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The theory of knots and links is the analysis of disjoint simple closed curves in 
ordinary 3dimensional space. It is the consideration of a collection of pieces of string 
in 3-space, the two ends of each string having vanished by being fastened together as 
in a necklace. Many examples can be seen in the diagrams that follow. If the strings 
can be moved around from one position to another those two positions are the same 
link or 'equivalent' links. Of course, during the movement no part of a string is 
permitted to pass right through another part in some supernatural fashion; the string 
is regarded as being extremely thin and pliable; it can stretch and there is no friction 
nor rigidity to be considered. As an example, FIGURE1shows two pictures of the same 
link, a famous link called the Whitehead link. Thus the problem of understanding 
knots and links is one of geometry and topology, and within those disciplines the 
subject has received considerable study during the last hundred or more years. Knot 
theory has been a real inspiration to both algebraic and geometric topology, and, 
conversely, the theoretical machinery of topology has been used to make vigorous 
attacks on knot theory. The principal problem has always been to find ways of 
deciding whether or not two links are equivalent. Confronted with two heaps of 
intertwined strings, how is one to know if one can move the first to the configuration 
of the second (without cheating and breaking the strings)? Algebraic topology 
provides some 'invariants,' but recently some entirely new methods have been 
discovered which are extraordinarily effective (though not infallible), and which, 
judged by the standards of most modern mathematics, are breathtakingly simple. 

FIGURE 1 

*Supported in part by National Science Grant DMS8503733. 
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The story begins in the spring of 1984. Professor V. F. R. Jones, now of the 
University of California at Berkeley, had for some years been studying operator 
algebras and trace functions on these algebras. It was pointed out to him that some of 
the formalism of his work closely resembled that of the well-known braid group of E. 
Artin [3]. This braid group can be used to study knots, and eventually Jones realized 
that, using his trace functions, he could define polynomials for knots and links which 
are invariants [9]. This means that to each configuration of pieces of string is 
associated a polynomial, and that if the string is moved (as described above) to a new 
position it still has the same polynomial. Thus, if calculation shows two heaps of string 
have two distinct polynomials, then it is not possible to move the strings from one 
position to the other. To get the idea of an invariant, consider what is probably the 
easiest of them all, namely the number of strings that make up a link; a link of two 
strings can never be deformed to one of three strings. Another polynomial invariant 
for links (discovered in about 1926 by J. Alexander [I]) was well known so, for a while, 
it was suspected that Jones' polynomial might be but some elementary manipulation 
of that polynomial. Soon however it was established that the Jones polynomial was 
entirely new, independent of all other known invariants. Strenuous efforts to under- 
stand the Jones polynomial have since been made by many mathematicians scattered 
around the world. The most amazing things about it are its simplicity and the fact that 
it exists at all. In retrospect it seems that several mathematicians during the last thirty 
years came exceedingly close to discovering Jones' polynomial and would surely have 
done so had they dreamt there was anything there to discover. A very simple 
complete proof of the existence of this polynomial appears in 53 below. By now, 
Jones' polynomial has been generalized two or three times, lengthy computer gener- 
ated tabulations of examples have been produced, proofs have been explored and 
simplified, some correlations with algebraic topology have been found and a few 
geometric applications have been produced. Nevertheless, at the time of writing, there 
is still a feeling that these new ideas are not really understood, that they do not really 
fit in with more established theories, and that more generalizations and applications 
may be possible. Intense investigation continues. 

I Basic Background 

A little basic information about knots and links may allay some misunderstandings, 
but the confident will proceed to the next section. There are several excellent surveys 
of the subject prior to Jones' discovery; [2], [IS], [17], [16] and [S] are accounts in 
(approximate) order of increasing mathematical sophistication. As already stated, a 
link is a finite collection of disjoint simple closed curves in 3-dimensional space R 3, the 
individual simple closed curves being called the components of the link. A link of just 
one component is a knot. It is tacitly assumed that the closed curves are piecewise 
linear, that is that they consist of a finite number (probably very large) of straight line 
segments placed end to end. This is a technical restriction best ignored in practice; it 
does however ensure that an infinite number of kinks of any sort, possibly converging 
to zero size, never occurs. Restricting the components to being differentiable would 
do equally well. The orthogonal projection of R onto a plane R in R maps a link to 
a diagram of the type seen frequently in the pages that follow. The direction of that 
projection is always chosen so that, when in R projections of two distinct parts of the 
link meet, they do so transversally at a crossing as in FIGURE2(i), never as in FIGURE 
2(ii), (iii), or (iv). At a crossing it is indicated which of the two arcs corresponds to the 
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(ii) (iii) 

FIGURE 2 

upper string, and which to the lower, by breaking the line of the lower one at the 
crossing. Such a planar diagram will be called a projection of the link. 

