Now �nd, somewhere below the -vertex, a level sphere

as in Lemma 3.10, so every component of is essential in the

Seifert surface . Then Lemma 2.6 applied to the associated ( 1 1)

quasi-cable shows that ( ) 2.

5.

Suppose is a tunnel number one knot with an unknotting tunnel.

According to [ST1, Proposition 4.2] there is a minimal genus Seifert

surface for that is disjoint from . We now pursue the line of

argument used in [GST] and [ST1] to analyze the relation between

and the pair ( ). The philosophy will be to view the pair ( ) as

an incipient case of being thinly presented as a ( ) quasi-cable,

though with ( ) = (1 0). Here the graph would be , with

playing the role of and the two segments of into which the ends

of divide playing (interchangeably) the roles of . Roughly,

the idea is this: inspired by [GST] we will consider the thinnest graph

that thinly presents as a ( ) quasi-cable and, inspired by

[ST1], ask how and the height function interact with \splitting"

spheres for the handlebody ( ) .

We begin by setting some terminology and notation. In analogy to

the notation used for quasi-cables, denote the meridian of = ( )

corresponding to a point of by and meridians corresponding to

points in the two edges of by and . In general, for

a handlebody in whose closed complement is also a handlebody,

a for is a sphere that intersects in a single

essential circle. In other words, it is a reducing sphere for the Heegaard

splitting = ( ( )). A splitting sphere is best viewed

as the union of two disks, = and = ( ) that have

a common boundary in . The exterior disk will, much as above,

suggest possible thinning moves for . The interior disk will

give useful information about how can behave, since = .

( )

wave based

( )
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Lemma 5.3.

Lemma 5.4.
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and an outermost arc of intersection in cuts o� a disk so
that is a wave of with respect to . The disk is
called a .

Suppose thinly presents the pair as a
quasi-cable with . Consider the family of meridians
for the handlebody . Then an essential disk in

if there is a wave of based at either or
(so in particular the wave is disjoint from ).
Similarly, if is a splitting sphere for , then satis�es the wave

condition if does.

Suppose is a tunnel number one knot with an un-

knotting tunnel, and is a minimal genus Seifert surface for that
is disjoint from . As described above, let present as
a quasi-cable. Then may be slid and isotoped so that either

lies on or
there is a splitting sphere for so that, with respect to the set
of meridians , a wave of is based at .

Suppose is a tunnel number one knot with an un-
knotting tunnel, and is a minimal genus Seifert surface for
that is disjoint from . Then either there is a graph that presents

wave disk

( ) ( )

= ( ) satis�es

the wave condition

=

Note that satis�es the wave condition if and only if some outermost

disk of (hence all outermost disks) cut o� by is cut

o� by an arc lying in either or .

With this terminology, [ST1, Corollary 5.3] can be reinterpreted as

follows (noting that \ is �nite" translates to \ has a wave at "):

= ( )

(1 0)

( )

In fact more of [ST1] can be reinterpreted in this setting. If

is not a 2-bridge knot, an invariant ( ) 2 is de�ned and,

if = 1 it is shown that can be isotoped onto . The case = 1

translates to this statement: For the pair of meridians (which

are interchangeable in this context) and any splitting sphere there are

waves of = , with the property that each wave disk intersects

in a single arc. In particular, a wave disk at , say, can be glued

to a subdisk of to get a non-separating meridian of that is

disjoint from the wave disk and intersects in a single arc. Then the

meridians give the structure of a �-graph which

presents ( ) as a (1 1) quasi-cable satisfying the wave condition. In

, the meridian has become the meridian of the edge , the

meridian of the edge , and the meridian of the edge . The

two graphs and di�er by a standard Whitney move on . So we

have:
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as a quasi-cable and a splitting sphere that satis�es the
wave condition, or may be isotoped to lie on .

Suppose is a tunnel number one knot with an un-
knotting tunnel, and is a minimal genus Seifert surface for that
is disjoint from . Then either

there is a graph , no thicker than the graph , that
presents as a quasi-cable and a splitting sphere that
satis�es the wave condition, or
may be isotoped to lie on , or
can be slid and isotoped to form an unknotted loop with its ends

at the same point of .

Proof.

( ) (1 1)

The next ingredient to throw into the mix is thin position. Of course

in Lemma 5.3 there is no obstacle to having thinly present - just

begin with in thin position. It's not obvious that the process that

leads from Lemma 5.3 to Lemma 5.4 preserves the property that is

thinly presented, but we now show that it does, (or can be made into

an unknotted loop). Or, more accurately, we show that this follows

immediately from the results of [GST] and [ST1].

1. thinly

( ) (1 1)

2.

3.

Following [GST, Theorem 3.5], can be slid to become either

an unknotted loop, and we are done, or is a level edge, with its

ends incident to the top two maxima (say) of the thinly presented .

(In the latter case, regain a generic positioning by slightly perturbing

from its level position, changing it to a monotone edge connecting

two -vertices.) If is 2-bridge, it's easy to see that contains an

isotopic copy of (cf [BZ, Remark 12.26]), and we are done. If is

not 2-bridge and the invariant ( ) 2 then de�ned in [ST1] is

not 1, it follows from [ST1, Theorem 5.2] that may be isotoped into

and we are done.

Consider �nally the case ( ) = 1 for a splitting sphere as

in Lemma 5.3. The fact that = 1 means that, the pair of meridians

cuts o� a wave of = based at the meridian , say,

and that wave intersects in a single arc. In particular (as above)

the wave disk can be glued to a subdisk of to get a non-separating

meridian of that is disjoint from the wave disk and intersects

in a single arc. Appropriately twist the two arcs of that descend

from the bottom -vertex of (equivalently, choose an appropriate set

of descending disks) as discussed in Corollary 4.4 (see Figure 8) so that

the descending disk is disjoint from . Then the standard Whitney

move on , using not only converts to a graph that thinly

presents as a (1 1) quasi-cable, it does it without thickening , for
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Proposition 5.7.

Lemma 5.8.
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one pair of -vertices is just replaced with another. (See again Figure

8).

We consolidate our results a bit more:

� ( )

( ) 1

( ) appropriate

� ( )

1.

2.

� ( )

�

As noted above, according to [ST1, Proposition 4.2] there is a

minimal genus Seifert surface for that is disjoint from . The rest

follows from Lemmas 5.5 and 3.12.

We will expand on the last possibility, but it will be useful to have

the following general lemma:

�

1.

2.

3.

Suppose �rst that the vertices lie on the same side of a dividing

sphere , so, with no loss of generality, both are -vertices, say. Then

each edge intersects in an even number of points. Since is

vertical, together the edges intersect in 2 points. Hence one of these

two edges, say , is disjoint from . This means that is the edge

that descends from the higher -vertex. can't also descend from

this vertex, so intersects . If intersects in two points then

Suppose is a knot, is a minimal genus Seifert
surface for and is a -graph such that thinly presents as
a quasi-cable, and such that there a splitting sphere for

that satis�es the wave condition. We say that is an
-graph (for the pair and splitting sphere .)

Suppose is a tunnel number one knot and is
an unknotting tunnel for . Then either

can be slid and isotoped to form an unknotted loop with its ends
at the same point of or
there is a minimal genus Seifert surface for with this prop-
erty: either

can be slid and isotoped to lie on , or
there is an appropriate -graph for (and some splitting
sphere).

In the last case, if the -graph is put in thin position then it is in

bridge position.

Proof.

Let be a -graph with edges . Suppose
is in bridge position, is a dividing sphere, and the cycle is

vertical. Then either

all cycles in are vertical
there are bridges above and below made up of interior subarcs
of or
one of , say , is disjoint from and is vertical.

Proof.
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Suppose is a knot with Seifert surface and
there is an appropriate -graph for and some splitting sphere.
Let be a thinnest such -graph. Suppose that . Then
is in bridge position and (thinly) presents as a quasi-cable,

for some .

If furthermore one of the cycles or is vertical and a
dividing sphere intersects both edges of the vertical cycle then either

is vertical or

and the cycle is vertical.

Proof.

is vertical. If intersects in four or more points then there

are bridges above and below made up of interior subarcs of , as

required.

Suppose next that the vertices lie on opposite sides of , so one

vertex is a -vertex and the other is a -vertex, and each edge intersects

in an odd number of points. Since is vertical, each of these

edges intersects in a single point. If also intersects in a single

point then every cycle is vertical. If it intersects in three or more

points, then there are bridges above and below made up of interior

subarcs of , as required.

� ( )

� ( ) = 1

( 1)

1

= 1

Corollary 3.11 notes that = 1. Proposition 5.7 shows that

is in bridge position.

Suppose �rst that the cycle is vertical. We apply Lemma

5.8, using for . If all cycles are vertical then of course we

are done. By hypothesis, neither nor is disjoint from a dividing

sphere. So we may assume, following Lemma 5.8, that there are bridges

above and below a dividing sphere made up entirely of interior subarcs

of . We can of course arrange that the lowest maximum and highest

minimum are these bridges. Now choose a level sphere as in Lemma

3.10. Since is vertical and intersects both edges, intersects

each edge in a single point. The result then follows from Lemma

2.8.

Similarly, suppose the cycle is vertical. Again apply Lemma

5.8 this time using for . If all cycles are vertical we are done.

By hypothesis, neither nor is disjoint from a dividing sphere so

we may arrange that the lowest maximum and highest minimum are

from bridges that lie entirely in . Now choose a level sphere as in

Lemma 3.10. Since is vertical and intersects both edges,

intersects each edge in a single point. The result then follows

from Lemma 2.9.
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Suppose is an appropriate -graph for the pair
and splitting sphere . Suppose there is a level sphere at a

generic height for such that cuts o� both an upper and a lower
disk from . (As usual, may lie at a critical height of

). Then is called a for .

