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An Investigation of Equilateral Knot Spaces and Ideal
Physical Knot Configurations

Kenneth C. Millett

ABSTRACT. Spaces of polygonal knots, subject to specified constraints such as
the number of nondegenerate edges or the requirement of having fixed edge
lengths, provide the context within which it is appropriate to study configura-
tions which are ideal with respect to a variety of natural physically motivated
constraints. Even for polygonal knots with relatively few vertices, the high
dimensionality and complexity of the knot space structure makes analytical
investigations impractical. In this note, we will discuss the methods and the
results of a Monte Carlo investigation of several fundamental approaches to
defining an ideal polygonal knot configuration. The analysis takes place in the
context of polygons with a small number of edges.

1. Introduction

One goal of this note is the exploration of the global structure of equilateral
knot space from the perspective of a fundamental spatial quantity, the diameter of
the knot. It 1s used to separate knot space into bands bordered by the strata of
configurations with equal diameter. Each of these bands consists of some fraction of
knot space. The variation of this proportion as a function of the diameter captures
a critical facet of the geometric structure of knot space. Each band also supports
a specific collection of polygonal knot types at proportions whose variation is also
of interest. Each of these varying quantities provides a measure of the complexity
profile of knot space as a function of diameter. The data also give estimates of
the knot space averages of the diameter of the knot for each topological knot type.
These will be estimated for small numbers of edges (the tight knotting regime,
that is, near the number of edges for which one is first able to construct the knot
type). They are compared to other quantities that reflect the spatial characteristics
of polygonal knot configurations achieving optimal values of ropelength or other
spatial measures.
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2. Equilateral Polygonal Knots and Knot Spaces

A knot is a placement of a closed curve in three dimensional space that is regu-
lar, e.g. smooth or piecewise linear, and which does not intersect itself. The collec-
tion of all such knots which can be deformed into each other, avoiding any singular
configuration or pathological behavior, determines a knot type whose members are
representatives of this type. Among all such representatives there are some which
may be considered as better representatives, according to an established criterion,
than others in that their properties best reflect those of the aggregate. In this note,
the term ”ideal knot” will mean a configuration that is optimal with respect to a
spatial property among all equivalent configurations. There are, therefore, different
ideal knots according to which spatial property is optimized. The search for such
”canonical” or ”ideal” conformations and the determination of the extent to which
they do characterize the collective properties continues to be an important research
goal of physical knot theory and in its applications to the natural sciences. For
example, the average crossing number and average writhe of thickness optimized
configurations correlate well with the averages of other physical characteristics over
large random collections of the corresponding knot conformations [16, 17, 18, 38].
They also correlate well with the observed gel speeds of the corresponding DNA
knots.

The knots employed here are realized as equilateral (we require that all edges
have unit length) polygons in 3-space. Because the simulations are all approxi-
mate, one 1s actually operating in the space of polygonal knots near the subspace
of equilateral knots. If the data provide a knot that is sufficiently close to being
equilateral and the minimum of the distances between non adjacent edges is suf-
ficiently large, then there is an equilateral knot of the same polygonal knot type
[23]. In order to make the calculations easier to accomplish, one selects a starting
vertex (we could require it to be (0,0,0)) and an adjacent vertex, thereby estab-
lishing an order on the vertices. These choices allow one to realize the space of
such equilateral polygonal knots with n edges, denoted by Fqu(n), as a subset of
Euclidean space of dimension three times the number of edges. The closure is a
compact subspace whose added points define singular ”knot” conformations. The
topology and geometry of the relatively open subset of non singular conformations
defines the structure of knot space. For example, if there 1s a path in knot space
connecting one conformation to another, we say that the two conformations are
equivalent and represent the same equilateral knot type. The problems of whether
or not a given topological knot type can be realized by an equilateral polygon or
whether or not two equilateral polygons are equivalent are examples of questions
in domain of geometric knot theory. In the first question, one seeks the equilateral
edge number of the knot, [1, 4, 3, 22, 30], and in the second, one seeks quantities
that can distinguish between distinct geometric knot types representing the same
topological knot type, [2, 22, 27].