A movement of a link from one position in R 3  to another is called an ambient 
isotopy; that idea defines when two links are the same or 'equivalent.' Such a 
movement changes the planar projections of a link. An established theorem states that 
two links are equivalent if and only if (any of) their projections differ by a sequence of 
the Reidemeister moves [16]. These moves, of types I, I1 and 111, are those shown in 
FIGURE3 (and their reflections), where, for each type, a small part of the projection is 
shown before and after the move; the remainder of the projection remains unchanged. 
It is clear that if two link projections so differ then the links are equivalent; the 
converse is established by a routine and inelegant proof. Thus to show that the two 
diagrams of FIGURE 1 represent the same link one can construct a sequence of these 
moves that allow the first diagram to evolve to the second. However, for two general 
link projections one has no idea whether many million moves may be required. 

FIGURE 3 

An oriented link is a link with a direction (usually indicated by an arrow) assigned 
to each component, so that each acquires a preferred way of travelling around it. Thus 
a link with n components has 2" possible orientations. The two oriented links of 
FIGURE4 are distinct, for one cannot be moved to the other sending the directions on 
the one link to those on the other (this is proved in what follows). 

A knot is unknotted if it is equivalent to a knot that has a projection with zero 
crossings. Two oriented knots can be summed together as indicated in FIGURE 5; they 
are placed some way apart and a 'straight' band joins one to the other so that in the 
resultant sum the orientations match up. A knot, other than the unknot, is prime if it 
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FIGURE 4(a) 

FIGURE 5 

cannot be expressed as a sum of two knots neither of which is unknotted. Note that 
the sum of two oriented links of more than one component is not well defined unless it 
is specified which two components are to be banded together. As it is known that any 
knot is uniquely expressible as the sum of prime knots, listings of knots usually include 
only the prime knots. 

If L is an oriented link, let pL denote L with all its directions reversed, and let L 
be the reflection of L. When considering projections, this reflection is usually thought 
of as reflection in the plane of the paper, so that the projection of zcomes from that 
of L by changing all underpasses to overpasses and vice versa. Thus from L can be 
created pL, z,and pZ =z,and these may be four distinct links, they may be the 
same in pairs, or all four may be the same. The trefoil knot 3, (see FIGURE6) creates 
two pairs in this way, the figure of eight knot 4, has all four the same whilst 9,, has all 
four distinct. 

Knot 3, Knot 9,2 

(a) (b) (c)  

FIGURE 6 

Inherent in the idea that reflection can change a knot is the convention that the 
enveloping three-dimensional space R 3  is oriented; it is equipped with a distinction 
between left-hand and right-hand screwing motions. Knot tables have traditionally 
listed prime knots according to the minimum number of crossings in a projection of 
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the knot. Thus 7, denotes the fourth knot, in some traditional order, that needs seven 
and no more than seven crossings. The tables have deliberately ignored reflections and 
reversals, so that an entry may stand for as many as four knots if these orientations are 
taken into account. With these conventions knots have been classified up to thirteen 
crossings [19] with the help of computers and the following table has been produced. 

This totals 12965 knots. 
There now follows a discussion of the new polynomial invariants of knots and links. 

It is not possible to restrict the discussion to knots alone, for many-component links 
are an integral part of the theory. The ideas will not here be developed in the order of 
their discovery but in an order that now seems simpler to understand. 

52. The Oriented Polynomial 

The polynomials to be considered here are Laurent polynomials with two variables 8 
and m and with integer coefficients. A Laurent polynomial differs from the usual 
polynomials of high school only inasmuch as negative as well as positive powers of the 
variables may occur. One such polynomial P ( L )  will be associated to each oriented 
link L .  For example, to the link of FIGURE 1 will be assigned the polynomial 

The result that encapsulates this was discovered almost simultaneously by four sets of 
authors [7] in the wake of Jones' first announcement (P(L) generalises Jones' 
polynomial, see $3). It can be stated as follows: 

THEOREM1. There is a unique way o f  associating to each oriented link L a Laurent 
polynomial P(L), i n  the variables & and m ,  such that equivalent oriented links have 
the  same polynomial and 