Suppose is a thinnest -graph appropriate for .
Then either

Some dividing sphere for is also a critical sphere
all the cycles in are vertical or
the edge (one of ) on whose meridian a wave is based is
disjoint from a dividing sphere and both of the cycles containing

are vertical.

Proof.

�

( )

= ( )

( ) critical sphere

� ( )

1.

2.

3.

The conclusions make sense, since we know from Proposition 5.9

that must be in bridge position. If a sphere just above the highest

minimum cuts o� a lower disk, and a sphere just below the lowest

maximum cuts o� an upper disk, then some level sphere between them

is a critical sphere. This condition is guaranteed unless the highest

minimum (or the lowest maximum) is a -vertex (resp. vertex) with,

via the wave condition, an end of descending (resp. ascending) from

the vertex.

So suppose the highest minimum, say, is a -vertex with an end of

descending. Let be any dividing sphere for . If any component

of below is a simple arc, its minimum could be pushed higher

than the -vertex, eliminating the problem, so we can assume that all

components of below contain vertices. If there is only one such

component and it contains a single vertex, then each of the cycles has

at most one minimum and so each is vertical. If there is only one such

component and it contains both vertices, then the edge between them

must be incident to the higher vertex from below, hence that edge is

. Moreover, both cycles containing have exactly one minimum,

and so both are vertical.

The remaining case is when the vertices are in separate components,

each lying below , i. e. both of them -vertices. Let denote

the higher -vertex. Push the regular minimum on the component

containing up to a height just below . Now slide the end of

ascending from down to the regular minimum and back up the other

side. This has no e�ect on the width of (since, for example, it

doesn't change the number of bridges) but it alters the arrangement

of the edges around . In particular, afterwards the end of ascends

from so, by the wave condition, we can assume that just above , a

level sphere cuts o� a lower disk from , and so somewhere between
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Suppose is a thinnest -graph appropriate for
and has a dividing sphere that is a critical sphere. Then either

one of the edges of is disjoint from the critical sphere (hence
from a dividing sphere) or

the edge of on whose meridian a wave is based is monotonic
and one of the two circuits in containing is vertical.

Proof.

that level and that of the lowest maximum there is a critical sphere as

required. See Figure 9.

It will be useful to assume that we always perform the move described

at the end of the proof of Lemma 5.11 when it is possible. That is, if

is in bridge position

a dividing sphere cuts o� a component of containing a single

vertex (say a -vertex) and

the end of descends from that -vertex

then we slide the end of at that vertex over the contiguous regular

minimum of . This ensures that ascends from every such -

vertex (and, symmetrically, descends from any such -vertex) and has

no e�ect on the width of anything, since we are just rearranging the

heights of minima (or the heights of maxima).

� ( )

1.

2.

Let be the critical sphere. Let and be the components

of to which the lower and upper disks and are incident.

Suppose �rst that one of these components, say , has no vertex (so

is a regular minimum). If also has no vertex, then could

be thinned, a contradiction. If has two vertices, then it contains

an edge disjoint from and we are done. If has one vertex then,

since every circuit in has two vertices, and have at most one

common end point on . Moreover, by the wave condition, the path

= has at least one end incident to an end of in . Then

and describe how to slide the end of in down to while
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Suppose that is a thinnest -graph appropriate for
. Then either

some dividing sphere is a critical sphere and the critical sphere is

disjoint from one of the edges of or
is vertical or

and the cycle is vertical
.

Proof.

simultaneously isotoping all of up to . If the slide of the end of

is down an end of that would thin ; otherwise the e�ect of the

slide is to sew together the ends of extending the end of down to

or below the level of the minimum at . (See Figure 10.) This thins

(though not necessarily ), possibly by changing a -vertex into a

-vertex. This contradicts the assumption that is a thinnest such

graph.

The remaining case is that and both contain a single vertex.

As above, and can be used to slide the ends of in and

up and, respectively, down, until they lie in . This would thin

unless crossed in exactly one point (an end of both and ).

In the latter case, was monotonic and the slide would level by

isotoping it into . If the levelled becomes a loop, then originally

it was part of a vertical cycle, and we are done. This is also true if one

of the other edges of has a single interior critical point. If neither of

these cases occur, then the argument of [GST, Theorem 6.1, Subcase

3b] can be used (as it was in Proposition 4.3) to move the levelled

up (or down) to connect two maxima or two minima. Afterwards is

no wider but is thinned, a contradiction completing the proof.

�

( )

1.

2.

3. = 1

4. ( ) 2

Suppose �rst that some dividing sphere is a critical sphere. Then

following Lemma 5.12, if the critical sphere intersects all the edges,

then some cycle involving one of is vertical. If it's the cycle

we're done. If it's either of the other two cycles, apply Proposition
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De�nition 6.1.

Lemma 6.2.

Regular annuli in handlebody complements

�

e e e e e

e e p

e e p e

P

S

h

c @� c

� �

c

c � c

Y

S

h A

S � h

P P t @ A @ A

@ A

A D

D @ A @ A

@ A

P y

@ A

P x

@ A

@ A @ A

@ A

x y > x

@ A

Let be a trivalent graph in , in normal form with
respect to a height function . Then a normal form simple closed curve
on is if never \back-tracks" along an edge, traversing

the edge twice in opposite directions, after looping around a vertex at
the end of the edge.

Suppose is a trivalent graph in in bridge position
with respect to a height function and is a properly imbedded annulus
in in normal form with respect to . Suppose some dividing
sphere intersects more often than it intersects .
Suppose �nally that the lowest maximum and the highest minimum of

are regular critical points, on edges that are incident to . Then
some dividing sphere cuts o� from both an upper disk and a lower
disk , both of which are incident to (as opposed to ).

Proof.

5.9, observing that either some edge is above a dividing sphere or the

dividing sphere will intersect both edges of any vertical cycle.

If no dividing sphere is a critical sphere then apply Lemma 5.11. If

all the cycles in are vertical then of course we are done. If the wave

is based on so = then Lemma 5.11 says is vertical, as

required. Finally, suppose = . If = 1 then we are done, since

is vertical. So suppose = 2 and, following Lemma 5.11, is

disjoint from a dividing sphere. Find a dividing sphere as in Lemma

3.10 and apply Lemma 2.5.

6.

�

(�) regular

More precisely, if is a collection of meridian disks in (�), one

for each 1-handle corresponding to an edge of �, then no subsegment

of with interior disjoint from these meridians, has its ends incident

to the same side of the same meridian. In particular, no minimum

of occurs near a -vertex of � and no maximum of occurs near a

-vertex of �.

�

(�)

= ( )

�

Since the lowest maximum is a regular maximum and runs

along the edge that contains it, a dividing sphere ( ) just below the

lowest maximum cuts o� an upper disk that is incident to . Simi-

larly, a dividing sphere ( ) just above the highest minimum cuts o�

a lower disk that is incident to . Since some (hence every) dividing

sphere intersects more often than it intersects , every dividing

sphere cuts o� some disk, either upper or lower, incident to . Since

at there is a lower one, and at there is an upper one, and at

every height between there is one or the other, it follows that at some

height there is both an upper and a lower disk incident to . (As



35

+

+

+

+

+

Lemma 6.3.

\ \

\ \

�

[

�

\

\

� ?

?

� � ? ?

� ?

� ? ? ?

� �

� ?

� ?

� ?

� ?

� �

u l u

u l l

u

u

l r l r

l l

r r l r

l r

u

l l

u

u l r r

l r

r l u

u

l r

P

A

A

A

K p;

A

�

K E

K;F

� P

A D D �

D @� � � D @� � K

e P

� e P e P

e

genus K

e e

e P �

�

@� � P P

K

@ � � � �

K � �

� � p � �

p

� ; �

�

K � �

K � K

D D � �

� � K e

� � �

� p

K � �

Suppose there is a -graph appropriate for and,
for a thinnest one , there is a dividing sphere that cuts o� from

disjoint upper and lower disks and so that the arcs

and are regular curves disjoint from .
If the edge is disjoint from then either

runs from a point of to a point of , traversing
once,

or
is unknotted

Proof.

usual, this height may be at a saddle tangency of with an interior

point of .)

In the next section we will see that such a useful annulus can

often be found. In this section we examine how, by exploiting upper

disks and lower disks lying in , we can thin a � curve that presents

as a ( 1) quasi-cable. Until we begin to use Lemma 6.2 there is

nothing special about using ; any properly embedded surface in the

graph complement would do, though it is important that the upper

and lower disks themselves are incident to only along regular curves

disjoint from . For example, the external disk used above cannot

generally be used for the purposes of this section because its boundary

is typically not a regular curve.

� ( )

=

( ) = ( )

1.

2. ( ) 2

3.

We may as well assume lies above , so the vertices are

vertices. By thinness we can assume that lies on the 4-punctured

sphere component � of ( ) lying above . We can think of

the components � as edges of a graph on �, with vertices the

four meridian boundary components. That is, if we label the meridian

components of � as , , , in the obvious way, then the

components of � consist of a single arc connecting to , a

single arc connecting to and arcs connecting to . The

arcs are either all parallel or comprise two families of parallel arcs,

separating in � the points . See Figure 11.

Consider the possibilities for : There is only one path in � that is

disjoint from and has ends at meridians and . And it's parallel

in � to an arc of . Hence if were that path, could be thinned,

using and . Similarly for paths from to . There are (at

most) two paths from to disjoint from , each traversing

once, and similarly two paths from to . If is any of these

paths, then the �rst conclusion of the lemma follows.

Now suppose is the path in � (available only if all arcs are

parallel) that is disjoint from and runs from to . Suppose,
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to begin with, that does not also run from to but rather

has at least one end at another point of . Consider the + 1

eyeglass graph obtained from by a Whitney move along , using

as the new meridian a neighborhood of (see Figure 12).

