MAT 145 : Quiz Solutions

Michael Williams

Last Updated: May 29, 2009

Quiz 1 Solutions

1. Let the set $X = \{a, b, c, d\}$ be given the topology $T = \{\emptyset, X, \{c\}, \{c, d\}, \{a, b, c\}\}$. Let S be the subset $S = \{a, c, d\} \subset X$.

(a) List the elements of the subspace topology T_S on S.

Solution: By definition of T_S, we have $T_S = \{O \cap S : O \in T\}$. Therefore $T_S = \{\emptyset, S, \{c\}, \{d\}, \{c, d\}, \{a, c\}\}$.

(b) With respect to the topologies T on X and T_S on S, determine whether or not the function $f: S \rightarrow X$, $f(a) = a$, $f(c) = d$, $f(d) = c$ is continuous. Justify your answer.

Solution: The function f is not continuous: for f to be continuous, the pre-image of any open set of X has to be an open set of S; in other words, $f^{-1}(O) \in T_S$ whenever $O \in T$. By considering the pre-image of each point in $\{a, b, c\}$, we see that $f^{-1}(\{a, b, c\}) = \{a, d\}$. Since $\{a, b, c\} \in T$ while $f^{-1}(\{a, b, c\}) = \{a, d\} \notin T_S$, f cannot be continuous.

Quiz 2 Solutions

1. Let X be a space. For any subset $A \subset X$, prove that

\[\partial A = \emptyset \iff A \text{ is both open and closed in } X. \]
Elementary Solution: Recall the definition of ∂A:

$$\partial A = \{x \in X : \text{every neighborhood of } x \text{ intersects } A \text{ and } X - A\}.$$

Also recall that A is closed if and only if $X - A$ is open. Suppose that $\partial A = \emptyset$. Given $x \in X$, there exists a neighborhood O_A of x that does not intersect $X - A$ (hence $x \in O_A \subset A$), or there exists a neighborhood O_{X-A} of x that does not intersect A (hence $x \in O_{X-A} \subset X - A$). In particular, for every $x \in A$, there exists a neighborhood O_A of x such that $x \in O_A \subset A$, so A is open; similarly, for every $x \in X - A$, there exists a neighborhood O_{X-A} of x such that $x \in O_{X-A} \subset X - A$, so $X - A$ is open. This establishes that $\partial A = \emptyset$ implies that A is open and closed.

Now suppose that A is open and closed; hence A and $X - A$ are open. Let $x \in X$. We show that $x \notin \partial A$. If $x \in A$, then A itself is a neighborhood x that does not intersect $X - A$ (because A is open). If $x \in X - A$, then $X - A$ itself is a neighborhood of x that does not intersect A (because $X - A$ is open). In either case ($x \in A$ or $x \in X - A$), we have that $x \notin \partial A$. This establishes that if A is open and closed, then $\partial A = \emptyset$.

Nonelementary Solution: From class and Hatcher’s notes, we may use the facts

1. $\text{int}(A) \cup \partial A = \bar{A}$.
2. $\text{int}(A) \subset A \subset \bar{A}$.
3. A is open if and only if $\text{int}(A) = A$; A is closed if and only if $A = \bar{A}$.

By (1), we immediately have $\partial A = \emptyset$ if and only if $\text{int}(A) = \bar{A}$. By combining this with (2), we see that $\partial A = \emptyset$ if and only if $\text{int}(A) = A = \bar{A}$. Therefore, by (3), $\partial A = \emptyset$ if and only if A is open ($\text{int}(A) = A$) and closed ($A = \bar{A}$).

2. Let X be a Hausdorff space, and let A be a subspace of X. Prove that A is a Hausdorff space.

Solution: Let X be a Hausdorff space, and let A be a subspace of X. For clarity, we let T_X denote the given topology on X, and let T_A be the induced subspace topology on A. Let x_1 and x_2 be distinct points in A; we will show that there exists disjoint neighborhoods (from T_A) of x_1 and x_2. Since X is Hausdorff, there exists a neighborhood $O_1' \in T_X$ of x_1 and there exists a neighborhood $O_2' \in T_X$ of x_2 such that $O_1' \cap O_2' = \emptyset$. Define $O_1 = O_1' \cap A \in T_A$, and define $O_2 = O_2' \cap A \in T_A$. By definition of T_A, we see that O_1 is a neighborhood of x_1 (open in A) and O_2 is a neighborhood of x_2 (open in
A). We also see that

\[O_1 \cap O_2 = (O'_1 \cap A) \cap (O'_2 \cap A) = (O'_1 \cap O'_2) \cap A = \emptyset, \]

since \(O'_1 \cap O'_2 = \emptyset \). This establishes that the subspace \(A \) is a Hausdorff space.

3. Let the set \(X = \{a, b, c, d\} \) be given the topology

\[T = \{\emptyset, X, \{c\}, \{a, b, c\}\}. \]

(a) Prove or disprove: \(X \) is Hausdorff.

Solution: We prove that \(X \) is not Hausdorff. Observe that the only neighborhood of \(d \) is the whole space \(X \) because \(d \notin \{c\} \) and \(d \notin \{a, b, c\} \). Also observe that the only neighborhoods of \(b \) are \(X \) and \(\{a, b, c\} \). So \(d \) and \(b \) do not possess disjoint neighborhoods. Therefore \(X \) is not Hausdorff.

(b) Prove directly that \(X \) is connected.