(i) P(unkno t )  = 1, 
(ii) i f  L + ,  L , and L o  are any  three oriented links that are identical except near a 

point where they are as i n  FIGURE7,  then 

L+ L- Lo 

FIGURE 7 


In a projection of an oriented link the crossings are of two types; that of L+ in 
FIGURE7 is called positive, that of L - is negative. This idea will be exceedingly 
important. In L + ,  the direction of one segment can be thought of as pointing in the 
direction dictated by a right-hand screw motion along the direction of the other 
segment. All the orientations are needed to make this important distinction. Of course, 
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the choice of which type of crossing is given which sign is but a convention. 
The meaning of Theorem 1 becomes apparent as one uses it to make a few 

calculations. Shown in FIGURE 8 is a very elementary example of a triple of links L,, 
L , and Lo. 

FIGURE 8 

The first two links are just pictures of the unknot, the first with a single positive 
crossing, the second with just a negative one. Formulae (i) and (ii) imply that 
tl + 8-'1 + mP(L,) = 0, from which one deduces that P(L,), the polynomial for 
the trivial link of two separated unknots, is - ( t p l  + t ) m p l .  Consider now the triple 
of links in FIGURE 9 (where it is the uppermost crossing that is to be considered). 

FIGURE 9 

Here L, is the link whose polynomial has just been calculated, or at least it is 
equivalent to it and so has that same polynomial; Lo is the unknot. Thus 

- t (8 - I  + t ) m - I  + t - ' P (L_)  + m l  = 0, 

so that the polyllomial for the simple link L , the link of FIGURE 4(a), is ( t +  t 3 )mp '  
- ern. FIGURE 10 shows a third triple (look at the right-hand crossing). This yields the 
equation 

e l +  tp lP (L- )  + m { ( t +  t 3 )m- '  - t m )  = 0. 

Hence the polynomial of the left-hand version of the trefoil knot 3, (seen also in 
FIGURE6(a)) is - 2 t 2- t 4+ t2m2. 

FIGURE 10 

This proves that the trefoil is indeed knotted, for were it equivalent to the unknot it 
would, by Theorem 1, have 1 for its polynomial. Similarly the link of FIGURE 4(a) is 
not equivalent to the link consisting of two separated unknots. 

Consider the method of the preceding calculation of the trefoil's polynomial. 
Attention was given to one crossing. Switching that crossing produced the unknot, 
nullifying it (to get 'L,') produced a link with fewer crossings that had already been 
considered. This procedure works in general. Suppose that one is confronted with an 
oriented link L of n crossings and c components. Assume that one has already 
calculated the polynomials of all (relevant) oriented links of n - 1crossings; there are 
only finitely many of them. Then formula (ii) calculates P(L) in terms of the 
polynomial of a modified L, namely L with some chosen crossing switched. However 
it is always possible to change L to U C ,the unlink of c unknots, by switching a subset 
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of some s of the crossings. Thus, performing the switches one by one, using formula 
(ii) each time, P(L) is calculated in terms of the polynomials of s links of fewer 
crossings (the 'Lo's') and of P(Uc). However, it is an easy exercise to show, by 
induction on c, that P(Uc) = (- ( t - '  + t)m-')'-'. This method of calculation will 
always work, and it is essentially the only known method of calculating these 
polynomials. It is nevertheless not a very welcome method for the length of calcula- 
tion increases exponentially with the number of crossings of the link presentation. 

Note that if all the diagrams in the above calculations were reflected in the plane of 
the paper this would change each positive crossing to a negative crossing and vice 
versa. Each L +  would become an L . This would simply exchange the r8les played 
in the calculation by t and t-l.Thus reflecting a link has the effect on its polynomial 
of interchanging t and t p l .  The left-hand trefoil of FIGURE 6(a) has polynomial 
- 2 t 2- t4+ t2m2, so the right-hand trefoil's polynomial (FIGURE 6(b)) is - 2 t p 2-
tp4+ t-2m2. These polynomials are obviously different so, by Theorem 1,the trefoils 
are inequivalent (this fact was tricky to prove until 1984 when Jones produced a 
version of this proof). Similarly the two oriented links of FIGURE 4 are distinct. For 
any polynomial P, let denote P with t and t-' interchanged (c.p. complex 
conjugation). The above discussion has demonstrated the following result. 