Then describes a descent of the new bridge edge for down

to . Simultaneously, describes how to move a minimum of (now)

above or at least to the level of . In particular, is in bridge

position, and a dividing sphere necessarily intersects . Moreover,

is thinner than since, in e�ect, a maximum has been pushed below

a minimum. Now put in thin position. According to Corollary 4.4

(exploiting the fact here that is a +1 1 eyeglass) either becomes

vertical (which implies that was unknotted) or ( ) 2

or the associated �-graph, namely can be made as thin as . The

last contradicts the hypothesis and the �rst two possibilities are the

conclusions we seek.

Now suppose , like , runs from to (so, in particular,

is vertical). We could construct as just described; the construction

places level in . Unfortunately, when is tilted to restore

genericity, is again a level sphere for and no thinning will have

occurred. So a di�erent argument will be used, this one exploting the

fact that and are disjoint from . Consider the situation once

and have been used to put into the plane . Let be a

thickened regular neighborhood of and consider the two longitudinal
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circles = . It is easy to see what they are: Before

the edge is levelled it intersects in two points (actually the points

). The are obtained by banding the corresponding pair of

meridians to itself using both and . The important point for our

purposes is that ( ) = 2. Consider where these points lie.

If they both lie on the same longitude, then an arc of they cut o�

is inessential in the annulus component of ( ) in which it

lies, and so it can be removed by an isotopy. On the other hand, if

one point lies on each longitude, consider the algebraic intersection of

with the disk component of bounded by , say. One

point is the point . All others come from intersections of , i. e.

intersections of the old . Each point contributes + 1 points

to and they are all of the same sign. So the total algebraic

intersection of with is 1 0 ( + 1). This contradicts the

fact that bounds in . We are left with the conclusion that

indeed can be isotoped o� of the two longitudes, so only intersects

the top of . But in that case, consider ( ). It's easy to

see that any component of intersection that is inessential in can be

removed (else could be thinned). So every component of is

essential. Now simply attach the bottom annulus of to to

obtain a sphere intersecting the original only in . Then Lemma 2.6

shows ( ) 2.

The remaining case is if has one end at each of the meridians

and . Exclude any such arc that is parallel to a subarc of , since

if were such an arc it would either violate the thinness of or (if

has ends at the same meridians) exhibit that is vertical. But

the only way that can be disjoint from , connect to , and

not be parallel to a subarc of is if all arcs of with ends at these

meridians are parallel and is one of the other two paths connecting
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Suppose there is a -graph appropriate for and,
for a thinnest one , there is a dividing sphere that cuts o� disjoint
upper and lower disks and from so that the arcs

and are regular curves disjoint from .
If is disjoint from then either

is unknotted or
, and is unknotted.

Proof.

and . Although these paths are not parallel to a component of

� in �, they are su�ciently parallel in the component of ( )

on whose boundary � lies to derive the same contradiction. Here is the

argument: If the ends of are also at and then together

and show that the cycle is vertical. So suppose no end of is

at , say. One arc of running from to is visibly isotopic

to in the 3-ball component of on whose boundary � lies. (See

Figure 13) The isotopy moves the end of across the meridian and

so destroys the property that lies on ( ). Nonetheless, once is

moved to then there is no obstruction to pushing below via

while simultaneously pushing arcs of parallel to above

using . The result is a thinning of , violating the hypothesis.

� ( )

=

( ) = ( )

1. ( ) 2

2.

3. = 1

The proof is mostly similar to that of Lemma 6.3. The relevant

�gure is modi�ed as shown (Figure 14), with 1 arcs running between

meridians and . There is only one regular path from to

(or from to ) that is disjoint from . These paths do not cross

and so, if is such a path, we could use and to thin

(without altering the wave condition), extending down to . The

only regular path between and (or and ) is parallel to

an arc of , so cannot be such a path. If 2 and runs between

and we use the same argument as was used for paths from

and previously.

Suppose �nally that runs between and (or, symmetrically,

= 1 and runs between and .) We would like to use the same

trick as was used previously, namely let describe a Whitney move
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that converts into an eyeglass graph. There is a subtle complication,

however. Note that the eyeglass graph that is created by this move

is in fact a eyeglass, not a ( + 1) eyeglass as before. In particular,

the associated �-graph to is not , which presented as a ( 1)

quasi-cable. Rather presents as a ( 1 1) quasi-cable (or just

as if = 1). Nonetheless, we are still in a position to get the

same contradiction with Corollary 4.4 (for, after all, was chosen to be

thinnest among all appropriate �-graphs and it was shown that such

a graph is no thicker than ) as long as we verify that is still

appropriate. In other words, we need to verify that still satis�es the

wave condition. The pre-cable disk is easy to identify: whereas in the

previous argument it was (essentially) a thickened vertical arc in

together with a meridian of , here it is obtained from a thickened

vertical arc in and a meridian of by adding a half-twist. (See

Figure 15.) Notice that intersects this meridian in ( 1) points, so it

is the meridian of (or if = 1) and, whether the wave was based

at or at , the extra half-twist guarantees that it is afterwards

based at the new meridian, as required. (The language when = 1 is:

the slope of the wave is still �nite.)

It will be useful to provide notation for arcs in the 4-punctured sphere

� discussed in the proof of Lemmas 6.3, 6.4. As motivation for the

notation we will use, suppose, as above, that the knot is thinly
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presented as a ( 1) quasi-cable on a �-graph in . Suppose further

that is in bridge position with respect to a height function , and

there is a dividing sphere that is disjoint from one of the edges.

In particular, one of the components of is a tree with 4-ends

(whose regular neighborhood intersects ( ) in the 4-punctured sphere

�) and all the other components of are simple arcs.

Of course the fundamental group of is free on two generators. The

natural generators of ( ) are loops that traverse each of the two

edges not disjoint from exactly once. To be concrete, orient and

suppose is disjoint from ; then a loop in , based at a point in

will give rise to a word in letters and (with inverses and ),

where corresponds to traversing once, and to traversing once,

each in the same direction as . Similarly, if one of is disjoint from

, then will correspond to traversing once and to traversing

once. We will only be interested in such presentations for regular

simple closed curves on ( ) that are disjoint from . In this case,

the cyclic permutation class of the word in corresponding to

the regular simple closed curve ( ) determines the isotopy

class of in ( ) almost precisely. The only ambiguity is in how

intersects �.
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Corollary 6.6.
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The of a word in
representing a regular loop is , for a dividing
sphere.

positive in

Suppose there is a -graph appropriate for
and is a thinnest one. Suppose further that

is disjoint from a dividing sphere.
there is a properly imbedded normal form annulus in
whose boundary components are disjoint from and regular
in and
a dividing sphere cuts o� upper and lower disks from and the
component(s) of to which these disks are incident represents
a word that is positive in .

Then either is unknotted or

So consider isotopy classes of regular arcs in � that are disjoint

from . Representative are those illustrated and labelled in Figure

16. Two of the �gures show (via a heavy line from top to bottom) the

meridian of the edge that's disjoint from . This meridian is relevant

for determining that an arc is regular: a regular arc can cross the

meridian at most once. The meridians of the arcs intersecting , i.

e. the boundary components of �, are shown as circles. The arcs

are labelled by where they would occur in a word in ; thus

if the sequence (or, inversely, ) occurs in the word,

the corresponding arc in � would be one labelled . Notice, as one

example, that there are two arcs labelled , indicating ambiguity in

how such an arc may run through �. There is less ambiguity in the

lowest �gure (corresponding to the edge disjoint from ). The

heavy oriented horizontal curves correspond to arcs in , and they are

labelled in the same manner. In the �rst picture, to avoid crowding

only one arc labelled (or, equivalently, ) is shown; it's a subarc of

. One of the two others is shown in the lowest �gure; the other arc

labelled , which is only relevant to the �rst �gure, is obtained from

the second by reection through the vertical arc . The special case

= 1 and disjoint from is not shown.

With this labelling, another way of stating the �rst possibility in

Lemma 6.3 would then be: is of type or

Under the hypotheses of the lemma, it is natural to de�ne

geometric length ( )

( )

Given ( ) and ( ) the geometric length of is clearly ( )+ ( ),

where and are the total number of occurences of, respectively,

and , and . We will say that a word is if neither

nor occur in (e. g. when = ). We then have

� ( )

( )

( )

( ) 2
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Figure 16
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Proof.

Suppose there is a -graph appropriate for

and is a thinnest one. Suppose further that

is disjoint from a dividing sphere
there is a properly imbedded normal form annulus in
whose boundary components are disjoint from and regular
in and
a dividing sphere cuts o� upper and lower disks from .

Then either is unknotted or or and
is unknotted.

The upper disk cannot be of type or because a word that

is positive in contains neither nor . The result then follows from

Lemma 6.3.

Similarly, from Lemma 6.4 we derive this corollary

� ( )

( )

( )

( ) 2 = 1

7.

Our interest in regular annuli comes from the following observation.

Suppose is genus one. Then an outermost disk cut o� by

in provides a boundary-compression of to an essential annulus

( ). When viewed on ( ) the relation between and



p

43

+

+

+1

+

�

? � ?

�

�

�

Theorem 7.1.

� �

�

[ [

� �

�

�

�

�

;

K ! @E K

K D � �

@E @D K

@A � �

� K;F

e

genus F @D �

e e p e e

q

A @ F � �

E

! @� � K

� �

P

� !

@� � P w a; b; a; b

! @D �

b b w

a a

a w a b

a b

a w a b

a b

w w

a b w

w

w

@ A A

!

K ab w

a

@ A @A @ A

a; b

Suppose in a thinnest -graph appropriate for ,
the edge is disjoint from a dividing sphere. Suppose further that

and that the wave for is based at . Then ei-
ther the cycle is unknotted or and the cycle is
unknotted.

