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§ 1. Introduction

The recent discovery by V.F.R. Jones [J] of a link polynomial, which comple-
ments the classical Alexander polynomial, has been generalized by the dis-
covery of a new two-variable Laurent polynomial P(L) associated with an
oriented classical link L (see [L-M] and [F-Y-H-L-M-QO7). This polynomial is
calculated by a recursive formula involving changing crossings in a presen-
tation of the link until the unlink is obtained. Here yet another (Laurent one-
variable) polynomial Q(L) will be associated to an unoriented link L in a
manner that is spiritually very close to the way of defining the above men-
tioned two-variable polynomial. These polynomials are, however, different in
the sense that there are pairs of knots distinguished by one polynomial but not
the other. The theorem to be proved in this paper is as follows:

Theorem. There is a unique function Q from the set of unoriented links of S'’s
in §* to Z[x*'] such that:

(i) Q(L) depends only on the isotopy class of L;
(it) If U is the unknot, then Q(U)=1;
(i) If L,,L_, Ly, and L, are links that are identical except near one point
where they are as in Fig. 1,

X X )0 X
AN / N\
L, L. Lo Loo
Fig. 1
then
Q(L,)+Q(L_)=x(Q(Lo)+Q(Ly)). (%)
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The lack of orientation makes it unclear which diagram in Fig. 1 should be
labeled L and which L_, with similar confusion existing between L, and L.
However the symmetry of the formula neutralises this ambiguity. As in [L-M]
it is easy to show that if such a function exists it is unique, so the proof of the
theorem, which constitutes the next section, concentrates entirely on existence.
Similarly it is easy to deduce that, if U¢ denotes the unlink of ¢ components,
then Q(U)=p ! where u=2x"1-1.

Some properties of Q will be proved in §3. In particular, for any link L,
QL) ()=1, QL) (-1)=(=3), Q(L)(=2)=(—-2)"*, and Q(L)(2)=(5,)?, where
¢ is the number of components of L, d is the dimension of the mod3
homology of the double cover of S* branched along L, and §, is the de-
terminant of L. These last results do at least correlate Q(L) with other
known invariants of L.

The basic structure of linear skein theory carries over to Q(L) with some
obvious modifications. Many of the examples in [L-M] involved 2 x 2 matrices
whereas their replacement in the new theory requires 3 x 3 matrices, the results
on the numerators and denominators and on rational knots are thus more
complicated. It is intended to give a brief survey of these formulae and a more
comprehensive table of polynomials in another paper. The following results
are, however, elementary consequences of the theorem or of linear skein theory.

Property 1. (a) Q(L,#L,)=0(L,)Q(L,) where L, 4L, denotes any ‘connected’
sum of L, and L,.

(b) Q(L,vL,)=pQ(L,)Q(L,) where L, UL, is the ‘distant’ union of L, and
L,.

(c) Q(L)=Q(L) where L is the mirror image of L.

(d) If L, is a mutant of L, (see [L-M]), then Q(L,)=0Q(L,).

This new polynomial seems to be the only new polynomial that can be
defined by a perturbation of the ideas and methods of [L-M]. Other ideas for
a new polynomial have usually turned out to give the original two-variable
polynomial modified in some way by knowledge of the number of components
of the link. The fact that ‘L’ occurs in the definition of Q does suggest that Q
might be independent of the two-variable polynomial, and an example will be
given to show that that is indeed so.

An announcement has been made by C.F. Ho of his independent discovery
of the new polynomial [H].

§2. The proof of the theorem

The proof of the Theorem will entail an inductive definition of Q and a
sequence of lemmas; it will be similar to that given in [L-M] so emphasis will
be given to points at which the proofs differ.