PROPOSITION1. For any oriented link L, P ( L )  = ~ ( z ) .  

Consider now the triple of FIGURE 11. This yields 

so that 

P(4,)  = - tP2- 1- t2+ m2. 

U 

FIGURE 11 

Here then the polynomial is symmetric with respect to t and t-' and so it does not 
show 4, and 4, to be different, and, in fact, a little experimentation shows them to be 
the same. In practice the P-polynomial provides a very good test as to whether or not 
L =z,but any hope that it might be an infallible test is dashed by the knot 9,, shown 
in FIGURE12. It is known that 9,, f g,, because a certain 'signature' invariant, from 
algebraic topology, is nonzero. However, 

and this is a self-conjugate polynomial. 
It should be remarked that other notations can be used in the whole of this theory 

of polynomials for knots and links. For example, P(L)  can be taken to be a 
polynomial in three variables x, y, z with the vital defining formula being xP(L+) + 
yP(L-) + zP(Lo)= 0. However, the three variables are homogeneous variables as in 
projective planar geometry (there are still really only two variables), and the balance 
between t and t-l is lost. Some authors also have a strong preference for some 
negative signs in the defining formula. 
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F IGURE 12 

Recall that pL is obtained by L by reversing all its arrows. Unfortunately, 
P(pL) = P(L), for changing L to pL leaves the signs of all its crossings unchanged. 
Thus any calculation for P(L) induces exactly the same calculation for P(pL). (This 
means that for a knot, a link of one component, it is not really necessary to specify an 
orientation at all when thinking about the polynomial.) If, however, the directions of 
some, but not all, of the components of L are changed, then P(L) can change in a 
rather drastic way that is not well understood. Examples occur in some of the 
polynomials of two-component links listed in the table at the end of this article. 

A result concerning the behaviour of the polynomial under sums and 'distant' 
unions is as follows: 

PROPOSITION (i) P(L1 + L,) P(Ll)P(L2);2. = 

(ii) P(Ll U L,) = - ( t +  t-1)m-1P(L1)P(L2). 

In (i) L l  + L, denotes the sum (see FIGURE 5) of oriented links using any component 
of L, to add to any component of L,. As different choices may be made for these 
components, this leads easily to examples of distinct links having the same polynomial. 
For example, the two links in FIGURE 13 are distinct as tlieir individual components 
are different knots. However, by Proposition 2(i) they both have polynomial 

In (ii) L, UL2  denotes the union of L, and L, placed some distance apart from each 
other so that no part of L, crosses over or under part of L,. Proposition 2 is 
significant because it relates simple geometry to the product of polynomials. This uses 
the multiplicative structure of polynomials; P(L)  is not just an array of coefficients 
but is a polynomial that may be used to multiply another polynomial! The proposition 
is easy to prove from Theorem 1. 

FIGURE 13 

There is another way in which it is known that two oriented links will have the 
same polynomial. Deep in the geometric structure of link theory is the simple idea of 
decomposing a link using spheres that cut the link at four points. The dotted spbere of 
FIGURE14 is an example. If the inside of that sphere is rotated through angle m (about 
the polar axis) the second diagram results. Such an operation is called mutation. 
Mutation never changes the P-polynomial of a link though it can well change the link, 
as indeed it does in FIGURE 14. 
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FIGURE 1 4  

For a further example consider a pretzel knot as shown in FIGURE 15. The ith circle 
contains a twist of ci crossings as indicated, each ci being odd (to side-step any 
orientation difficulties). Mutation, with respect to the indicated ellipse, interchanges 
c, and c,. As any permutation is the result of a sequence of such adjacent inter- 
changes, the P-polynomial of the pretzel knot is independent of the ordering of the 
ti's; in general the knot does change if that ordering changes. 

FIGURE 15 

So far nothing has been said about a proof for Theorem 1.The proof in [13] consists 
of defining the polynomial with a lengthy argument of induction on the number of 
crossings of a presentation, showing that however a calculation (like those already 
discussed) is made the same polynomial results, and checking invariance under the 
Reidemeister moves. It is thus entirely combinatoric, but the induction argument 
needs delicate handling. Although other proofs differ in style and emphasis they all 
seem to use essentially the same combinatorics. 

93. The Jones Polynomial 

Whereas the proof that P(L) exists is a little arduous, an almost trivial proof of the 
existence of the polynomial of Jones has been found by L. H. KaufFman [I l l .  This 
proof, which must, in recent years, be one of the most remarkable discoveries of 
readily accessible mathematics, is outlined below. 