3. Physical or Spatial Characteristics of Equilateral Polygonal Knots

One physical characteristic of a knot conformation is its (normalized) diame-
ter. The diameter of a knot configuration K, §(K), is defined to be the maximum
of the distances between pairs of vertices of K divided by the arc length of the knot.
If K designates a geometrical knot type in Equ(n), let d(K) denote the greatest
lower bound of §(K) over all K representing the knot type K. Similarly, let D(K)
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denote the least upper bound of d(K) over all K representing the knot type K.
Another interesting physical characteristic of the conformation is the radius of
gyration, p(K), the average distance of the vertices from the average position of
the vertices divided by the length of the equilateral knot. Both quantities provide
different measures of the spatial extent of the knot. The radius of gyration has
been the subject of research concerning the conjecture that the topological knot
type of the configuration influences the scaling, [6, 7, 8, 14, 16]. While knots of
small diameter and or small radius of gyration are quite compact, the conforma-
tion’s largest diameter and radius of gyration appear to be quite different. The
standard regular planar n edge polygons have the largest radius of gyration while,
for example, the least upper bound of the diameter is approximately n/2 and occurs
for polygons of even numbers of edges at the singular conformation with the edges
maximally stretched out along a line. Another physical characteristic is the mini-
mal distance between non adjacent edges of the knot, g(K). This is a measure of
the robustness of the conformation, especially when the number of edges 1s close
to the edge number of the knot type. It is one measure of the extent to which one
may move vertices in knot space and still preserve the polygonal knot type. Their
averages over all of knot space or over a specific region of knot space such as a com-
ponent consisting of knots of the same topological type are examples of proposed
ideal characteristics of knots. They will be compared to similar characteristics of
ideal knot configurations.

One approach to the determination of the spatial characteristics of a knot type
is to first identify an ideal knot conformation for a given equilateral polygonal
knot type. For example, one may choose to optimize the polygonal thickness or,
equivalently, the polygonal ropelength within the component defining the polygonal
knot, [29, 31, 32]. There are several interesting definitions for this notion of
ropelength of smooth knots, [5, 13, 9, 21, 40]. T believe that the conceptually
simplest analog, for a given equilateral knot, is to keep the length of the knot fixed
(indeed, fix the lengths of each of the edges) and expand a tube surrounding the knot
(defined as the union of balls centered at each vertex and cylinders centered on each
edge, all of the same radius) until it is no longer possible to do so without creating
a singular tube, even by changing to an equivalent knot conformation of the same
polygonal knot type. The optimized quantity is L/ D, the ratio of the length of the
knot and the diameter of the maximal tube, is called the ropelength. Its reciprocal
is called the thickness of the knot. This is comparable to the definition employed
by Stasiak and others. In work with Eric Rawdon [23], we used an approach that
Rawdon, [29] developed as an analog of the smooth case. Let DCSD denote the
doubly-critical self-distance of the knot and let MinRad denote minimum of the
radii of curvature (defined as the edge length divided by twice the tangent of half
the exterior angle at a vertex) at the vertices of the knot. The injectivity radius of
an equilateral polygonal knot is defined as the minimum of 1/2* DCSD of the knot
and MinRad. In this paper, the thickness is defined to be the injectivity radius
divided by the total length of the knot and the ropelength is defined to be the
reciprocal of the thickness. The ropelength and the thickness are two among many
physical characteristics of a polygonal knot.
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4. Monte Carlo Investigations

The population studied in this research was generated by a Monte Carlo sam-
pling of equilateral polygonal knot spaces of knot conformations with 8, 16, and 32
edges. The sampling is accomplished by a random rotation about an axis deter-
mined by a pair of randomly selected pair of vertices. The resulting conformations
are "almost equilateral,” and as described in Millett and Rawdon [23], determine
a geometrically equivalent equilateral knot. For each of the selected knot confor-
mations, the diameter and radius of gyration is recorded. The knot presentation is
determined and is used to compute the HOMFLY knot polynomial, [12, 19, 20]
invariant using the Ewing-Millett program, [10, 11]. This program accepts knot
presentations of up to 240 crossings, and for a generic knot conformation, has proved
to be an effective tool to estimate the number and frequency of topological knot
types. These data provide estimates of the variation of the number of distinct knot
types as a function of diameter as well as the relative proportion of those knot types
that do occur.