Solution: Suppose that \(X = A \cup B \) were a separation of \(X \) (i.e. \(A \) and \(B \) are disjoint nonempty open sets whose union is \(X \)); we derive a contradiction. Observe that the only neighborhood of \(d \) is the whole space \(X \). Since \(d \) lies in either \(A \) or \(B \), we deduce that either \(A = X \) or \(B = X \); so, either \(B = \emptyset \) or \(A = \emptyset \). This contradicts that \(X = A \cup B \) is a separation.

(c) Show that the subspace \(S = \{a, b\} \) is path connected by explicitly defining a path between \(a \) and \(b \).

Solution: Define a function \(f : [0, 1] \to S \) by \(f(t) = a \) for all \(0 \leq t \leq 1/2 \), and \(f(t) = b \) for all \(1/2 < t \leq 1 \). Note that the subspace topology on \(S \) is the indiscrete topology. It is easy to see that \(f \) is continuous (indeed, \(f^{-1}(\emptyset) = \emptyset \) and \(f^{-1}(S) = [0, 1] \) are open in \([0, 1]\)). Therefore, \(f \) is a path in \(S \) from \(a \) to \(b \).

(d) For each pair or points in \(X \), explicitly define a path between these points. Deduce that \(X \) is actually path connected.

Solution: *This is similar to the the construction in part (c), but some care has to be taken when constructing paths involving the point \(c \):*

To construct a path from \(a \) to \(c \), define a function \(f : [0, 1] \to X \) by \(f(t) = a \) for all \(0 \leq t \leq 1/2 \), and \(f(t) = c \) for all \(1/2 < t \leq 1 \). All the relevant pre-images \(f^{-1}(\emptyset) = \emptyset, f^{-1}(X) = [0, 1], f^{-1}(\{c\}) = (1/2, 1], \) and \(f^{-1}(\{a, b, c\}) = [0, 1] \) are all open in \([0, 1]\). So \(f \) is a (continuous) path.
To construct a path from b to c, define a function $f : [0, 1] \to X$ by $f(t) = b$ for all $0 \leq t \leq 1/2$, and $f(t) = c$ for all $1/2 < t \leq 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(X) = [0, 1]$, $f^{-1}(\{x\}) = (1/2, 1]$, and $f^{-1}(\{a, b, c\}) = [0, 1]$ are all open in $[0, 1]$. So f is a (continuous) path.

To construct a path from d to c, define a function $f : [0, 1] \to X$ by $f(t) = d$ for all $0 \leq t \leq 1/2$, and $f(t) = c$ for all $1/2 < t \leq 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(X) = [0, 1]$, $f^{-1}(\{x\}) = (1/2, 1]$, and $f^{-1}(\{a, b, c\}) = (1/2, 1]$ are all open in $[0, 1]$. So f is a (continuous) path.

To construct a path from d to a, define a function $f : [0, 1] \to X$ by $f(t) = d$ for all $0 \leq t \leq 1/2$, and $f(t) = a$ for all $1/2 < t \leq 1$. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(X) = [0, 1]$, $f^{-1}(\{x\}) = \emptyset$, and $f^{-1}(\{a, b, c\}) = [0, 1]$ are all open in $[0, 1]$. So f is a (continuous) path.

A path from a to b was already constructed in part (c). We can use the same formula for f. All the relevant pre-images $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(X) = [0, 1]$, $f^{-1}(\{x\}) = \emptyset$, and $f^{-1}(\{a, b, c\}) = [0, 1]$ are all open in $[0, 1]$. So f is a (continuous) path.

Since we were able to construct all of the required paths in X, we deduce that X is path connected.

Quiz 3 Solutions

1. Give a self-contained proof of the following: Let X be a path connected space, and let Y be a space. Suppose that $f : X \to Y$ is a surjective continuous function. Show that Y is path connected.

Solution: Let $y_1, y_2 \in Y$; we show that there exists a path in Y from y_1 to y_2. Since f is surjective, there exists $x_1, x_2 \in X$ for which $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is path connected, there exists a continuous function $g : [0, 1] \to X$ for which $g(0) = x_1$ and $g(1) = x_2$. Since f and g are continuous, the composition $(f \circ g) : [0, 1] \to Y$ is continuous. Furthermore, $(f \circ g)(0) = f(x_1) = y_1$ and $(f \circ g)(1) = f(x_2) = y_2$. Therefore, a path in Y from y_1 to y_2 exists. This establishes that Y is path connected.

2. Let X be a compact Hausdorff space, and let A be a closed subset of X. Suppose that $y \in X - A$. Prove that there exist open sets V and V' in X such that $y \in V$, $A \subset V'$, and $V \cap V' = \emptyset$.

4
Solution: Given $a \in A$, there exists disjoint neighborhoods V_a and V'_a of y and a respectively in X, since X is Hausdorff. We see that $\{V'_a \cap A\}_{a \in A}$ forms an open covering of A. Since A is closed in the compact space X, we have that A is compact. So there exists a finite subcovering $\{V'_a \cap A, \ldots, V''_a \cap A\}$ of A. Set $V = \bigcap_{i=1}^n V_{a_i}$ and $V' = \bigcup_{i=1}^n V'_{a_i}$. Since $y \in V$, for each $i = 1, \ldots, n$, we see that $y \in V_i$; since $V_{a_i} \cap V'_{a_i} = \emptyset$ for each $i = 1, \ldots, n$, we see that $V \cap V' = \emptyset$. Since V is the finite intersection of open sets in X, we see that V is open in X. Since V' is the union of open sets of X, we see that V' is open in X. Finally, we see that $A \subset \bigcup_{i=1}^n V'_{a_i} = V'$. Therefore, there exist open sets V and V' in X such that $y \in V$, $A \subset V'$, and $V \cap V' = \emptyset$.