The original polynomial of V. F. R. Jones associated with an oriented link L is 
denoted V(L). It is a Laurent polynomial in the variable t1I2,that being simply a 
symbol whose square is the symbol t. It satisfies 
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where L,, L - , and Lo are oriented links related as before. Thus V(L) is obtained 
from P (L)  by the substitution 

(t,m ) = (it-', i(t-I/2 - t11211, 
where i 2  = - 1. As mentioned before, P(L)  was conceived as a generalisation of 
V(L). 

Begin all over again by considering projections (pictures) of unoriented links. For 
each such projection L define a Laurent polynomial (L)  in one variable A by the 
following three rules that will shortly be explained: 

This (L)  is called the bracket polynomial of L. Rule (a) states that 1 is the 
polynomial of the particular projection of the unknot that has no crossing at all. In 
rule (b) L U Odeno te s  the projection that consists of L plus an extra component 
that contains no crossing. Rule (c) refers to three projections exactly the same, except 
near one point where they are as shown. The first projection of this triple shows a 
crossing, and in the other two that crossing has been destroyed. It should be noted 
that, given the picture of the crossing, one can distinguish between the two other 
pictures using the orientation of space: If, when moving along the underpass towards 
the crossing one swings to the right, up on to the overpass, one creates the picture of 
the link whose polynomial is multiplied by A in rule (c). No arrows are required for 
that. A simple example involving the use of all three rules is as follows: 

Here when calculating (L) there are no problems about making judicious choices of 
crossings to switch in order to maneuver towards an unknotted situation (as there 
were with the P-polynomial). Each use of rule (c) reduces the number of crossings in 
the projections until there are no crossings at all; then rules (b) and (a) finish the job of 
calculation. It is evident that the choice of the order in which the crossings are 
attacked is irrelevant, so that these rules do indeed define unambiguously a polynomial 
for each unoriented link projection. What remains to be done is to see if (L)  is 
unchanged by the Reidemeister moves I, I1 and I11 of $1;if it is, then it is an invariant 
of real links in R 3: 

MoveI. (%/)=A( e0 ) + A - ' ( v )  
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(,\1)= -Ap3(>) similarly. 

Thus the bracket polynomial fails to be invariant under Move I, and that is an 
exceedingly important observation. 

wMove 11. ( BC)=A( A ) + ~ - - l ( l \ j )  
% \ 

(\,+),= 

Hence the bracket polynomial is invariant under Move 11. 

Move 111. (~7%)0 = A ( / X \ )  + A I ( / ) ~  ) , by  rule (c). 

A u)  + A 1 ( \ )  c),by ~ o v e 1 1 ,  twice, 
Y Y 

by rule (c). 

Hence there is also invariance under Move 111. 
Now give L an orientation. Let w(L), the writhe of L, be the algebraic sum of the 

crossings of L, counting + 1for a positive crossing, and - 1for a negative crossing 
(for example, w(1eft-hand trefoil) = - 3). Move I adds or subtracts one to w(L), SO 

w(L) is certainly not invariant under that move, but it is (clearly) invariant under 
Moves I1 and 111. Thus any combination of w(L) and (L)  will be invariant under 
Moves I1 and 111, and their non-invariant behaviours under Move I cancel in the 
expression 

The above is a complete proof that X(L) is a well defined invariant of oriented links. 
For projections related in the usual way, rule (c) gives 

Thus 

Suppose that orientations can be chosen for these last three projections so that the 
arrows point approximately upwards (c.f. FIGURE7); call them L,, L- and Lo. Then 
w(L +)- = w(LO)+ 1.Hence, substitution gives 

Writing t - =A this becomes 


t l X ( L + )  - t x (L- )  + (t-I/2 - t1l2 )X(L,) = 0, 
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so that, under the substitution A = t - 1 / 4 ,X(L) is the original Jones polynomial V(L) 
for they satisfy the same defining formula. 

No analogously simple proof is known for the existence of the P-polynomial; in a 
proof, the difficulty is to show that different chains of calculations never give different 

FIGURE 16 

polynomials. In terms of distinguishing links the P-polynomial is more powerful than is 
the V-polynomial; two variables are better than one. For example, the knots in FIGURE 
16 have the same V-polynomial but different P-polynomials. 