Let &, denote the set of all (generic) projections, with at most n crossings,
of links equipped with an ordering (c,, ¢,, 3, ...) of their components and with
a basepoint b; and an orientation for each component c;. This information
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induces an ordering on all the points of Le.%,; the ordering begins at the
basepoint b, of ¢, proceeds along all of ¢, in the given direction and then
transfers to the basepoint b, of c,, and so on. If Le &,, the standard ascending
projection o Le ¥, associated to L is the projection formed by switching the
crossings of L (from over to under or vice versa) so that, proceeding along L in
the above ordering of points, each crossing is first encountered as an under-
crossing.

If a link is regarded as a subset of R? x R, the projection R? x R—R defines
a height function on the link. Here links are being regarded as subsets of the
plane that are images of immersed 1-manifolds with over-crossing information
recorded. Height functions will now be used on such link projections, these
being two-valued functions at the cross-over points with the obvious definition
of continuity.

Definition. Let Le &#,. A continuous function h: L— R is an untying function if:
(i) y;€c;, y;j€c; and i<j implies that h(y) <h(y);
(ii) On each c¢; the function h is monotonically increasing from the base-
point b; to some (top)point ¢;, and is monotonically decreasing from ¢; to b;;
(iii) At a cross-over point the value of h at the over-pass exceeds that at the
under-pass.
Note. (a) Any standard ascending projection has an untying function.
(b) If L has an untying function, it represents an unlink.

Inductive Hypothesis (n —1). Suppose that a function
Q: %, ~Z[x*"]

has been defined such that:

(i) Q is independent of choice of basepoints, of ordering of components and
of orientations;

(i) Q is invariant under Reidemeister moves that do not increase the
number of crossings beyond (n —1);

(iii) If L, € &#,_,, then with the usual notation,

QL) +Q(L_)=x(Q(Lo)+Q(L,));

(iv) If Le#,_, and L has an untying function, then Q(L)=p‘"", where c is
the number of components of L and y=2x""—1.

Of course any element of .#, has an untying function, so that Q is defined
on %, by (iv), and this starts the induction.

Recursive Definition (n). If Le%, define Q(aL) to be u‘~' where L has c
components. If L and «L differ at at most (r—1) crossings assume that Q(L)
has been defined. If now they differ at r crossings let Q(L) be the polynomial
calculated by applying the formula (%),

QL)+ Q(L_)=x(Q(Lo)+ Q(Ly))
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to the first such crossing encountered in proceeding along L from the base-
point b,. Note that although here L, and L_ are not well defined as
elements of %, _, since order, orientations, and basepoints are missing, Q(L,)
and Q(L,) are well defined (by induction on n). By convention, L, will be
chosen to denote the link obtained by nullifying the relevant crossing of L, (or
L_) in the manner consistent with orientations.

This now defines Q on %, and it will now be checked, in a sequence of
lemmas, that Q satisfies the induction hypothesis (n).

Lemma 1(n). Suppose Le.%,. Suppose that the crossings where L and aL differ
are labelled in any sequence. The polynomial corresponding to L, calculated from
Q(aL) by applying formula (%) to the crossings in the sequence, is Q(L).

Proof. By induction on the number of crossing differences between L and oL, it
is only necessary to consider the effect of exchanging the order of crossings
labelled “i” and “j”. Let o,L, #n° L, and 5 L be “L” with the crossing labelled
“i” switched, and nullified in the two possible ways. Considering i followed by
Jj» the polynomial calculated for L is —Q(s;L)+x{Q(n? L)+ Q(n° L)}, which, by
changing crossing j, becomes equal to

Q(0;0,L)—x[Q(n] o, L)+ Q(n7 0, L)1+ x{ —Q(o;n) L)+ x[Q(nIn? L)
+Qn 7 ) L)]1-Q(om? L)+ x[Qn)n¥ L)+ Q(ny n L)1}

As the o, n° and the n® operations all commute this formula is, by
inspection, symmetric in i and j. Hence considering the two crossings in the
other order gives the same polynomial for L. []

Lemma 2(n). Q|.%, is independent of choice of basepoints.