Proof.

is this: is banded to itself via a subarc whose ends are

incident to the same side of . If ( ) satis�es the wave condition

then any subarc of = that is disjoint from is regular. So we

are assured that is regular in ( ).

This leads to

� ( )

( ) = 1

= 1

That = 1 follows from Proposition 5.9. We will show that

the annulus obtained from -compressing to ( ), using the disk

from the splitting sphere, gives rise to an annulus satisfying the

conditions of Corollary 6.6. The result then follows from that corollary,

possibly by way of Proposition 5.9.

Let ( ) be the arc described above, which we may as

well slide to minimize intersections with the meridians of ( ). In

particular, for a level sphere between the lowest maximum and the

highest minimimum of , the ends of will lie on the 4-punctured

sphere component � of ( ) . Let be the word in

represented by . Because the wave of is based at

any occurence of the letter (resp. ) in is preceded and followed

by the letter (resp. ).

any occurence of the letter in is followed by or and preceded

by or and

any occurence of the letter in is followed by or and preceded

by or .

In particular, by a choice of orientation for , we can assume that is

positive (say) in and (e. g. perhaps = ). Exploiting these facts,

together with the symmetries of the diagram, we have three essentially

di�erent ways in which the ends of can lie in �. These are shown in

Figure 17.

Now orient from left to right, and read o� the words corresponding

to (boundaries oriented to be parallel in , not antiparallel). All

three cases can be expressed in one of the following two forms, with

the details depending on where the ends of are incident to the word

given by , namely . Note that, in all cases, the word begins

and ends with the letter . The choice of labelling of the components

of is made so that the word corresponding to is positive

in .
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@ A wb

@ A wb ab

j; k > i j k p

@ A wb ab

@ A wb

j > i; k i j k p

@ A @ A

i j k l b > l a

i j k l b < l a

@ A b @ A e e

P e e

e P

e

Here 0 and + + = + 1.

Here 0, 0 and + + = + 1.

Note that the geometric length of is greater than that of

exactly when, for annuli of the �rst form, ( ) ( ) ( ) and,

for annuli of the second form, ( ) ( ) ( ). In either case,

contains an occurence of the letter , so runs along . If

intersects a dividing sphere just twice, then is vertical, and

we are done. If 4, then a regular maximum and minimum

(which we can take, respectively, to be the lowest maximum and the

highest minimum) lie in the interior of . It follows, then, from Lemma
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6.2 and Corollary 6.6 that we are done if ( ) ( ) ( ) for annuli

of the �rst form, or ( ) ( ) ( ) for annuli in the second form.

So we now consider only the alternative possibilities.

( ) ( ) = ( )

In this case, it follows roughly from the same argument used in

Lemma 6.2 that there is a dividing sphere so that no arc of

cuts o� an outermost disk incident to . Indeed, as above, a high

dividing sphere cuts o� an upper disk incident to and a low divid-

ing sphere cuts o� a lower disk incident to . There can't be both

an upper and a lower such disk incident to by Corollary 6.6. So at

some level there is a dividing sphere that cuts o� no outermost disk

incident to . But since the geometric lengths of are equal,

this implies that intersects only in spanning arcs.

We will argue that this is impossible. Suppose (with no loss) that

and hence � lie above (not below) a dividing sphere. The spanning

arcs determine a correspondence between subintervals of and .

To be precise, say that a component of and a component of

are if there is a (\square") component of

incident to both. More generally, a segment of and a segment of

are opposite each other if a spanning arc of runs between

the beginning of each and another spanning arc runs between the end

of each. For example, we �rst observe that no segment of that

is part of a interval (meaning that it comes from an occurence of a

letter , i. e. that it runs along with an orientation opposite to that

of ) can lie opposite a segment of that is part of a interval.

For if this occured then it is easy to see that somewhere on the entire

length of the and intervals there would be components of

that are opposite to each other on but lie on the same component

of . Since they have opposite orientation in and

the square component of connecting them can be attached to

the punctured solid torus ( ) to create a punctured Lens space

(2 1) , which is absurd. Similarly no segment of that is

part of an interval can lie opposite a segment of that is part of

an interval. This immediately rules out the �rst form above (again,

only under the assumption that ( ) ( ) = ( )) since, following

these observations, the only possible segment opposite the transition

segment from to in would be exactly a transition segment from

to in , and that would lead to the same contradiction.

Ruling out the second form (in which no letter appears) is only

slightly more complicated. We will focus on the segments of that

lie on the middle component of ; that is, on the arc component
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that is equidistant (measuring distance by intersection with ) from

both ends of . Note that this segment of lies below . Label

corresponding segments of by . Note that none of these can

be opposite to a segment of lying on � (e. g. those segments in

that correspond to the transition between di�erent letters) since the

segments on � lie above . This remark allows us to be a bit casual

about length arguments in the next few paragraphs, since it means that

inequalities will usually imply strict inequalities.

The �rst observation is that no label occurs opposite to any part

of a interval in , for this would allow us to display a Lens space

(2 1) in , as noted above.

Let be the segment between the �rst and last labels

in . Then ( ) = ( 1) ( ) ( ). Since no label lies

opposite to it follows that opposite to is part of a segment in

corresponding to 1. Notice that if a label in , say,

is opposite to any part of a interval in , than the relation is

reciprocal: the label in the interval on is opposite to the

interval in containing the original label . (This is not deep, just

a reection that we have taken to lie half way along and so it

appears half way along each or interval.) Because + 0 there

is at least one more label in then there are labels in ,

not counting the labels in . It follows that some label in is

opposite a part of an -interval in , so an entire half of a -interval

in is opposite to a subsegment of a single -interval in , for

( ) ( ). And, as we've seen, another copy of lies opposite to a

subsegment of . This works just as well for construcing a Lens space

in as having the half of the -segment itself opposite to . (Two

rectangles are glued together along the boundary interval they share

on a component of corresponding to part of the intervals.) So

we arrive at the same contradiction as previously.

For an annulus of the �rst form, ( ) ( ) ( ) or,

for one of the second form, ( ) ( ) ( ).

We will arrive at the same sort of contradiction, though the argument

is a bit more complicated. Again, with no loss, we assume that lies

above a dividing sphere and that both the lowest maximum and the

highest minimum of are regular critical points on . This implies

that just below the lowest maximum (i. e. at a high dividing sphere)

the dividing sphere cuts o� an upper disk from that is incident to a

regular maximum (namely the lowest maximum). Then no outermost

disk cut o� from by this high dividing sphere can be a lower disk, by

thin position. On the other hand, a low dividing sphere does cut o� a
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lower disk from . So there is a height such that a dividing sphere

just below cuts o� a lower disk from but just above a dividing

sphere cuts o� no lower disk. But any dividing sphere must cut o� some

outermost disk, since the geometric lengths of the words represented

by the two boundary components of are di�erent. It follows from

Corollary 6.6 then that either is unknotted or just above all

outermost disks cut o� of by the level sphere are incident to

and, moreover, for each such disk the arc = is of the

form . That is, there are at most two outermost disks in and they

are incident to the subarcs and labelled and of .

In this position, the total number of non-spanning arcs in , all of

them incident to and each of them cutting o� a disk containing

either or , is = ( ) ( ) ( ) 2, since each arc has

two ends. Since is less than the distance between the ends of

(�rst form) and less than the distance between the ends of (second

form), each non-spanning arc cuts o� a disk containing exactly one of

or and so each arc is parallel to one of the . Let denote the

number parallel to , so + = . Let denote the segment in

that is still incident to spanning arcs, and let be its length. See

Figure 18. For obvious pictorial reasons, we'll refer to the part of

containing the collection of arcs parallel to as the

is of the �rst form.

In this case note that + = ( + ) ( ) + ( ), so = + ( ).
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Subcase 2a.i:

Subcase 2a.ii:
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The entire interval of is disjoint from .

Say the entire interval lies on the peninsula. Then is entirely

made up of powers of and its length is at least + ( ) ( )+( +

) ( ) ( )+2 ( ). Since is made up of -intervals, at most ( ) of the

length of the segment opposite to can lie in intervals (half at each

end), so in particular, the segment opposite to contains an -segment

longer than ( ). In particular, if denotes the terminal segment of

at the end of the peninsula, there is also a copy of lying opposite

. Since across the ends of the peninsula the orientations of and

coincide (that is, the orientations of and are reversed by the folding

along ) whereas across from they disagree, we obtain the standard

Lens space contradiction. See Figure 19i

is completely contained in the interval.

We have = + ( ) and the longest -segment in is of length

( ), since the wave assumption ensures there are no proper powers of

in (i. e. no powers greater than one). Hence the total length of

-segment(s) opposite is at least . In particular, the length of the -

segment(s) across from must be greater (by at least ( + ) ( )) than

the length of the ends of not contained in . This implies that some
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subsegment of is opposite a copy of itself, leading to the standard

Lens space contradiction. See Figure 19ii.

The interval is completely contained in .

The argument of the previous subcase applies as long as ( ) +

( ), so assume that ( ) + ( ) To avoid the standard Lens space

contradiction, across from the interval in is a segment comprised

entirely of -intervals. The largest power of is and is even longer

than that, so at least one end of is across from a copy of that lies

completely in the segment across from . If the ends of and that

copy of coincide, we get a Lens space contradiction via the terminal

segment of . If the copy of extends out beyond then we get

a Lens space contradiction with the end of adjacent to in . See

Figure 19iii.

One end of is contained in , say, and the other

end is contained in .

Suppose �rst that the segment opposite the end of at is part of a

-interval. Since the longest -intervial comes from and = + ( )

it follows that the -interval ends somewhere in and is followed by an

-interval. We get the standard Lens space contradiction with either

or , depending on whether the -interval ends across from a point in

or a point in . See 20i.

