Review of Set Theory

Michael Williams

Last Updated: March 30, 2009

Basic Set Theory

We will use the standard notation for containments: if x is an element of a set A, then we write $x \in A$; otherwise we write $x \notin A$. If A is a subset of a set B, we will write $A \subset B$ or $A \subseteq B$; otherwise we write $A \nsubseteq B$. If $A \subset B$ but $A \neq B$, we could write $A \subsetneq B$ (to emphasize that $A \neq B$). Note that we always have $\varnothing \subset A$. If B is a set, a **proper subset** of B is a subset A for which $\varnothing \subsetneq A \subsetneq B$.

Definitions. Let A and B be sets.

- The union of A and B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- The intersection of A and B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- The **complement** of B in A is the set $A B = \{x : x \in A, \text{ but } x \notin B\}.$
- The (ordered) Cartesian product of A with B is

$$A\times B=\{(a,b):a\in A\text{ and }b\in B\}$$
 .

More generally, if $n \in \mathbb{N}$ is given and X_1, \ldots, X_n are sets, we can form the (ordered) Cartesian product of X_1, \ldots, X_n as

$$X_1 \times \cdots \times X_n = \{(x_1, \dots, x_n) : x_i \in X_i \text{ for } i = 1, \dots, n\}$$
.

We call the X_i the **factors** of the product. In particular, if all of the factors are the same set X, we have the **n-fold product**

$$X^n = \underbrace{X \times \dots \times X}_{n \text{ factors}} .$$

For example, \mathbb{R}^1 is just \mathbb{R} , \mathbb{R}^2 is the x, y-plane and \mathbb{R}^3 is x, y, z-space.

Definition. Let A and B be sets (possibly with nonempty intersection). The **disjoint** union of A with B is the set

$$A \coprod B = \{(a,1) : a \in A\} \cup \{(b,2) : b \in B\} .$$

With this formal definition, we see that $A \coprod B \subset (A \cup B) \times \{1, 2\}$. The important thing to realize is that $A \coprod B$ is the set formed by taking the elements of A and B separately; so any points of $A \cap B$ will be counted twice in $A \coprod B$. This notion of disjoint union will be especially important later on when we study quotient spaces.

One can use parentheses to form new sets: if A, B and C are sets, we can form the set $A \cap (B \cup C) = \{x : x \in A \text{ and } x \in B \cup C\} = \{x : x \in A \text{ and } [x \in B \text{ or } x \in C]\}$. In general, $A \cap (B \cup C) \neq (A \cap B) \cup C$; for example, we have inequality when $A = \{1\}, B = \{2\}$ and $C = \{1, 2\}$. What is true, however, are the **distributive laws**:

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

As long as the set operations are all unions or all intersection, there is no trouble with moving parentheses (i.e. we have **associativity**). For example, $A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$. We can unambiguously define the union or intersection of several (possibly infinitely many) sets.

Definitions. Given a set \mathcal{J} , suppose that to each $\alpha \in \mathcal{J}$ we assign a set A_{α} . We refer to \mathcal{J} as the **index set** for the collection $\{A_{\alpha}\}_{{\alpha}\in\mathcal{J}}$. We can then form the **union**

$$\bigcup_{\alpha \in \mathcal{J}} A_{\alpha} = \{ x : x \in A_{\alpha} \text{ for some } \alpha \in \mathcal{J} \} ,$$

and the intersection

$$\bigcap_{\alpha \in \mathcal{J}} A_{\alpha} = \{ x : x \in A_{\alpha} \text{ for every } \alpha \in \mathcal{J} \} .$$

When the index set \mathcal{J} is understood from context, we can just write $\bigcup A_{\alpha}$ for union, and $\bigcap A_{\alpha}$ for intersection.

A word about proofs

Suppose that we are given two sets X and Y and we assume that they have certain properties. How would we prove that X = Y. The typical way to prove that X = Y is to separately prove that $X \subset Y$ and $Y \subset X$. To prove the first containment $X \subset Y$, we let X be an arbitrary element of X and prove that X must necessarily be an element of X. This is the method of **element-chasing**.