There is a property of the Jones polynomial, a reversing result, that seems to have 
no analogue in terms of the P-polynomial. Suppose that k is one component of an 
oriented link L and that a new oriented link L* is formed from L by reversing just 
the orientation of k. Of course, (L) = (L*), for the bracket polynomial disregards all 
orientations. Thus V(L) and V(L*) are the same up to multiplication by some power 
of t (for each is (L)  multiplied by a power of A = t - 1 / 4 ) .The precise result is: 

PROPOSITION3. V(L*) = where 2X is the of the signs of the t - 3 h ~ ( ~ ) ,  sum 
crossings of k with the other components of L - k. 

This X is called the linking number of k and L - k. It is noteworthy that, though this 
result follows trivially from the approach of the bracket polynomial, it is by no means 
obvious when working from the (L,, L- ,Lowefinition of the V-polynomial. 

The simplicity of KaufFman's approach to the V-polynomial has led to a much better 
understanding of that polynomial and to a most pleasing application ([ll], [14], [18]) 
concerning alternating knots. A projection of a link is alternating if, when travelling 
along any part of the link, the crossings are encountered alternately over, under, over, 
under,. .. . In FIGURE 16 the four-crossing projection is alternating, the other is not 
alternating. The first thirty-one knots in the classical knot tables have alternating 
projections. A crossing in a link projection will be called removable if it is like the 
crossing in FIGURE 17; it could be removed by rotating the part of the link in the box 
labelled Y. 

FIGURE 17 

PROPOSITION4. (See [ll],  [14] and [18].) Let L be a connected oriented link 
projection of n crossings, then 

(i) n Spread V(L), where spread V(L) is the difference between the maximum 
and the minimum degrees o f t  that appear in V(L); 

(ii) n,=Spread V(L) if L is also alternuting and has no removable crossing. 
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It is easy to see, by inspection, if a knot projection is alternating and has no 
removable crossing. If it has these properties, and n crossings, the proposition implies 
that the knot can have no projection with fewer crossings. If there were a projection 
with n - 1crossings, then, by (i), n - 12 Spread V(L), which contradicts (ii). This 
solves a very old problem in knot theory; it has always been suspected that an 
alternating projection was the simplest available. 

For the record, this section should include mention of the Alexander polynomial 
A(L) of an oriented link L. Like the Jones polynomial it is a Lament polynomial in 
t1l2, it can be defined in a similar way by A(unknot) = 1,and 

Thus A(L) is obtained from P(L) by a substitution for the variables (though it was 
the similarity between this formula and that defining V(L) that lead to the discovery 
of the P-polynomial). The Alexander polynomial has been known and developed for 
about sixty years [I]. It is discussed in the text books of knot theory, usually being 
defined in terms of the determinant of a certain matrix (though see [6]). The value of 
A(L) when t = - 1is called the determinant of the link,and this integer was one of 
the first link invariants to be studied. Although the Alexander polynomial is quite good 
at distinguishing knots, there do exist knots that it cannot distinguish from the unknot; 
an example is the pretzel knot (see FIGURE 15) for which (cl, c,, c,) = ( - 3,5,7); for 
this the Jones polynomial is certainly non-trivial. The Alexander polynomial is fairly 
well understood in terms of the machinery of algebraic topology (homology groups, 
fundamental groups, covering spaces, etc.). The same cannot be said for the Jones 
polynomial and its generalizations. Is there a knot K, other than the unknot, for which 
V(K) = l ?  The answer to this is not known. If there is no such K then the Jones 
polynomial is the long sought elementary method of determining knottedness. There 
is no reason to suppose that it is so powerful an invariant, but computer searches have 
revealed no example of such a K, neither has understanding given any clue to finding 
a method by which such a K might be constructed. 

94. The Semioriented Polynomial 

Although it may seem that the preceding sections contain many polynomials, only the 
P-polynomial and some specialisations of it occur. There has been discovered, how- 
ever, another polynomial, the F-polynomial, that is similar in concept to the P-poly- 
nomial though the two are quite distinct. The way to define this F-polynomial is rather 
like the way in which V(L) was derived from (L). 

Firstly, for a projection L of an unoriented link, define a Lament polynomial A(L) 
in two variables a and x by the rules 

(b) = aA(L), = aplA(L), and A(L)A ( I)A (I) 
does not change when L is changed by a Reidemeister move of type I1 or type 111; 

where L,, L , Lo and L, are projections of unoriented links that are exactly the 
same except near a point where they are as shown in FIGURE18. 
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L+ L _ Lo L, 

FIGURE 'I8 

Notes. (a) This means that A is 1for the projection of just one component which 
has no crossing. 