Proof. We need only show that if a basepoint of a component lies on a
segment of the projection it can be moved to an adjacent segment without
changing the polynomial. Suppose the basepoint on component c; is to be
changed from position b, to position b,, passing a crossing of ¢; with c;. Let
L, and L, denote the relevant elements of %, that have basepoints on ¢; at b,
and b,, respectively, and are otherwise exactly the same.

Case i#+j. Here oL, and oL, represent exactly the same projection though
with different basepoints. Thus Q(L,)=Q(L,) as, by Lemma 1(n), the choice of
the order in which the sequence of crossing changes is accomplished does not
change the polynomial.

Case i=j. In this case « L, and aL, differ only at the crossing under consider-
ation where the associated crossing changes are labelled o, #°, and 5*. By
Lemma 1(n), Q(L,) can be calculated by first changing all other relevant
crossings and thereby giving Q(L,)=f(Q(caL,)), where f is some linear func-
tion. Similarly, Q(L,)=f(Q(«L,)), with exactly the same function f occuring
because the calculation involves only projections of fewer crossings for which
(by induction) the position of the basepoints is irrelevant. By definition, Q (L)
and Q(xL,) are equal to u~' where ¢ is the number of components. Further-
more n°aL,e%, , is ascending and has c+1 components and therefore (by
induction) has polynomial p*.
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Now n*alL,, the projection obtained from oL, by nullifying the crossing
with a miss-match of orientations, has (n —1) crossings and ¢ components. But,
removal of a neighborhood of the crossing from ¢; splits ¢, into two parts, and
the untying function associated (by ascendingness) to oL, restricts to mo-
notone functions on these two parts. These monotone functions combine to
give an untying function for #n* «L,. Thus the induction implies that Q(n* aL,)
=~ 1. Therefore

Q(oaLy)=—Q(L,)+x(Q(n°aL;)+Q(n*aL,))
— _'uc— 1 +X(,llc+/f_ 1):'uc—1.
Direct substitution in “f ” shows that Q(L,)=Q(L,). O
Lemma 3(n). Q| %, satisfies formula (x).

Proof. Suppose, with the usual notation, L,, L_, L,, and L are in .%,. The
formula

QL)+ Q(L_)=x(Q(Lo)+Q(L,))

is the first step in a calculation (permitted by Lemma 1(n)) of either Q(L,)
from Q(«L,) or of Q(L_) from Q(«L_), depending upon which of L, differs
from « L, at the crossing under consideration. [J

Lemma 4(n). Suppose that L is an element of &, with ¢ components that has an
untying function h: L—»R. Then Q(L)=u‘~ 1.

Proof. The link projection L has components {c;} each with an orientation, a
c

basepoint b; and a top-point t;. Suppose v=> v, where v, is the number of self-
1

crossings of ¢; on the segment from ¢; to b,. If v=0 the result is true as L is
then a standard ascending projection. Thus, inductively, assume the result true
for any Le.#, with an untying function and a lower value of v than the one
given.

Let ¢; be a component of L for which v,>0. Consider the first self-crossing
X of c; after ¢, (in the direction specified by the orientation). If that crossing is
an over-pass (as encountered proceeding from t,) the function h may be
changed to be increasing on the segment from ¢; to X and just beyond X. This
produces a smaller value of v, so that Q(L)= ‘"' by induction on v.