In the work with Rawdon, we determined estimates for the ropelength opti-
mized knot conformations for many equilateral polygons with 8, 16, and 32 edges.
These values are reached by the use of a random walk with a simulated annealing
effect. The values are local minima, and we show, are quite close to actual global
minima. The initial conformations for the 8 and 16 edge knots used in Millett-
Rawdon were created by Rob Scharein using KnotPlot [35]. The 32 edge knots
were gotten by subdivision of the 16 edge knots. All knots were checked to insure
that they satisfied the robustness requirement necessary to insure that an equi-
lateral knot of this geometric type existed and was closely approximated by the
data. Once a robust equilateral example of a topological knot type was created,
the simulated annealing process was applied to search for ropelength optimized con-
formations as discussed in Millett-Rawdon [23]. More data concerning the spatial
characteristics of ropelength (and energy) optimized knots can be found there.

5. Analysis of Numerical Data
A portion of the data from the Monte Carlo explorations of equilateral knot

spaces with 8, 16 and 32 edges is given in Table 1. The knots are denoted using the

TABLE 1. A Comparison of Average Diameter and Diameters of
Energy and Ropelength Optimized 8, 16, and 32 Edge Equilateral

Knots

Knot 8 Ave | 8 En | 8 RL | 16 Ave | 16 En | 16 RL | 32 Ave | 32 En | 32 RL

All .17981 .11436 .15307

01 17993 .11453 .15433
31 17021 | .2212 | .2037 | .10926 .1926 .1855 .13920 L1883 .1841
41 16129 | L1945 | L1985 | .10717 | .1630 L1512 .13314 1611 .1451
51 .13975 | .1607 | .1507 | .10258 1743 .1620 .13055 .1639 .1659
5o 14865 | .1518 | .1507 | .10522 .1692 .1740 .12834 1684 .1609
61 NA .1562 | .1510 | .10785 .1522 .1434 .13008 1587 .1488
62 NA 1485 | .1470 | .10629 L1888 .1800 .12549 .1563 .1390
63 NA L1392 | L1391 | .10419 1675 .1452 .12698 1487 .1364
31#31 NA 1276 | 1275 | 11017 | .1874 1714 .12952 .1944 1758
I#FE-—3 NA .1250 | .1250 | .10962 1674 .1470 .13139 .1958 1752
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FIGURE 1. Optimized Energy and Ropelength versus Average Diameter

Alander-Briggs notation 01, 31, 41, etc. standard representations of which are found
in the tables of knot [33]. Note that 3;#3; and 31# — 31 denote the conncected
sums of the trefoil, 3;, or its mirror reflecton,—3;.The average diameter over the
entire space, Ave, and the diameters of the energy and ropelength optimized knots,
En and RL respectively, are given as a function of the topological knot type. In
Figure 1, we show, graphically, the optimized energy and ropelengths as a function
of the average diameter of the knot. This graph illustrates the expectation that the
smaller the diameter of the knot, the larger the energy and ropelength but shows,
in addition, that this dependence holds for the knot space average of diameters in
the knot type.
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FiGURE 2. Optimized Energy versus Diameter
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FiGURE 3. Optimized Ropelength versus Diameter

While this relationship appears to be quite weak, it is much stronger than the
relationship between the energy or ropelength and the diameter of the optimized
configuration. The graph of these data are shown in Figures 2 and 3.

The proportion of knot space as a function of the diameter and the number of
distinct knot types, as measured by distinct HOMFLY polynomials, capture two
fundamental featuress of the structure of knot space. These data are presented for
the spaces of equilateral knots with 8, 16, and 32 edges. In order to better indicate
the evolution of the shape of knot space as a function of the number of edges, we
continue to employ a normalization of the diameter given by dividing the diameter
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FIGURE 4. Equ(8) Population Distribution
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FIGURE 5. Distinct knot types in Fqu(8) versus normalized diameter

by the length of the knot. Thus, the maximum normalized diameter is always 0.5.
The minimum normalized diameter is 1/n, where n is the number of edges.