Next suppose the segment opposite the end of at is part of

an -interval and let denote that part of the -interval that

lies across from . (So is followed either by a -interval or another

-interval.) Abusing notation somewhat, let denote that part of

the interval that lies on the peninsula. If is longer than

we get a Lens space contradiction between and . See 20ii.

If is shorter than then, since = + ( ) and is the highest

power of , there is more -segment across from than just . If there

are some intervals between and the additional -segment, then the

far (right-hand in the �gure) end of the -segment gives the same Lens

space contradiction. So we conclude that is immediately followed by

another copy of , which we'll call .

If is shorter than , as must happen if most of lies in , we get

a Lens space contradiction between and the end of . See 20iii.

If is longer than we get a Lens space contradiction, comparing

the end of across from a segment with the end of the peninsula.

See 20iv.

is of the second form.
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If then is unknotted. Symmetri-
cally, if then is unknotted.

Proof.

s x il b s x j k l b l a > l b l a
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l a
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@A � e e

@A � e e
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E H @A H
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L @ A p; q L q L

A

Observe then that + = ( ) so = +( + ) ( )+ ( ) ( )+ ( ).

It follows that the distance between the outermost labels (see Case

1) is greater than ( ). The rest now follows almost exactly as for the

second form in Case 1.

When the wave is based at the result is less ambitious. We need

the following lemma:

= 1

= 1

Suppose = 1. Take two parallel copies of and band

them together along the part of that does not lie between them.

The result is a disk that is disjoint from and separates ,

leaving one of in the boundary of each of the solid tori components

of . Label these solid tori (correspondingly) and denote by

the link whose core circles are . Note that is a longitude

of and is a ( ) cable of , some . is visibly a non-

hyperbolic (because of ) tunnel number one link (the tunnel is dual
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Suppose in a thinnest -graph appropriate for
, the edge is disjoint from a dividing sphere. Suppose also

that is of genus one and that the wave for is based at . Then
either is unknotted, or a Whitney move on changes it to an
equally thin -graph that is appropriate for .
If presented as a quasi-cable, then presents it as a

quasi-cable.

Proof.

to ). These have been classi�ed (cf. [EU]): In particular, is the

unknot. But the core of is , as required.

If = 1 (so = 1) the argument is symmetric, interchanging

and .

�

( )

� ( )

( 1)

( + 1 1)

With no loss of generality, assume that lies above the dividing

sphere and that is monotonic.

The proof now has the same features as the proofs of Theorems

7.1 and we use similar notation. Let ( ) be the arc as

previously, again slid to minimize intersections with the meridians of

( ). Let � again be the 4-punctured sphere lying in ( ) , on the

neighborhood of the component of that lies above and contains

.

For the purposes of the argument, we will assume that all arcs of

� that run between the two copies of in � are parallel. If in

fact there are two families of parallel arcs, the argument is essentially

identical, except for one di�erence which is noted below.

Then � consists of three families of arcs. One family of arcs

runs between the two copies of meridian in �; two arcs each run

from a copy of to a copy of . It is natural to parameterize slopes of

proper arcs on � using these arcs of . Indeed, the discussion will now,

in some sense, be parallel to that of [ST1]. We declare the family of

arcs to have slope 0 and the second pair to have slope . An outermost

disk of ( ) cut o� by the pair of meridians de�nes a wave

in �; the wave assumption guarantees that such an outermost disk also

intersects , so we conclude that the wave has �nite slope in the

coordinates just de�ned by the arcs �. Moreover is odd since a

wave in � will be based at each copy of a single meridian (either

or ) (see [ST1] for details). An argument will now show that either

is unknotted or = 1.

The arc is disjoint from the wave. Suppose to begin that in-

tersects both meridians and . Then some arc component of

� has one end on a copy of each of and in �. Then the

slope of is odd and can't di�er from , the slope of the waves,

since if it did its ends would have to run between the base of both
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Suppose in a thinnest -graph appropriate for
the edge is disjoint from a dividing sphere and suppose

waves, i. e. di�erent copies of the same meridian. On the other hand,

since is disjoint from , which has one parallel family of arcs of

slope 0 and two non-parallel arcs of slope , we have 2 (hence

= 1) and 1. Since we are given that = it follows that

= = 1 as claimed.

Next suppose that intersects but never . Then any compo-

nent of � that has both ends on copies of in � will have slope

0 (since it's disjoint from ). The two terminal segments of in � will

then each have one end on di�erent copies of . But then they can't

have their other end (i. e. the end points of ) on the same side of .

For if they did, then either the arcs cross in the \square" component

of � ( ) in which they lie or one must be part of a segment of

� of slope 1 and the other of slope 1. See Figure 21. (If

not all arcs of � that run between the two copies of in �

are parallel, the slopes of both these arcs could be 1, still su�cient

to deduce that this is the slope of the wave.)

The only remaining possibility (to avoid the conclusion that =

1) would be that is disjoint from . But that would imply that

the boundary of the annulus obtained by -compressing to ( )

intersects in a single point. Then by Lemma 7.2 is unknotted.

So we continue, assuming that the slope of the waves in � is 1.

Now apply a Whitney move, replacing the meridian of (slope )

with the disk whose boundary has slope . This rede�nes the �

curve as , presenting as a ( + 1 1) quasi-cable. Moreover it is no

thicker than and it satis�es the wave condition, since the meridian

of the new edge has been chosen to be disjoint from the wave. As

usual, we can ensure that the Whitney disk has no e�ect on the bridge

structure of , so remains in thin position. Recall Figure 8.

�

( )
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. Then and either is unknotted, or a
Whitney move on changes it to an equally thin -graph that is
appropriate for . Moreover presents as a quasi-cable.

Proof.

Suppose in a thinnest -graph appropriate for ,
the edge is disjoint from a dividing sphere. Suppose further that

.
Then either the cycle is unknotted or and the cycle

is unknotted.

Proof.

( ) = 1 = 1

�

( ) (2 1)

Without loss we assume lies above a dividing sphere and

is monotonic. Suppose 2. Then has a maximum at the lowest

vertex. Find a level sphere as in Lemma 3.10. The result contradicts

Lemma 2.5. Having established that = 1, switch the labels of and

apply Proposition 7.3.

Propositions 7.3 and 7.4 focus attention on the single remaining case

to consider: when is disjoint from a dividing sphere.

� ( )

( ) = 1

= 1

That = 1 follows from Proposition 5.9. As previously, let

be the annulus obtained from -compressing to ( ) using the disk

from the splitting sphere. Without loss of generality, assume lies

above the dividing sphere. If there are no regular maxima of then

is vertical, and we are done. If there is a regular maximum of

, we can assume it's the lowest maximum. In that case, a level sphere

just below the lowest maximum cuts o� an upper disk from and a

level sphere just above the highest minimum cuts o� a lower disk from

. So either some dividing sphere cuts o� both an upper disk and a

lower disk or some dividing sphere intersects only in essential arcs.

In the former case Corollary 6.7 �nishes the proof.

The rest of the proof is an extended proof by contradiction. We will

show that it is impossible for a dividing sphere to intersect only in

spanning arcs.

Let ( ) be the arc as previously, again slid to minimize

intersections with the meridians of ( ). Let again be a level sphere

between the highest minimum and the lowest maximum, and � again

be the 4-punctured sphere lying in ( ) , again supposing (with

no loss) that both vertices are vertices, so � lies above . Let

be the word in represented by . The wave condition now

guarantees that (with the right choice of direction for ) is positive

in and (including as usual the possibility that is the empty word).

If the wave is based at then no proper power of occurs in (i. e.

no power greater than one); if it's based at then no proper power

of occurs in . Exploiting these facts, together with the rotational



µ−

µ

+µµ− +µ

+µµ− µ−+µ

µ

w = a....a µ+
µ−

µ

µ− µ+

w = a....b

µ−µ− +µ
+µ

µ

w = b....b
µ+

µ−

µ

µ− µ+

µ+
µ−

µ

µ− µ+

�

?

�

�

�

+

+

+

+

+

i j

k

i j

k

Figure 22

�

� $

� $

� $

� $

�

54 MARTIN SCHARLEMANN

w

w

w w b : : : a

�

�

K � p

p

�

@ A @ A

@ A wb ab

@ A wb

@ A wb ab
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i; j; k ; i j k p:

symmetry of the diagram, we have several essentially di�erent ways in

which the ends of can lie in �. Representative samples indicating

that can begin or end on any letters are shown in Figure 22. We have

oriented from left to right. Symmetric �gures in which =

are not shown. The waves themselves are also not shown, but they

are described (except for details of how their ends lie near ) by the

requirement that they are disjoint from , which is shown. Note also,

that the number of arcs of connecting the copies of is now 1.

The case = 1 is special, since in this case there are no arcs con-

necting the copies of . Variants that arise in this case are shown in

Figure 23.

The resulting words corresponding to and can be put in

two forms:

1.

2.

Here 0 + + =
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Lemma 7.6. The letters and do not occur in the words determined
by .

Proof.

P P A
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@A P A

l @ A l @ A :

k i j l b l a k >

@ A w

a @ A i; j >

i j ; k p

b a
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@ A wb ab

@ A wb

i j k p

i > b ab

b l a l b

� b w

@ A b a

b

Now apply thin position. It follows immediately that there is a level

sphere so that no arc of cuts o� an outermost disk incident to

, since there can't be both an upper and a lower such disk incident

to simultaneously by Lemma 6.4. In particular, consists only

of spanning arcs, so ( ) = ( ) This immediately implies that

( ) ( ) = ( ). Thus it also forces 0. In the second form

above observe then that by regularity of , begins and ends with

the letter so by regularity of , 0.

In fact we will show that the second category above does not arise

and the �rst is limited to the case = = 0 = .

Consider �rst the form

.