Thus assume the segment from ¢; encounters X as an under-pass. The fact
that h decreases from ¢, to b, implies that this will be an underpassing of the
segment from b, to t,. Let oL, n°L, and n* L be L with crossing X switched or
nullified in each of the two possible ways. The situation is depicted in Fig. 2(a)
where L is shown with an unbroken line where h is increasing and a broken
line where h is decreasing. In Fig. 2(b) oL is shown and, reasoning as in the
preceding paragraph shows that Q(cL)=p‘"'. As shown in Fig. 2(c), n°L has
components ¢; and ¢/ (containing b; and ¢;, respectively) in place of ¢;, and ¢/
always crosses c; as an over-pass. The function h can be adjusted, as indicated
by the broken lines, to be an untying function for n°L so that, by induction on
n, Q(n°L)=y¢. Finally, h can be adjusted, as shown in Fig. 2(d), to be an
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Fig. 2

untying function of n* L so that Q(n* L)=u‘~!. Thus, using Lemma 3(n),

Q(L)=—Q(aL)+x[Q(n°L)+Q(n* L)]
— __‘uc~—1+x[uc+uc—l]=‘uc—l-
This completes the induction on v, and hence establishes the lemma. []
Corollary 4.1(n). Q| %, is independent of choice of orientations of components.

Proof. Let Le ¥, and let L be L with the orientation of one component c;
reversed. Let BL be oLl with the i orientation changed back again. But L
clearly has an untying function, so Q(BL)=pu .

The calculation of Q(L) from Q(xL)=u‘~! is the same as that for Q(L)
from Q(BL)=u‘"!, so that Q(L)=Q(L). O

Lemma 5(n). Q(L) is invariant under Reidemeister moves that do not increase the
number of crossings beyond n.

Proof. The proof of Proposition 4(n) of [L-M] translates immediately to give a
proof of this lemma. [

Proof of the Theorem. The theorem is proved once the induction hypothesis (n)
is established. It only remains to prove that Q(L) is independent of choice of
ordering for Le #,. This is not obvious. The proof is exactly Propositions 5(n)
and 6(n) of [L-M] with the symbols “Q” and “L” replacing “P” and “K”
throughout. []

Remark (J.H. Conway). Propositions 5(n) and 6(n) of [L-M] can be thought of
as proving that any ascending element of £, can be changed to an element of
&, by a sequence of basepoint changes and Reidemeister moves that do not
increase the number of crossings beyond n, provided the move of Fig.3 is
included.
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o o

§ 3. Basic properties of the polynomials

The statement of Property 1 in the introduction recorded the behaviour of the
new polynomial under the link operations of connected sum, distant union,
reflection and mutation. It follows that the polynomial of the c-component
unlink is u°~! where u=2x"!—1. Further properties of an elementary nature
are listed below.

Property 2. For any link L, Q(L)—1 is divisible by 2(x —1).

Proof. Using induction, on the number of crossings in a presentation and the
number of crossings that must be changed to achieve the ascending con-
figuration, this follows from

QL )—1+0Q(L_)—1=x{Q(Lo) -1+ 0Q(L,) -1} +2(x-1). O
Corollary. (i) QL(1)=1.
(i) In Q(L) the constant term is odd, and all the other coefficients are even.
Property 3. If L has ¢ components, QL(—2)=(—2)"1.

Proof. The method of proof is a similar double induction using the formula

(. O
Property 4. For any link L, QL(2)=(5,)* where ¢, is the determinant of L.

A little discussion is in order before proving this result. The determinant of
L, 6,, is a classical invariant of L which may be defined to be the modulus of
the Alexander polynomial of L evaluated at —1. Then §; is the order of the
first homology group of the double cover of S* branched over L (that group
being infinite when 6, is zero). This is attractively independent of any choice of
orientation.

Because the theory of Q is allergic to orientation it is desirable to work
with a definition of J, that is comparitively free of orientations. Such an
approach was classically given by the fact that 6, is the modulus of the
determinant of the Goeritz matrix associated to any presentation of L, [G]. A
new interpretation of the Goeritz method was given by C.McA. Gordon and
R.A. Litherland [G-L]. To any (maybe unorientable) connected surface V
spanning L they associate a symmetric bilinear form %,: H, (V)x H,(V)->Z.
The absolute value of the determinant of this bilinear form is an invariant of
the link; it is &, for, by judicious choices of V and a base of H,(V), %, is
represented by a Goeritz matrix. Suppose that «, fe H, (V) are represented by
I-cycles a, b. Then %, (a, f) is defined to be the linking number of a and tb,
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where tb is 2b pushed off V into S®—V, the push-off being locally to both
sides of V. This characterisation of §, will now be used.