The data represented in Figures 4 and 5, and those in analogous graphs later
in this paper, was generated by taking an equal subinterval partition of the range
of diameters, and thereby, partitioning knot space into the corresponding family
of regions. The Monte Carlo knot space data, collected over the entire space, was
then partitioned according to the region of knot space, thereby giving the knot
space proportion and knot diversity data determining the corresponding graphs.
This method allows one to more easily generate and evaluate data that accurately
reflect the nature and structure of these slices of knot space as parameterized by
the knot diameter.

The relationship between the diameter and the number of distinct knot types
illustrated by these graphs suggests an important feature of the structure of knot
space. The preponderance of knot space is found in the ”middle range of diameters”
with the regions of extreme diameters being much more sparsely populated. Figure
4 gives a quantitative expression of this functional relationship. In general, the
larger the diameter of the knot, the simpler the structure, as illustrated in Figure
5. The precise nature of this property changes, however, with the number of edges.

For each geometrical knot type K in Equ(n), there will be a least upper bound
of the knot type, denoted by B(K). Except in the simple case of the Proposition
1, there are no exact calculations of B(K) known at this time.

THEOREM 5.1. The least upper bound on the diameter of a non-trivial knot in

Equ(4n + 2) is equal to 44;12//’;2 = B(3).

ProoF. In this proof, we use knot models which are equilateral (4n + 2)-
gons having unit length edges and rescale the calculated value to account for the
(4n + 2) length of the knot. The limiting value is realized by a sequence of trefoil
knots converging to the singular set represented by union of two isosceles triangles
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FIGURE 6. Singular Hexagonal Trefoil Position

along their base, of unit length, and whose other edges have length equal to "n,”
as illustrated in Figure 6. Twice the altitude of the triangle gives the least upper
bound. A configuration with a diameter greater than this value can have only two
locally extreme ”height” values along the direction parallel to the line connecting
the vertices giving the diameter. As a consequence, any such configuration is a
geometrically trivial knot. O

As noted in the proof of the proposition, the least upper bound is realized by
the least upper bound of the normalized diameter of the trefoil knot. For n = 6, this
value is .28867 and the best Monte Carlo generated values observed do approach
this value. The limit corresponds to the singular position shown in Figure 6. A
close but non-singular configuration with normalized diameter .283338 is shown in
Figure 7. Its vertex coordinates are:

{{0.,0.,0.},{0.486131,0.015706, 0.873745},
{—0.513209, —0.0166517,0.857231},{0.0277697,0.000808531,0.0163762},
{-0.972096,0.,0.},{—0.486048, —0.0167832,0.873771} }.
It has curvature of 12.6945, quite close to 4w ~ 12.566, the minimal value.
The largest observed diameter in the Monte Carlo study of Equ(6) is .251377,
about 87.1% of the least upper bound. For Equ(8), the largest observed value
is .332723. For Fqu(10), this is .329364159, 79.88% of the theoretical value of

41231056. This reflects the extremely small probability of a randomly selected
equilateral octagonal knot to have this character.

FIGURE 7. Hexagonal Trefoil with Large Diameter
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FIGURE 8. Trefoil of Diameter .16697812333

For the case of even numbers of vertices, for example ”2n,” the greatest lower
bound over all configurations in Equ(2n) is 1/2n, corresponding to the singular
locus of a single edge to which all edges converge. Let b(K) denote the greatest
lower bound of the diameter of all configurations in Fq(n) equivalent to "K”.

THEOREM 5.2. In Equ(2n), b(31) = 1/2n, forn > 3.