As a first example, consider the distributive law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for sets A, B and C. A proof of the containment $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$ could go like this:

Let $x \in A \cap (B \cup C)$. Then by definition of $A \cap (B \cup C)$, we have that $x \in A$ and $x \in B \cup C$. Hence $x \in A$ and $[x \in B \text{ or } x \in C]$. By definition of $A \cap B$ and $A \cap C$, we conclude that $x \in A \cap B$ or $x \in A \cap C$. Thus $x \in (A \cap B) \cup (A \cap C)$, as desired.

A symbolic version of the proof could go like this:

$$x \in A \cap (B \cup C) \Rightarrow x \in A \text{ and } x \in B \cup C$$

 $\Rightarrow x \in A \text{ and } [x \in B \text{ or } x \in C]$
 $\Rightarrow [x \in A \text{ and } x \in B] \text{ or } [x \in A \text{ and } x \in C]$
 $\Rightarrow x \in A \cap B \text{ or } x \in A \cap C$
 $\Rightarrow x \in (A \cap B) \cup (A \cap C).$

It is now clear that the implications need only be reversed to obtain a proof of the reverse implication $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Of course, this will not always be the case in set theory.

We can now give a succinct symbolic proof of $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ as follows:

$$x \in A \cap (B \cup C) \Leftrightarrow x \in A \text{ and } x \in B \cup C$$

 $\Leftrightarrow x \in A \text{ and } [x \in B \text{ or } x \in C]$
 $\Leftrightarrow [x \in A \text{ and } x \in B] \text{ or } [x \in A \text{ and } x \in C]$
 $\Leftrightarrow x \in A \cap B \text{ or } x \in A \cap C$
 $\Leftrightarrow x \in (A \cap B) \cup (A \cap C).$

Sometimes it is preferable to not give a symbolic version of the proof, because some explaining is in order. For example, here is a proof of the equality

$$(A-C) \cup B = (A \cup B) - (C-B) .$$

We show that

1.
$$(A - C) \cup B \subset (A \cup B) - (C - B)$$
, and

2.
$$(A \cup B) - (C - B) \subset (A - C) \cup B$$
.

For the first containment, let $x \in (A - C) \cup B$ be given. Then $x \in A - C$ or $x \in B$. Suppose that $x \in A - C$. Then $x \in A$ and $x \notin C$. Since $A \subset A \cup B$ and $C - B \subset C$, we conclude that $x \in A \cup B$ and $x \notin C - B$. Hence $x \in (A \cup B) - (C - B)$. Now suppose that $x \in B$. By definitions of $A \cup B$ and C - B, it is clear that $x \in A \cup B$ and $x \notin C - B$. Hence $x \in (A \cup B) - (C - B)$.

For the second containment, let $x \in (A \cup B) - (C - B)$ be given. Then $x \in A \cup B$ and $x \notin C - B$. For convenience, we divide the proof of $x \in (A - C) \cup B$ into two cases: $x \in B$ and $x \notin B$. Suppose that $x \in B$. This immediately implies that $x \in (A - C) \cup B$. Now suppose that $x \notin B$. Then $x \in A$ and $x \in C - B$. Since $x \notin C - B$ and $x \notin B$, we must have $x \notin C$. Thus $x \in A$ and $x \notin C$. Hence $x \in (A - C) \subset (A - C) \cup B$. This concludes the proof.

Functions

Definitions (Basic definitions). Let $f: A \to B$ be a function.

- A is called the **domain** (or **source**) of f.
- B is called the **codomain** (or **target**) of f.
- If $X \subset A$, we define the **image** of X under f to be

$$f(X) = \{ f(a) : a \in X \}$$
.

• If $U \subset B$, we define the **preimage** of U under f to be

$$f^{-1}(U) = \{a : f(a) \in U\} .$$

• If $f': A \to B$ is another function, then we write f = f' whenever

$$f(a) = f'(a)$$
 for every $a \in A$.

Definitions (Special functions). Let $f: A \to B$ be a function.

- If A = B and f(a) = a for all $a \in A$, then f is called the **identity (function)** on A. In this case, f is usually denoted by id_A .
- If $A \subset B$ and f(a) = a for all $a \in A$, then f is called the **inclusion (function)** of A into B.