Proof of Property 4. First note that QU (2)=1=(d,)> where U is the unknot.
Now QL(2) can be calculated with no ambiguity in the usual recursive way
(inducting on the number of crossings) from QL (2)+QL_(2)=2(QL,(2)
+QL(2)), where QU(2)=1 for U the unknot. Here L,, L, and L_ are links
with projections related in the usual way. Thus the property follows at once if
it can be established that (6, )*+(d, )>=2((d,,)*+(6, )*). Figure 4 shows the

links L; for i=+, —, 0, oo, each with a connected spanning surface V; shaded
in.
L, L. Lo Loo
Fig. 4

These surfaces can be constructed by using Seifert’s circuit method for V,
connecting up components with hollow handles away from the area depicted,
and modifying as shown to obtain V,, V_, and V_. Thus all but V_ could be
taken to be orientable. The four surfaces are identical outside the area shown.
Take a base for H,(V,) represented by oriented (simple) closed curves on V,
and for bases of H,(V)), i=+, —, oo, take the homology classes of the dotted
curves in the diagrams in Fig.4 (the ends of which join up outside the
diagram) and the set of curves already chosen on V,. The matrices M, that
represent the %, with respect to these bases have the form

n o p ntl p
Mmz[p' MO]’ Mi:[ Pt MO]'
Thus detM , =det M Fdet M, and so squaring and adding one obtains
(detM ) +(detM _)>=2((det M )* +(det M ,)?).
Recollection that §, =|det M| yields the required formula. []
The next result was conjectured by J.H. Conway.

Property 5. QL(—1)=(—3)", where d=dimH,(D;Z,) and D is the double cover
of S* branched over L.

Proof. In the notation of the previous proof, let D; be the double cover of S’
branched over L; and let d,=dimH(D;;Z). H,(D;;Z,) is presented by M, the
matrix M, reduced modulo 3, so that d, is the nullity of M,. The form of the
matrices M,. for i=+, —, 0, and oo shows that three of their nullities take a
common value a, the fourth is a+ 1. Hence (—3)** 4 (—3)*- +(=23)%+(—3)"
=0, and the usual induction argument completes the proof. [J

Remark. The determinant §, can be calculated, up to sign, as det(A + A7) where
A is a Seifert matrix for L. The Alexander polynomial is det(t!/2 4 —¢= 1% 4%). It
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is natural to wonder whether, in the light of the above, Q(L) could be defined
from some slight generalisation of 4.

Property 6. If L has c¢ components the lowest power of x in Q(L) is precisely
(1—=c).

Proof. The usual double induction procedure shows that (1 —c) is a lower
bound for the powers of x in Q(L). Thus, by the Corollary to Property 2, this
result is true when ¢=1. Now induction, on ¢ and on the number of crossing
changes necessary to change L to the distant union of its components, pro-
duces the result in general. []

Property 7. If L has ¢ components,

[x~ ! Q)] = o=L(—m)~ ! P(L)](l,m)=(1,0)
where P(L) is the two-variable polynomial in | and m defined in [L-M].

Proof. The result is trivial if L is the unlink. The substitution (I,m)=(l, —y)
changes P(L) to a Laurent polynomial in y defined in the usual way by P(L,)
+P(L_)=yP(L,) and P(U)=1. Now x*"'Q(L) and y*~'P(L) are genuine
polynomials with no negative powers of x and y. Consider the defining for-
mulae for Q and P when L, has ¢ components:

Case (i). L, has ¢+ 1 components and L has ¢ components.
x"'QL, +x"'QL_=xQLy+x(x*"'QL,)
y“'PL,+y " 'PL_=)PL,.