ProoF. In Fqu(6), using the model in which the individual edge length is
1, there is a sequence of trefoil knots converging to the single edge singular locus.
Vertices 1, 3, and 5 converge to {0, 0,0} and vertices 2, 4, and 6 converge to {1,0,0}.
One approximation is the hexagonal trefoil example with vertices:

{{0,0,0},{1.0,0, 0},
{0.00299957,0.07739435, —0.00049926 },
{0.96018567, —0.21105152, —0.02486597 },
{0.04083793,0.1273103549, 0.17590997},
{0.99690190, —0.02499956, —0.07457634} }
shown in Figure 8. The diameter of this trefoil configuration is .16697812333. O

In the case of octagons, the edge connecting {0,0,0} to {1,0,0} is replaced by
a small perturbation of three edges making sure that this connection that does not
change the knot type. What occurs for other knot types? Monte Carlo evidence
supports the conjecture that, taking into consideration the statistical implications
of small sample size at extremely small diameters, the maximum number of dis-
tinct HOMFLY polynomials occurs for the smallest possible diameter. Based on
observations with mechanical models and this Monte Carlo evidence, the following
conjecture seems appropriate:

Conjecture 3: For each knot type in Equ(2n), K, b(K) = 1/2n.

In Figure 10, the global variation of the complexity of knotting is more clearly
suggested by the data. The collection of knots of small diameter has a greater
diversity of knotting than those of larger diameter. Note that, for diameter near
0.5, the bridge number of the knot implies that only unknots can occur. This
provides a limiting factor on the complexity of the knotting that is possible. The
variation of complexity for intermediate values of diameter is unknown but these
data give a hint of the nature of the function.

The distribution of the knot population and the dependence of the proportion
of knot space for the unknot, trefoil and figure 8 knot as functions of normalized
diameter are shown in Figures 11, 12, 13, and 14 for 32 edge knots. The average
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normalized diameter for all knots and for several knot types are show in Figure
15. These data give further evidence of the domination of the unknot in knot
space as well as the utility of the average normalized diameter as a measure of knot

complexity.
The radius of gyration is an important measure of the spatial character of
an equilateral polygonal knot that has been widely employed in applications of

physical knot theory. In Figure 16 we show the relationship between the average
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diameter and the average radius of gyration of those knots appearing in the study
of Equ(32). These data imply that the diameter and radius of gyration measure
strongly correlated physical features of the average knot of each topological type.

6. Conclusions

The data developed in this project give a quantitative estimate of the degree
to which the random knot in Equ(n) is concentrated in a central portion of the
knot space. About 80% of Fqu(32) lies between the two inflection points in the
distribution shown in Figure 11. The maximum is at diameter 0.148 compared to
the knot space average of diameter 0.154. The data also identify the transition from
tight knotted configurations, those with small diameter, to those that of greater
extent, that is, those which are elongated or having larger diameter. We have
seen that the elongated knots are topologically simpler and, we note, may contain
connected sums. They are also have a very small probability of occurence. While
the compact knots are far more complex, on the average, and can be conjectured
to contain exemplars for every topological knot type occurring in the knot space,
they too have a very small probability of occurrence. The data show the existence
of a phase transition between the compact and extended knot regimes, occurring at
the point at which the concavity changes in the graph of the number of HOMFLY
polynomials as a function of the diameter, about 0.148 for Fqu(32).

We have proved that the ”longest knot” occurring in Equ(2k) is a trefoil and
have identified the singular limiting configuration. Similarly, we have shown the
existence of a sequence of trefoil knots whose diameter is the minimum possible and
have identified the singular limiting configuration. The region of compact knotting
is still quite mysterious. Further investigation is necessary to put its structure in
evidence.

In Figure 15, we show how the knot space average normalized diameter of a
knot type provides a measure of knot complexity. This measure appears to be very
similar to those provided by orderings imposed by means of other knot properties
such as optimal energy, optimal ropelength, etc.

In Figures 1 and 16, we have taken a look at the relationship between ideal con-
figurations, as determined by energy and ropelength, and compared their properties
to those of knot space average configurations of the same topological type. While
there is a general correspondence between the characteristics, it appears likely that
they are independent.

Finally, we have explored the relationship between diameter and radius of gy-
ration as measured by the data from Fqu(32). The data show that they are, in the
aggregate, measuring strongly related spatial characteristics of the configurations.
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