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Abstract

Closed macromolecular chains may form physically knotted conformations whose relative occurrence and spatial

measurements provide insight into their properties and the mechanisms acting upon them. Under the assumption of a

degree of structural homogeneity, equilateral spatial polygons are a productive context within which to create math-

ematical models of these knots and to study their mathematical and physical properties. The ensembles, or spaces, of

these knots are models of the settings within which the knots evolve in ways determined by a physical model. In this

paper we describe the mathematical foundation of such models as well as such spatial, geometric, statistical, and

physical properties of the configurations as mathematical energies, thickness and ropelength, average crossing number,

average writhe, and volumes and surfaces areas of standard bodies enclosing the knots. We present methods with which

the energy and ropelength are optimized within the families of spatially equivalent equilateral configurations. Nu-

merical results from our implementation of these methods are shown to illustrate connections between the physical

measurements and spatial characteristics of the optimized knot configurations. In addition, these data suggest po-

tentially new connections involving their spatial properties.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of this research is the exploration of spatial parameters, including ‘‘energy’’ and ‘‘ropelength’’,

by which polygonal and equilateral knots are evaluated in the search for optimal conformations or which
provide information about the spatial aspects of their situations. The optimal conformations are geo-

metrically equivalent polygons in which the relevant quantity has achieved an extreme or optimum value.
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Such conformations are commonly proposed as models for the most likely or average positions observed

for macromolecules arising in physics and molecular biology [24,25,57,59]. Their properties are thought to

be related to critical physical characteristics arising from simulations and from experiments, e.g., time-

averaged shapes of DNA molecules in solution, the speed of migration in gel electrophoresis of DNA knots,

and sedimentation coefficients of DNA. We will also consider properties of the knot spaces and their re-

lationship with several of the quantitative descriptors associated with the optimal configurations. We will

look at how they are related to the specific knot type as well as the specific optimizing quantity.

By a polygonal knot we will mean the spatial polygon determined by a specified finite number of points in
3-space that are connected to each other in a given cyclical fashion. Such knots, with the additional

specification of a distinguished vertex and an orientation, are naturally identified with points in a subset of

the Euclidean space of dimension three times the number of points. It is a proper subset since singularities

such as self-intersections of edges are not allowed. If the lengths of the segments connecting the successive

vertices of the polygon have unit length, the result is an equilateral knot. Such knots are constrained to a

subspace of dimension twice the number of vertices. Two conformations are equivalent if one can move

from one to the other by a path within the respective ‘‘knot space’’. The structure of these knot spaces

allows one to ask for the proportion of the space consisting of knots of a specific topological type. That is,
‘‘For a given specific number of randomly selected vertices, what is the probability the knot they determine

is of a specific topological type?’’ For a fixed number of vertices, this imposes a natural order on the to-

pological knot types determined by decreasing probability of occurrence.

Following a technical introduction to the fundamental concepts with which we will be concerned, we will

discuss the topology of the associated knot spaces. We will then present the results of computer experiments

seeking the optimization of both energy and ropelength of equilateral polygonal knots as well as the cal-

culation of such secondary quantities for these ‘‘optimal’’ configurations as the average crossing number

and average writhe. These secondary quantities are those thought to connect the natural instances of the
knot conformations to observed behavior.

We will also explore the degree to which optimal conformations are spatially similar. This discussion

raises an important point in connection with M€oobius energies, i.e., energies which are unchanged by

M€oobius transformations of space. Since the polygonal knot energy, EMDðKÞ, converges to half of the

M€oobius energy as the number of edges increases and the polygonal knot approaches a smooth knot, one

might ask the extent to which the polygonal energy of an equilateral knot is M€oobius invariant. The answer
is ‘‘not very much’’ as it appears to depend very crucially upon the number of edges and the geometry of the

conformation. As a result, we discover an unexpected degree of geometric rigidity in the structure of the
energy optimized conformations associated to an equilateral knot type with few edges. Thus, while in

simulations of optimization procedures, one can arrive at apparent local optima whose graphical repre-

sentations look very different, these visual differences are more reflective of the different perspectives on the

conformation and do not represent truly distinct spatial configurations. In our figures, the choice of knot

thickness was determined by the desire to provide a clear illustration of the phenomena in question. These

are not, in general, the thickness of the configuration. We will consider several fundamental ways in which

to associate characteristic quantities to the conformation that will facilitate comparison and which promise

to quantify the degree to which these conformations are different. One example is the dimensions of the
smallest rectangular box containing the conformation. Others include the surface area and volume of the

convex hull of the knot.