We will show that = = 0 so = . Suppose, with no loss of

generality, that 0 so the length of the segment (the same as

the length of the segment ) is at least ( ) + ( ). The easy case is

when the wave is based at so there are no repeating 's in . Then

opposite (in ) to the segment is a complete collection of -labels

(perhaps separated by a single letter ). On the other hand, opposite
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(in ) to must be part of an -segment. Combining the two easily

gives a Lens space contradiction.

It seems to be harder to establish a Lens space contradiction in the

case when the wave is based at , so there are no repeating 's in .

For the �rst time we need to use the graph in the dividing sphere

whose vertices are the points of intersection of with (we will

call these points the and -vertices in ) and whose edges are the

arcs , viewed both as spanning arcs of and as edges in .

Ends of edges at the same vertex in will be said (usually in ) to

have the same label. The label will be an -label, -label, -label or

label depending on whether at that point (as oriented so that

is positive in and as above) is passing through an - or -vertex in

the direction that the -graph is oriented or in the opposite direction.

Our use of the graph in this lemma will be modest, mostly as a

book-keeping device. Once the lemma is established we will need to

examine much more seriously.

Orient all edges in to point from to . We �rst claim

there is an oriented path that begins with an edge incident to a -label

and ends with an edge incident to a -label. To see this, remove the

-vertices from (but not their incident edges), and let denote

those edges, and the -vertices they pass through, that are part of an

oriented path beginning with an edge incident to a -label. If there

are -vertices in and there are occurences of in the word

then has ( + 1) + ( + ) ( ) ends of edges from . Yet

only ends of edges in could be in but not at -labels. So

some ends of the edges must be at -labels, as claimed. Consider then

the shortest oriented paths beginning with a -label and ending with a

-label. Among all shortest such paths, pick a path whose ends are

closest in as measured by the number of components of that

lie between them. We claim that that number is one; i. e. begins

and ends at the opposite ends of the same interval of .

First note that the ends of can't be at the same -vertex, because

would then be a loop in whose normal -bundle, as pieced together

from neighborhoods of the edges in , would not be oriented. So call

the initial -vertex and the terminal -vertex . To be concrete

suppose that, in a single -letter of , precedes (we'll say that

lies to the left of in the oriented ). Unless the labels are precisely

adjacent in (which is our claim), we can construct a better path

as follows: Start at the -label just to the left of the origin of and

construct a path by always using the edge that is one to the left (in )

of the edge in .
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Notice �rst of all that the collection of edges we have just described

is indeed a path in : Suppose and are successive edges of and

the edges to their left in are and . We need to show that the

end of in is at the same vertex as the end of in . (See

Figure 24.) This is obvious unless the end of at (and so the

end of in ) is the �rst label of an -segment. But if it were then,

since there are no repeating 's in , the end of would in fact be

a label and we would have found a shorter path. Having established

that is in fact a path in , notice that it ends just to the left of the

label in hence to the right of the label in . Hence we have found

a path of equal length but with ends closer together.

Having established that the ends of represent adjacent intersections

of with , carry through the above construction of . Consider the

sequence of squares that lie between the two paths. When glued to-

gether along the components of that their edges in represent,

the result is a M�obius band whose boundary lies on the level sphere

. This is impossible (and represents a di�erent way of viewing a Lens

space contradiction).

Next consider the form

Since ( ) = ( ) + ( + ) ( ) ( ) + 2 ( ) and, by the Lens space

argument, no part of the interval can lie across from any part of

an -interval, it follows that no part of the interval can lie across

from any part of the segment. In particular, across from the

interval must be an -segment longer than ( ). This means that there

are repeated 's in , hence no repeated 's. What then lies across

from the interval? None of it can by part of an -segment, by the

Lens space argument, so it must be part of a single -interval. Then

( ) ( ). On the other hand, ( ) = ( ) ( ) ( ). We
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Any loop in the graph must have vertices in both disks
into which the loop divides .

Proof.
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conclude that ( ) = ( ) and immediately across from is precisely a

single . But if this is the case, then each segment corresponding to a

letter in one boundary component will lie exactly opposite a segment

corresponding to a single letter in the other boundary component.

This is clearly a very special case, and resolving it will begin the

process of understanding how to use the graph e�ectively. We've

already identi�ed (across from ) a term in of the form 3.

Across from that same term in must be three letters, at least

one of which is also an . There are then two letters exactly aligned

opposite each other, exhibiting that each -vertex is the base of a loop

in . Ask then what lies in exactly opposite . If any of it is an

interval then this fact, together with the established fact that across

from the interval is a interval, gives a Lens space contradiction. If

any of it is a interval then we will have exhibited that every -vertex

in is also the base of a loop. Then, since every vertex is the base

of a loop, some such loop will contain no vertices in its interior. The

following lemma shows that this is impossible.

A loop without such vertices in its interior would give a prob-

lematic -compression of . To see the problem, consider the base of

an innermost such loop, that is, the subarc of the meridian to which

is -compressed, an arc in ( ( )) . The arc could not be a

simple cocore of the band along , otherwise would have been com-

pressible. On the other hand, if were incident to a copy of in

from the side in ( ) opposite to the band , then the -compression

would turn into an essential disk in ( ) whose boundary is

disjoint from , which is also absurd, for if we attach a neighborhood

of the disk to ( ), would lie on the resulting unknotted torus and

would be a Seifert surface in the solid torus complement, forcing

to be trivial. The only remaining possibility is that has both ends

incident to the parts of that come from . But crosses each

meridian always in the same direction, so two such crossings can't be

the ends of a -compression.

Lemma 7.7 completes the proof of Lemma 7.6. We conclude that

the words corresponding to the boundary components of the annulus

are exactly

.
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Suppose . If the segments

of that connect the two copies of are not all parallel in
then begins and ends with the letter . If they are all parallel then
begins or ends (perhaps both) with the letter .

Proof.

If (e. g. ) then is uknotted.
If then and is unknotted.

Proof.

In fact more can be said. The fact that there is no occurence of

the letter in or means that neither end of can lie on the

segments of � connecting the two copies of (when 2). Then

2 1

� �

If some were incident to both ends of then one component

of would represent the word and the other one . This is

impossible since these words have di�erent lengths. If some con-

tained a single end of then one component of would contain an

occurence of the letter , contradicting Lemma 7.6. So the ends of

lie, one each, on the two components of � that are not among the

. The result follows easily (see Figure 22).

The argument now proceeds by considering every possible type of

word . We begin by considering short words, then long words, then

words of intermediate length.

= 0 =

= 1 = 1

If = (or is empty) then intersects the meridian

in exactly one point, a point in . If = 1 then = 1

by Corollary 7.8. Then intersects the meridian in exactly one

point, a point in . In both cases the result follows from Lemma

7.2.

In view of Lemma 7.9 we can and will restrict our attention only to

words that contain both letters and .

To deal with longer words it will be useful to generalize Lemma 7.7.

To appreciate how, we examine the local structure of . The key to

organizing the information is to orient each edge of , as was done

briey above, so that the edge, when viewed in , points from

to . This has the obvious consequence that any -vertex has at

least one edge pointing into it, since the word contains the letter

, and each -vertex has at least edges pointing out, since the word

contains at least occurences of the letter . Beyond these ends

of edges, though, is one more pair at each -vertex (resp. -vertex)

for each occurence of (resp. ) in . (One of the pair is identi�ed

with the occurence of the letter in and the other with the

occurence in .) Call these ends of edges the -ends. At any

-vertex there is a single non- edge pointing in plus a sequence of
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-ends alternating between pointing in and pointing out. At any -

vertex there are non- edge pointing out and a collection of -ends,

the latter coming in pairs of adjacent ends, one pointing in and one

pointing out. See Figure 25.

Between each pair of -ends in or is an arc that is a

cocore of the band along . Put another way, banding together the

boundary components of along would recover from . Call

that side the -side of the -end. Since occurences of or in occur

always with the same sign, crosses always in the same direction,

and similarly for . It follows that, at any given vertex of , the

-side of any (oriented) -end is always to the right (or always to the

left) of the end, as the end is oriented by the orientation of its edge.

Moreover, since the ends of are incident to the same side of , that

normal direction is well-de�ned, so if both ends of the same edge in

are -ends, then the -side is the same side at both ends. Combining

these facts we discover that, throughout any one component of ,

the -side of any -end at any vertex lies always to the same side (say

always to the right as the edge is oriented) of the -end. Under these

circumstances, note that a cycle in that has no vertices or edges in

its interior, and which moves clockwise around its interior (we call it

a ), must have corners that are always on the -side of

-edges. In particular, if such a cycle can be found, then its interior

would, before the -compression that changed to , correspond to a

compressing disk for . (We know that would be essential in ,

since it crosses a proper arc in , namely the one -compressed to ,

always in the same direction.) Such a compression, of course, violates

our assumption that is incompressible.

Symmetrically, in a component of for which the -side of any -

end is to the left of the oriented end, there could be no counterclockwise

cycle whose interior is empty (i. e. no counterclockwise face).

Although it might not be easy to see if a given component of the

graph in is \right-handed" or \left-handed" in this sense, it is
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Lemma 7.10.

De�nition 7.11.

Lemma 7.12.

Lemma 7.13.

Lemma 7.14.

both

No two faces of can be adjacent and have boundaries
that are cycles.

Proof.

A disk component of will be called a . If
the boundary of the face is a cycle we call it a . A clock-
wise (resp. counterclockwise) face cycle will be called a

. A face incident only to -vertices (resp. -
vertices) will be called an (resp. -face).

Any -face is a face cycle. If any -face is a face
cycle.

Proof.

No two -faces can be adjacent. If no two -faces
can be adjacent.

Proof.

No distinct -vertices can have edges pointing to (resp.
from) the same vertex.