Definitions (Injection, surjection and bijection). Let $f: A \to B$ be a function.

• f is **injective** (or **one-to-one**) if

$$f(a_1) \neq f(a_2)$$
 whenever $a_1 \neq a_2$.

In this case, f is called an **injection**.

- f is surjective (or onto) if f(A) = B. In this case, f is called a surjection.
- f is **bijective** if f is injective and surjective. In this case, f is called a **bijection** (or a **one-to-one correspondence**).

Definition (Equivalence (or isomorphism) of sets). If A and B are sets, then they are **equivalent** (as sets) (or isomorphic (as sets)) if there exits a bijection $f: A \to B$. We will usually denote this by $A \cong B$. In this sort of language, we refer to a bijection from A to B as an **isomorphism** of the sets A and B.

Definition (Composition of functions). Let $f: A \to B$ and $g: C \to D$ be functions. If $f(A) \subset C$, we can define the **composition of f followed by g** to be the function $g \circ f: A \to D$ given by the formula $g \circ f(a) = g(f(a))$. Furthermore, suppose that $h: E \to F$ is another function with $g(C) \subset E$; then, we can define the compositions

 $h \circ (g \circ f) : A \to F$ and $(h \circ g) \circ f : A \to F$. It is easy to check that **associativity** (of compositions) holds, that is,

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

We can now unambiguously express this composition as just $h \circ g \circ f : A \to F$.

Definition. Let $f:A\to B$ be a function. Suppose that there exists a function $g:B\to A$ that satisfies

$$g \circ f = \mathrm{id}_A$$
 and $f \circ g = \mathrm{id}_B$.

Then f is called **invertible**, g is called an **inverse (function)** of f, and we may denote g by the symbol f^{-1} .

Proposition. A function $f: A \to B$ is invertible if and only if it is a bijection. Furthermore, an invertible function has a unique inverse function.

Proof. We prove that if f has an inverse function, then it is unique. The other part of the proposition is left as an exercise. Suppose that $g, g' : B \to A$ are both inverses of a function $f : A \to B$. We show that g = g'. Let $b \in B$ be given. Then

$$g(b) = g(\mathrm{id}_B(b))$$

 $= g(f \circ g'(b))$ [since $f \circ g' = \mathrm{id}_B$]
 $= g \circ f(g'(b))$ [by associativity of compositions]
 $= \mathrm{id}_A(g'(b))$ [since $g \circ f = \mathrm{id}_A$]
 $= g'(b)$.

Since b was arbitrary, we have shown that g = g'.

Exercises

1. Let A, B and C be sets. Prove the Distributive law

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

via element-chasing (page 3):

- 2. Let A, B and C be sets. Prove *DeMorgan's laws* via element-chasing (page 3):
 - (a) $A (B \cup C) = (A B) \cap (A C)$.
 - (b) $A (B \cap C) = (A B) \cup (A C)$.
- 3. Let A, B, C and D be sets. Prove the following via element-chasing (page 3):
 - (a) $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$.
 - (b) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
 - (c) $A \times (B C) = (A \times B) (A \times C)$.
 - (d) $(A-C) \times (B-D) \subset (A \times B) (C \times D)$.

For parts (a) and (d), explain why equality does not hold; to do this, come up with a counter-example for the reverse containment.

- 4. Prove that a function $f: A \to B$ is invertible if and only if it is bijective.
- 5. Prove the following via element-chasing (page 3): Let $f:A\to B$ be a function. Let U and V be subsets of B. Then
 - (a) $U \subset V \Rightarrow f^{-1}(U) \subset f^{-1}(V)$.
 - (b) $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.
 - (c) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.
 - (d) $f(f^{-1}(U)) \subset U$.
 - (e) $X \subset A \Rightarrow X \subset f^{-1}(f(X))$.
 - (f) $[f(f^{-1}(U)) = U$ for every $U \subset B] \Rightarrow f$ is surjective.
 - (g) $[f^{-1}(f(X)) = X$ for every $X \subset A] \Rightarrow f$ is injective.

References

[Mun75] James R. Munkres. *Topology: a first course*. Prentice-Hall Inc., Englewood Cliffs, N.J., 1975.