All of these quantities lie within the domain of physical knot theory. From this perspective, the goal is

the determination of ‘‘natural’’ quantitative spatial characteristics that provide a quantitative linear order

of knotting that strongly correlates with the observed physical behaviors, in terms of both order and rel-

ative magnitude of the observed quantities. Using the physical knot characteristics considered in this paper

we compare the degree to which they are consistent with experimental observations from the study of

DNA.
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2. Knot spaces

In this section we will briefly review some of the basic definitions and concepts so as to give a concrete

foundation to our later discussion. Fuller treatments of this topic can be found in papers of Calvo, Millett,

and Randell [4,6,7,33,34,45,46]. By a geometric or polygonal knot we mean an embedding in Euclidean 3-

dimensional space of an oriented regular polygon which is linear on its edges. Singular knots are those maps

which do not give embeddings of the polygon. The polygon has a specified number of vertices, one of which

has been selected to serve as a starting point or first vertex of the polygon. The identification of a second
vertex is equivalent to the determination of an orientation of the polygon. Each such embedding is de-

termined uniquely by the image of the associated vertices, starting at the first and proceeding in the di-

rection determined by the orientation. This choice of initial vertex and orientation, therefore, allows one to

uniquely associate to each embedding a point in a Euclidean space of dimension equal to three times the

number of vertices. By fixing the number of vertices, n, we determine an open subset of this Euclidean

space, GeoðnÞ, corresponding to these embeddings. The complement is a closed set of codimension one

corresponding to maps with self-intersections or other failures of the embedding property. If we require the

embeddings to be length-preserving, we define the subset of equilateral knots, EquðnÞ. This latter knot space
is a manifold of dimension equal to twice the number of vertices. The path components of GeoðnÞ or

EquðnÞ, i.e., the sets of those knots that can be connected to each other by paths or deformations within the

respective knot space, define the geometric or equilateral knot types. Thus, if two geometric knots lie in the

same component, we say that they are geometrically equivalent. Similarly, two equilateral knots are

equilaterally equivalent if they lie within the same component of EquðnÞ, Note that, in the case of equilateral

knots, we do not allow the length of the edges to change. While allowing the length of edges to change,

while still preserving the equality of the lengths, gives an equivalent theory on knotting, we have chosen to

require the edge lengths to be fixed as seems more appropriate in terms of applications to the natural
sciences. Recall that a classical theorem of Whitney [61] guarantees that there are only finitely many

geometric or equilateral knot types for each n.

In general, these knot types are finer than the topological knot type, even when one has removed the

specification of orientation and base vertex. Calvo [4,6] has shown that the first example of this phenomena

occurs with the heptagonal figure-8 knots. Topologically, the figure-8 knot is reversible, i.e., preserved under

change of orientation. But, for heptagons, there are two distinct classes of figure-8 knots interchanged by

reversing the orientation. Although, in this project, we are principally concerned with the topological type of

the knot, we will restrict ourselves to deformations within the various geometric knot types when considering
questions of optimization of spatial knot parameters. Therefore, it is important to realize that there may be

more than one equilateral knot type corresponding to a given topological knot type. Consequently, it is

possible that there are fundamentally different optimal geometric realizations of a topological knot type.

This is a potentially serious problem deriving from the difference between topological knotting and

geometric knotting. In the cases discovered by Calvo [4,6], the action of the dihedral group implies that

optimal configurations are equivalent, But, in general, we do not have such knowledge and it may well be

the case that different geometric knot components will have fundamentally distinct optimal configurations

for a specific optimizing quantity. As changes in orientation or base point can be accomplished by isom-
etries of the knot space, i.e., homeomorphisms or equivalences preserving the distance structure, this re-

striction to based oriented configurations does not result in any loss of generality. In addition, there are

locally optimal configurations having quite different parameters and spatial characteristics. As a conse-

quence, proposed optimal configurations are, in fact, conjectures due to the absence of sharp estimates of

the optimal parameter values.