(b) If a positive kink '4 is removed, the A-polynomial is multiplied by a 

(or by a - '  for a negative kink ). Thus the A-polynomial is not invariant under 
Reidemeister Move I. 

(c) In the absence of orientations it is not clear which picture in FIGURE 18 
should be called L +  and which L- , nor which is Lo and which L,. Those 
ambiguities are irrelevant in the light of the symmetry of the formula of Rule (c). 

It should be clear that the methods of calculation developed for the P-polynomial 
will work equally well in this new situation. The new situation is easier in that 
orientations do not (yet) appear, but more troublesome in that Rule (c) uses four 
pictures instead of three. As an excercise check that the A-polynomial of the 
two-component link projection with no crossing is ( (ap1 + a)xpl  - 1) while that of 
the usual projection of the left-hand trefoil knot is 

A proof that, for a given projection, different schemes of calculation always give the 
same polynomial requires a more complicated version of the inductive method 
mentioned at the end of 52 for the P-polynomial. 

The A-polynomial is, as stated, invariant under the second and third of Reidemeis- 
ter's moves. Its failure to be invariant under move I can easily be corrected (as was 
done for (L)) if L is now oriented. As before let w(L) be the sum of the signs of the 
crossings of the oriented link L. 

THEOREM2. For any oriented link L, let 

This F(L) is a well-defined inuariant of oriented links in 3-space. 
Tables of the P-polynomial and of this second twevariable polynomial have been 

produced by M. B. Thistlethwaite for the 12,965 knots in his tabulation of knot 
projections up to thirteen crossings. He works, of course, with a computer, that being 
all the more desirable for the F-polynomial; the occurrence of four rather than three 
diagrams in the defining formula does make calculations for F much more arduous 
than for P. The F-polynomials contain very many more terms than do the P-polynomi- 
als; for example for either knot in FIGURE 14 the P-polynomial has 14 terms, the 
F-polynomial has 45 terms. A few more examples appear in the tables at the end of 
this paper. The greater number of terms seems to mean, in practice, that two knots 
are more likely to be distinguished by F than by P. 

The F-polynomial has a right to be called 'semioriented' because, although L must 
be oriented to define F(L), changing the orientation only changes F(L) by multipli- 
cation by a power of a .  The relevant result is: 

PROPOSITION a5. Suppose L* is obtained frm L by reversing the orientation of 
component k, then F(L*) = u~'F(L), where X is the linking number of k with the 
other components of L - k. 
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Compare this with Proposition 3; the proof here is much the same. 
An interesting specialisation of F(L) is obtained by the substitution a = 1. The 

resultant Laurent polynomial Q(L), in the one variable x, is called the absolute 
polynomial. This substitution makes all the subtleties of the above definition disap- 
pear, no orientations of any sort are required (hence the name 'absolute') and one can 
work entirely with links in R rather than projections in the plane. The Q-polynomial 
is simply defined by Q(unknot) = 1, and 

Chronologically this polynomial was discovered by Brandt, Lickorish, and Millett [4] 
and Ho [8] as an extension of the ideas of the P-polynomial, and KaufFman [lo] 
explained how to insert the second variable ' a '  to create the F-polynomial. The fact 
that the Q-polynomial uses no arrows, and Q(L) = Q(L), makes this something of a 
recommended polynomial for beginners. Unfortunately the proofs that the Q and F 
polynomials are unambiguously defined are of almost the same form and complexity. 
In FIGURE19 are examples that show that the P and F polynomials are independent 
in the sense that neither is hidden within the other, to be revealed by some subtle 
change of the variables. 

88 1°,29 

These have the same P but different Q (and F) polynomials. 

11255 11257 

These have the same F but different A (and P )  polynomials. 

FIGURE 19 

As might be expected, some basic properties of the F-polynomial are similar to 
those of the P-polynomial. This is summarized in the next result; it uses some of the 
notations from $2. 

PROPOSITION6. (i) F (L)  = F(Z), where ii = a - ' and ? = x ;  
(ii) F(Ll + L,) = F(Ll)F(L,); 

(iii) F(Ll  U L,) = ((ap1+ a)x-' - 1)F(Ll)F(L2); 
(iv) F is unchanged by mutation. 