Case (ii). L, and L each have (¢ —1) components.

x7'QL, +x"'QL_=x*(x"2QLy+x"*QL,)
y'PL, +y " 'PL_=y*(y*"*PL,).

The result now follows, substituting x=0=y, from the usual induction on the
number of crossings and the number of crossing differences from the standard
ascending projection. [

Property 8. The degree of Q(L) is less than the crossing number of L.
Proof. This follows from the usual double induction using formula (x). [

Examples. Employing the standard notation for knots and links having pre-
sentations with few crossings;

0B8g)=1+4x+6x2—10x> —14x*+4x>+8x°+2x’
Q(10,,4 reflected) =1 —12x —2x? +26 x>+ 4x* —20x° —4x° +6x7 +2x®

Q(134,,4)=1+20x+14x>—62x> —40x* +64 x> +38x°
—26x7 —14x®+4x°+2x'°.
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Calculations for such examples are best performed by computer; in these
examples, however, human verification was also employed. The interest of the
above example is that the three given knots have the same two-variable
polynomial (see [L-M] Example 16). Thus the Q polynomial is not a function
of the two-variable polynomial (and so certainly not just a function of the

polynomials of Alexander and Jones).

Table. Values of the Q-polynomial

WON R 9 M A W N R W N s N e e e

00 00 CO OO0 OO0 00 00 00 00 00 00 OO0 00 00 00 OO0 00 00 X WV 0 VW I I VW I I I AL n bW
[t agtagiagtagtagtagtagbagtg it A A A N A
S © ® 9 O U A W N = O

N
-

Conway-Kinoshita-Terasaka
(—3,5,7)-pretzel

untwisted double of trefoil

—3+2+2
-3-2+44+2
5-2—-6+2+2
1-4-2+4+2
1+4—-6—-4+4+2
5-2-1040+6+2
5—6—12+4+8+2
—7+4416—6—-10+2+2
—34+6+8—-10—6+4+2
—3424+46-6—4+4+2
1+8—4—-124+0+6+2
140—-4-64+2+6+2
5+2—-12—-10+6+8+2
546—18—14+10+10+2
—3-6+14+12—-14—-8+4+2
—-74+04+22+2-20—4+6+2
1-8+4+12—-8—-6+4+2
—342+414-2-16-2+6+2
—11+14426—16—-24+2+8+2
1—4+2+2-8+0+6+2
—-7+4420—-8-20+2+8+2
1+44+6—10—14+4+8+2
-7+44+16—-10—16+4+8+2
—11+14422-22-22+8+10+2
—3+6+4—-12—-10+6+8+2
542—-8—12—4+8+8+2
—34+104+10-22—16+10+10+2
14+84+0-22—-10+12+10+2
—7+16+10-32—-16+16+12+2
—3+10+18-22—-30+8+16+4
—3+6+12-20—24+10+16+4
5+2+12-26—-36+14+24+6
—11+104+20—-10—-124+2+2
—7+12+12—-14—-8+4+2
~7+8+6—12—-2+6+2

17—-24—-52454+76—-28 —48 —44+8+2
1+48—-72—172+234+256-286—-206+162+94—-42—-22+4+2
17+8 —180+ 1344556 —618 —872+ 978+ 818 —736 —470 + 284

+158—54—28+4+2

—2x" 14142

2x 1 —1—-4+42+42
2x71—1-8+0+6+2
4x72—4+14+0-16+0+12+4

R.D. Brandt et al.
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To give a feel for the nature of this new polynomial, a small table is given

S

above in which the Laurent polynomial ) a;x' is written a_,x "+a_, ,

+a_,,,+...+a, with ayx° written a,. The usual name of a knot or link
preceeds the polynomial.

Direct calculation has also shown that the two knots of [L-M] Example 17,
which have distinct signatures (and so are not mutants) have the same Q-
polynomial, i.e. —7+4x+16x*—6x> —10x*+2x%+2x°.
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