Proof.

bigon
parallel

possible to use the extreme regularity of (guaranteed by the fact that

all edges in are parallel in ) to identify circumstances in which there

are clockwise and counterclockwise cycles in the same component

of with no vertices in the interior of either. That, then, forces one or

the other to de�ne a compression of , a contradiction. For example,

we have

Since the cycles are adjacent, one is clockwise and one is coun-

terclockwise.

face

face cycle

clockwise (resp.

counterclockwise) face

-face

= 1

At any -vertex exactly one end of an edge is not a -end and

it points into the vertex. Hence there cannot be two adjacent ends

of edges pointing out, as there would be in an -face that is not a

cycle.

= 1

Combine lemmas 7.10 and 7.12

It is natural to seek features of the graph which guarantee the exis-

tence of cycles. The following lemma suggests a possibility.

Suppose are two edges in with their heads, say, at the

same vertex of . Then the ends of the in are some multiple

of ( ) apart. (Recall that ( ) = ( ).) The ends of the in are

the same distance apart. So if both ends on are at -labels, they

must be at the same -label.

It seems from this lemma that bigons may be prevalent. To be

precise, de�ne a in to be a pair of edges, each running between

the same pair of vertices. A bigon will be a bigon in which
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Suppose there is a parallel bigon in and let be a
disk in that it bounds. Suppose in there is an oriented path from

to . Then in the interior of there is a cycle that is disjoint
from both .

Proof.

both edges of the bigon are oriented in the same direction. An

bigon will be one in which the edges are oriented in the opposite

direction, forming a cycle in of length two. In the case of a parallel

bigon we will denote the vertex from which the edges of the bigon point

out as and the vertex into which the edges point as .

With no loss we may assume that contains no other parallel

bigon, else we would focus on an innermost one. Since contains both

letters and , any vertex is incident to an edge pointing out and an

edge pointing in; no vertex is a sink or source. Hence any component of

contains a cycle, so we may as well assume that every vertex in the

disk belongs to the same component of as the bigon. Suppose,

with no loss (as explained above), contains no clockwise face.

If there were an oriented path that runs from to inside , then

the closed disk would contain both a clockwise and a counterclockwise

cycle. Consider an innermost clockwise cycle (perhaps passing more

than once through the same vertex, but not crossing at such a vertex)

and the disk that it bounds. Suppose contains a vertex. That

vertex must be part of an oriented path in the interior of . If that

path forms a cycle completely in the interior of we are done. If not

(e. g. the ends of the path are at the same vertex of the cycle )

the path would cut o� a clockwise cycle that would be even further in,

a contradiction. (See Figure 26.) So there is no vertex in the interior

of . Similarly, if there were an edge in the interior of there would

be a further in clockwise cycle. We conclude that would have to be

a clockwise face, which is impossible.
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Suppose there is a parallel bigon in and let be a
disk in that it bounds. Then in the closure of (i. e. including the
vertices ) there is a cycle that includes at most one of .

Proof.

neither

As in the proof of Lemma 7.15 we can assume, with no loss,

that contains no other parallel bigon, no vertex is a sink or source,

that every vertex in the disk belongs to the same component of

as the bigon, and that contains no clockwise face.

If any end of in points out from , then it is part of an oriented

path (since no vertex is a source or sink). If the path ends in we

are done by Lemma 7.15. If not, it must contain a cycle not incident

to , and we are done.

If the only ends of in the bigon that are incident to point into

then there can be no edges other than the bigon itself, since even

an -vertex can have at most two adjacent ends pointing in. (Recall

that -ends alternate between pointing in and pointing out.) So we

may as well assume that no end of in the interior of is incident to

. In that case, any end lying in the the interior of and incident to

must be part of a cycle in the bigon incident only to and we are

done.

The possibility remains that the interior of the bigon is empty. In

that case, at least one end of the edges of the bigon at each vertex is

not a -end (since -ends alternate between pointing in and pointing

out) so is an -vertex and is a -vertex. If neither end at is

a -end then, considering how non- -ends arise, necessarily 2 and

the edges of the bigon, when viewed in , are some ( ) 1

apart. But then they can't have their other end at the same -vertex,

since two ends in with the same -label are at least ( ) apart in

. Hence we conclude that exactly one end of the bigon at each of

and is a -end. Necessarily their -side is the same side and not

the side in the bigon. Hence exactly one edge in the bigon (the left

one, say) has both of its ends -ends and of the ends of the

other edge are -ends. In particular, connects, in the annulus

, a point in corresponding to a point in the last letter of , to

a point in that lies in the �nal syllable of .

Now ( ) = ( ); suppose the end of in is the th end in the

�nal syllable of and the end in is the th end in the �nal

letter of . Suppose for concreteness that . Now consider .

Since it's ends are the same as those of , the end of in is the

th end in some letter in . But the length of the terminal segment

of is of course the same in as in and so the end of in

is the point exactly later than the end is in . That is,
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The interior of any parallel bigon contains a -vertex.

Proof.

it is still part of the same letter of . (See Figure 27.) This is a

contradiction, since the other end of is at a -vertex. If we get

the same contradiction, using the initial segment of instead of the

terminal segment.

With a little determination, we have more:

With no loss we can assume that the parallel bigon is innermost.

Suppose the disk contained only -vertices in its interior. By Lemma

7.16, contains a cycle that passes through some vertices in its interior.

Since the valence of each vertex is greater than two, there are adjacent

faces in . Then Lemma 7.13 shows that can't both be -vertices.

Similarly, all vertices in are in the same component of as the bigon.

Let � denote the subgraph of , lying in the interior of , obtained

by deleting all edges incident to .

� contains a cycle.

Otherwise consider an oriented path from a source vertex to a

sink vertex . All edges (of ) pointing into must have their other

ends at and not the same vertex, since this would exhibit a further in

parallel bigon. There must be at least two such edges, since by Lemma

7.9, contains at least one occurence of so the word contains at

least two. This implies that there are exactly two edges pointing into

and one edge comes from each of . Then Lemma 7.14 implies

that can't both be -vertices. Suppose that were an -vertex.

We have already identi�ed three edges pointing out from : the edges

of the bigon and an edge to . Then three edges point out from

and at least two would have to go to the same vertex in the pair ,

creating a further in bigon. So is a -vertex and is an -vertex.

Now consider . If an edge in pointing out from goes to ,

then , hence every -vertex, has three edges pointing in. This would

force to be part of a further in bigon, a contradiction. So the edge

pointing out from goes to and this edge, together with the path
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from to together with the edge from pointing into give an

oriented path from to . Then Lemma 7.15 provides a cycle in �,

as claimed.

Having established the claim we continue with the proof of Lemma

7.17. Note that, once we have a cycle in � we know that � contains a

face hence, following Lemma 7.12, an -face cycle.

: contains only one occurence of .

In this case each -vertex has valence three { two ends of edges

pointing in and one pointing out. (So, for example, must be a -

vertex.) We have seen that � contains an -face cycle . Now notice

that there are only two possible \corners" of cycles at each -vertex,

since the valence is three; one set of corners occurs only in clockwise

cycles and one in counterclockwise cycles. As a result, all the corners

of come from a single occurence of the letter in and a single

occurence of the letter in . We claim this is impossible: Of

all the vertices of , let be the one that is �rst encountered when

passing along the oriented edge , so, in any occurence of the letter

in , the label corresponding to lies most to the left among all

labels coming from vertices of . Similarly, de�ne to be the last

vertex of that is encountered along the oriented edge . We repeat:

the edges pointing out from and from , when viewed in , leave

from the same -interval in and end in the same -interval

in . But, by de�nition of and , the edge pointing out from

in , goes to a label to the left of in whereas

the edge pointing out from the label in goes to a label to the

right of in . This presents a clear contradiction: there are more

ends of edges between the two edges in than there are in .

See Figure 28.
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: contains three or more occurences of .

In this case we will show that there are two adjacent -faces in �,

contradicting Lemma 7.13. Let � be a component of � and let denote

the number of vertices in � . If are both -vertices then at each -

vertex in there can be at most two edges also incident to one of the

, one pointing in and one pointing out, since two di�erent -vertices

can't have edges pointing toward (or away from) the same -vertex

(Lemma 7.14) and if one -vertex had two edges pointing toward (or

away from) the same -vertex it would be a further in bigon. On the

other hand, if either vertex (say ) were an -vertex then at most two

edges could be incident to both � and , for otherwise would have

adjacent -faces. So clearly 2 (the valence of each vertex is at least

7) and at most 2 +2 3 edges connect � to in . It follows that

� contains at least 7 2 3 2 = 2 edges. The proof that this would

provide two adjacent -faces now follows from this simple observation:

If � is a connected graph in the plane with vertices and

at least 2 1 edges then either � contains a trivial loop or two faces

of � (i. e. compact complementary components, necessarily disks) are

adjacent.

Here's the proof of the claim. Let 2 1 be the number of edges.

If any face is a monogon, we are done. So suppose every face has at least

two edges. Either some edge is incident to two faces, and we are done,

or the number of faces 2. Then consider the Euler characteristic

of � and all its faces: 1 = + 2 ( 1 2) = 1 2,

a contradiction.

: contains exactly two occurences of .

Suppose �rst that are both -vertices. As usual, for each of the

vertices in the interior of , there is at most one edge pointing from

to the interior vertex by Lemma 7.14 and our assumption that

is an innermost bigon. Now consider a component � of � with, say,

vertices. We have just shown that there are at least 2 edges in �

pointing into each -vertex (for at most one edge pointing into the -

vertex comes from a -vertex). Hence there are at least 2 edges in � .

The proof now follows as in the previous case.

Suppose �nally that one of is a -vertex and one is an -vertex

. If, for some component � of � there are no edges (in ) running

from � to the -vertex, we are done much as before. Similarly, if there

is at most one edge in pointing from to � we are done: In �

there are still at least 2 edges pointing into every vertex, except for the

single vertex at the end of . Hence there are at least 2 1 edges in

� and we can still apply the combinatorial claim above. If there are
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The letter occurs at most once in .

Proof.