18 MATHEMATICS M A G A Z I N E  

A result that came as something of a surprise [12] was that both the P-polynomial 
and the F-polynomial contain the original polynomial of Jones, the V-polynomial. The 
result, which now has an easy proof, is: 

PROPOSITION7. For any oriented link L, the substitution 

( a ,  x)  = ( - t-3/4,(t-1/4 + t1/4)) 

reduces F ( L )  to V(L). 

Proof: Adding together the two equations (*) from 53 gives 


(%)+ (S)( A 
= + (X)). 
Thus (L )  satisfies exactly the same defining equations as A(L) when x = (A +A-') 
and a = -A3 (the latter arising from comparison of the effects of the first Reidemeis- 
ter move on the two polynomials). Then just recall that it is the substitution A = t-'I4 
that produces the Jones polynomial. 

55. Calculations, Problems and Tables 

Calculations of any of the polynomials mentioned in previous sections can be 
performed 'by hand' for links with few crossings or for those with some simple 
pattern. Sometimes the linear nature of the formulae that define these polynomials can 
be exploited in a most pleasing way. That idea can be illustrated using the Q-poly- 
nomial to avoid orientation complications. Suppose that a link T,, contains as part of it 
the ncrossing twist as shown in FIGURE20 (where by convention n = co is also 
permitted, as illustrated); if n is negative the twist goes the other way. 

T" Tm 

FIGURE 20 

Focussing on one of these crossings produces a quadruple of links L,, L- , Lo and 
L, (as in the defining formula for the Q-polynomial), namely, T,,, T,,-,, Tn-, and T,. 
The defining formula gives 

Q(Tn) + Q(Tn-2) =x(Q(Tn-l) + Q(Tco)). 

Thus 

where M is the matrix 
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As an exercise use this idea to calculate, in terms of the matrix M, the Q-polynomial of 
the link of FIGURE 21, where the twists have m and n crossings respectively. 

In the following exercises L is an oriented link with c(L) components. The proofs 
are all performed using, in the relevant defining formulae, induction on the number of 
crossings in a projection. 

Exercises 
(i) P(L) = 1when m = - (L+ /-I). 

(ii) In P(L)  the least power of m is ml-c(L). 
(iii) F(L)  = (- 2)c(L)-1 when ( a ,  x) = (1, - 2). 
(iv) F(L)  = (- when (a ,  x) = ( i ,x), x f 0. 
(v) V(L) = A(L) when t = - 1. 

(vi) If c(L) = 1, F(L) = P(L) when x = 0 = m, and a = L. 

Unanswered questions abound. Here are some of them. 

Questions. (1) Can the new polynomials be defined without reference to diagrams 
in the plane? 

(2) Can the P and F polynomials be defined in as simple a way as the 
bracket polynomial? 

(3 )Can any of the new polynomials for a link be calculated in one step 
(e.g., by means of a determinant) without working out many polynomials of simpler 
links? 

(4) Is there some simple characterisation of what polynomials can arise 
as the P or F or V or Q polynomial of some link? 

(5) Is there a nontrivial link of c components with the same polynomial 
(in the P,  V, F,  or Q sense) as the trivial unlink of c components? 

(6) Does any of the new polynomials give information about the number 
of crossing switches needed to undo a knot (this is called its unknotting number)? 

(7) Does there exist some grand master polynomial in which particular 
substitutions produce both P and F? 

(8) Is there a "coloured" theory for P or F? This would be a theory that 
had more variables and which could distinguish, for example, a red trefoil linked with 
a blue unknot from a blue trefoil linked with a red unknot. There is such a variant of 
the Alexander polynomial. 

(9) Are there polynomials other than P and F that can be defined along 
the same lines as they are defined? Several attempts have been made but all have 
turned out to be subtle variants of the original two polynomials. 

T ~ L E S .Below are given tables of the P and F polynomials for a few knots and 
links of low numbers of crossings to give a feeling for what is involved. 
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Four Mathematical Cleri hews 

S T E V E N  C U S H l N G  
Stonehill College 

North Easton, M A  02357 

1. Pythagoras 3. Wily Fermat propounded, 
Did stagger us "Many will be confounded 
And our reason encumber At the thought that my theorem 
With irrational number. Is really quite near'em." 

2. Kurt Godel 4. Said Alfred Tarski: 
Created a hurdle "Talk of 'truth' is a farce. Key 
For the truths of a system: To getting it right 
You just can't list'em! Is to know 'Snow is white.'" 