If occurs in then the letter occurs at most once.

Proof.
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at least two edges, say and , in pointing from to � then,

since no adjacent ends at an -vertex point out, there is another end

of an edge between the ends of the at . If also goes from

to � then on either side of it are adjacent -faces, contradicting

Lemma 7.13. If instead it goes to another component of � then that

component is cut o� from by � so no edge in connects

it to , a case we have already established.

Lemma 7.16 immediately eliminates the possibility that is a long

word. Explicitly, we have:

Suppose and are two edges in that point out from the

same -vertex. Then (echoing the argument of Lemma 7.14) the dis-

tance between and as measured along either of is some mul-

tiple of ( ) = ( ) . In particular, there are at most candidates

for -vertices the other ends of and might be incident to, plus a

-vertex. If the letter occurs more than once, then in there are

at least +2 occurences of each -label. And, for each -label, we have

just argued that there are at most +1 possible labels in to which

they can point, of them -labels and one a label. Hence at least two

of the edges point to the same label. This shows that every -vertex is

part of a parallel bigon. An innermost parallel bigon then would have

to contain only -vertices, contradicting Lemma 7.17.

Following Lemmas 7.9 and 7.18 we can restrict to the case in

which occurs exactly once in . We will assume that occurs 2

times and derive a contradiction. The structure of the proof depends

on whether = 1 or 2.

If = 1 then any two occurences of the same -label or the same

-label in occur a multiple of ( ) = ( ) apart. It follows that at

least two edges pointing into any given -vertex in have their other

ends at the same vertex. In other words, each -vertex is contained in

some parallel bigon. Thus an innermost parallel bigon contains only

-vertices. Any -vertex has at least one edge pointing out that goes to

an -vertex (since there is only one occurence of the letter in but

two in ) and edges that point from -vertices to a given -vertex

must all come from the same -vertex by Lemma 7.14. It follows that

there are at most two -vertices in the the interior of the bigon. If

there were only one, then the two edges coming out from it can't go

to the same vertex, for that would form another parallel bigon, so one

goes to each of the vertices forming the bigon. This would force to
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be a -vertex and to be an -vertex. Furthermore, -vertices are of

valence 3, and the edge pointing into the interior -vertex has nowhere

to come from but . The two adjacent face cycles contradict Lemma

7.10. See Figure 29i.

So there are exactly two -vertices inside the bigon. As noted above,

at least one edge pointing out from each of these -vertices must go to

an -vertex, and edges can't point from di�erent -vertices to the same

-vertex. It follows that both are -vertices. If both of the edges

pointing out from a -vertex go to -vertices then, since = 1, they

would in fact go to the same -vertex, contradicting our assumption

that the parallel bigon is innermost. So each -vertex has an edge

pointing from it to the other -vertex. In other words, the two -

vertices in the bigon are the vertices of a 2-cycle, necessarily a -face

cycle. (See Figure 29ii.) But this leads to the same contradiction as in

the proof of Case 1 of Lemma 7.17.

If 2 then we know from Corollary 7.8 that either begins or

ends in , so the words corresponding to are (up to cyclic rotation)

and respectively. Here ( ) = ( ) as usual. Suppose

�rst that no edge in runs from one -vertex to another -vertex.

Then the +1 occurences of any vertex in have their other ends

in only the possible -vertices, so there is a parallel bigon at each

-vertex. An innermost parallel bigon then contains only -vertices.

This contradicts Lemma 7.17.

Suppose then that some edge in has both ends at -vertices.

Consider the distance in between copies of the same -label, counting

distance (i. e. intersection with ) along the arcs of that

intersect . Measured on this side, the distance between any two copies

of the same -label in either component of is a multiple of ( ). It
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follows that the + 1 3 copies of the same label in have their

other ends at at most two labels in , one an -label and one a -

label. Thus in this case every -vertex is part of a parallel bigon. Then

an innermost bigon contains only -vertices. The proof now follows as

for the case = 1 but is easier, since any -vertex has + 1 3 edges

pointing out.

At this point there are only two remaining words to consider: =

and = . Eliminating these two requires a bit more detailed

argument.

=

The cases are symmetric, so without loss of generality suppose

= . Then is represented by the word and is repre-

sented by the word . Let = ( ) = ( ) 1. The type of

contradiction depends on how the copies of in are aligned with

each other. There are three cases. See Figure 30, where the orientation

of is meant to be clockwise around .

The -segment in lies completely opposite a subsegment

of the segment in . (Figure 7.17i)

Then symmetrically, the segment in lies completely opposite a

subsegment of the segment in . Consider the collection of edges

incident to the copy of the -segment in . Among those edges,

every -label occurs exactly once in and once in . It follows

that these edges, when viewed in , form a collection of -cycles

containing every -vertex. Similarly there is a collection of -cycles

containing every -vertex. An innermost pure - or pure -cycle can

then contain no vertices in its interior and so must be an -face or a

-face. Either way, the argument presented in Case 1 of Lemma 7.17

presents a contradiction.

The -segment in lies completely opposite a subseg-

ment of the segment in . (Figure 7.17ii)

Then dually the entire -segment in lies completely opposite

a subsegment of the segment in . This means that for each

-vertex, each of the + 1 edges in with that label in can go

to at most di�erent -labels in . It follows that every -vertex is

part of a parallel bigon. An innermost one can contain only -vertices,

contradicting Lemma 7.17.

The -segment in lies partly opposite an end of the

segment in and partly opposite an end of the segment. (Figure

7.17iii)
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The argument in this case is a kind of degenerate variant of the

argument in Lemma 7.16. Suppose, with no loss and as shown in the

�gure, that part of the segment in is opposite the beginning

end of , overlapping say on ( ) edges. ( = 3 ( ) = 5 in the

�gure). Now consider any of the last labels in the �rst occurence

of in and the corresponding label in the last occurence of .

The distance between them is ( ) in . It follows that each of the

corresponding ( ) -vertices is part of a parallel bigon in , each

with an -vertex for .

Consider an innermost parallel bigon in and the disk that it

bounds. The interior of must contain -vertices, by Lemma 7.17,

and it must also contain -vertices, by the argument of Case 1 of the

proof of that Lemma. We claim that there is an oriented edge pointing

from into and an oriented edge pointing out from into .

To see the former, consider the -vertex which, among all -vertices
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Suppose is a tunnel number one knot of genus one
and is an unknotting tunnel. Then either there is a genus one Seifert

surface for that contains or can be slid and isotoped until it
is an unknotted loop.

Proof.

lying in , is the �rst encountered by . Then the corresponding

label in the second copy of in lies across from the label

of an earlier vertex in , hence the label is that of , since there is

no alternative. So the edge in between them must connect to ,

pointing toward . A symmetric argument, using the last -vertex

in the interior of encountered by , shows that there is an edge

pointing from into .

Since each -vertex has valence 3 we have now accounted for all edges

incident to . In particular one of the two edges of the bigon has a

-end at with the side lying within the bigon. What's important

here is not that one of the edges of the bigon has a -end at {

that fact can be seen simply because one of the ends of the edges of

the bigon, viewed in , lies in the second occurence of in (see

Figure 30iii), hence in the section of the word = . What

is important is that the side of this edge lies in the interior of the

bigon. But examining the �gure again, we see that the edge of

the bigon lies in the �rst occurence of in , hence in the section

of the word = . That is, the edge has a end at .

So the -side of that edge lies of . On the other hand, we've

shown that some edge at points into from the interior of and,

since any -vertex has only one edge pointing into it, that edge must

be adjacent to the (only) -corner at , so that corner must be

B. This contradiction proves the Lemma, hence the theorem.

Having eliminated every possible word for , we deduce that no

dividing sphere can intersect only in essential arcs, completing the

proof of Theorem 7.5

8.

According to Proposition 5.7 if neither of the outcomes above

occurs, then there is an appropriate �-graph for ( ), thinly pre-

senting it, say, as a ( ) quasi-cable. Let be a thinnest appropriate

�-graph for ( ) and, among all such possibilities, choose one with

maximal. According to Propositions 5.7 and 5.9 = 1 and is in

bridge position.

We claim that if 2 the cycle is unknotted and, if = 1,

one of the two cycles is unknotted. This follows immediately
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from Corollary 5.13 unless a dividing sphere is a critical sphere that is

disjoint from some edge. Consider the possibilities for such an edge:

If the disjoint edge is then the claim is established by Theorem

7.5. If is the disjoint edge then, since has been chosen to have

maximal , it follows from Proposition 7.4 that = 1 and is

unknotted, establishing the claim. Similarly, if is the disjoint edge

then it follows from Proposition 7.3 that the wave is based at . Then

Theorem 7.1 establishes the claim. So the claim is established in all

cases.

Now let be the unknotted solid torus neighborhood of in

. Since = 1 we can apply the \vacuum cleaner trick": slide the

ends of the 1-handle corresponding to along the arc until

has been made disjoint from a meridian of . At that point, has

become a tunnel for and remains unknotted.

2

Let be an unknotting tunnel for . If can be slid and

isotoped to lie on a genus one Seifert surface then is necessarily 2-

bridge (see Corollary 5.4 of [ST1]). If not, then according to Theorem

8.1 can be slid and isotoped until it is an unknotted loop. The

following argument (shown to me by Abby Thompson) shows that then

is 1-bridge on an unknotted torus. Let denote the solid torus

neighborhood of the loop, containing a short, -parallel arc of . Let

denote the arc of that lies outside of . Since ( ) is an

unknotted handlebody, it follows that the 1-handle with at its core

constitutes a genus two Heegaard splitting of the solid torus .

Any non-trivial splitting of a handlebody (e. g. of ) is stabilized

[ST3], so in fact is also parallel to . This shows that is 1-

bridge with respect to the unknotted torus .

Matsuda [Ma] has proven the statement for this class of knots.
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