For a fixed number of vertices, all planar embeddings of polygons determine equivalent knots, equiv-

alent to the standard regular polygon. This class is called the unknot or the trivial knot, independent of the

number of vertices. The first case of a non-trivial knot occurs with six edges. In Geoð6Þ and Equð6Þ, Calvo
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has shown that there are precisely five components or geometric knot types. Topologically, these corre-

spond to one component of unknots and two each of left-handed and right-handed trefoils, one of which is

shown in Fig. 1. Note that in GeoðnÞ, the lengths of the edges are free to change, while in EquðnÞ, the length
of each edge is fixed. Cantarella and Johnston [8] studied knotting in a subspace of GeoðnÞ where the edge
lengths are kept constant (and, potentially, not equal) throughout deformations. In this subspace, they

proved the existence of a topological unknot that could not be deformed to a planar unknot. This result

confirms that geometric knotting can be much different than topological knotting. In Geoð7Þ and Equð7Þ a
new topological knot type occurs, the Listing or figure-8 knot.

Calvo shows that there are exactly five components inGeoð7Þ, one each of unknots, right-handed and left-

handed trefoils, and two components of figure-8 knots, an example of which is shown in Fig. 1. These com-

ponents are preserved undermirror reflection, i.e., the geometric knots are achiral, but are not preserved under

change of orientation, i.e., the heptagonal figure-8 knot is not reversible. Since the topological figure-8 knot is

reversible, this identifies one difference between geometric knot theory and classical topological, piecewise

linear, or smooth knot theory. For Geoð8Þ, Calvo and Millett have shown [5] that the only topological knot

types that occur are, using the classical notation, 01; 31; 41; 51; 52; 61; 62; 63; 819; 820; 31#31, and

31#� 31. The latter knots are the connect sums of the trefoil with itself (the ‘‘granny’’ knot) andwith itsmirror
reflection (the ‘‘square’’ knot).

Using Metropolis Monte Carlo methods, Millett [5,35,34], has provided estimates of the topological

types of geometric and equilateral knots for larger numbers of edges by calculation of the HOMFLY

polynomials that are observed. These computational experiments have provided examples of nine edge

knots for which the polygonal number of a topological knot type, i.e., the minimal number of edges re-

quired to construct a geometric knot of a given topological knot type, is thereby determined.

In this paper we will focus on the equilateral knot spaces for 8, 16, and 32 edges. There are 12 topological

types for the polygonal octagonal knots, up to mirror image, giving 20 distinct HOMFLY polynomials.
While only 12 of the 20 polynomials have been observed in the Monte Carlo study of equilateral octagonal

knots, all but one of the topological knot types has been constructed as an equilateral knot. The exception,

at the time of this paper, is 819. We have not been able to construct an octagonal equilateral representative

of this topological knot type nor have we been able to show that such an example is impossible. Thus there

are eight polynomials of equilateral octagonal knots that have not yet been observed in the Monte Carlo

study, of which seven are known to represent actual configurations. For 16 edge equilateral knots, some 106

distinct HOMFLY polynomials have been observed, and for 32 edge equilateral knots, 484 distinct

polynomials have been observed. In contrast, for geometric knots, 201,736 and 327,433 distinct HOMFLY
polynomials have been observed, respectively. While the estimated rate of growth of equilateral knots is less

than that of geometric knots, both populations have an exponential growth. In a carefully studied 50 edge

Fig. 1. A hexagonal trefoil knot and a heptagonal figure-8 knot.

K.C. Millett, E.J. Rawdon / Journal of Computational Physics 186 (2003) 426–456 429



equilateral knot experiment, 2952 distinct HOMFLY polynomials were observed of the predicted total of

3472 distinct HOMFLY polynomials [5].

The population base for the computational study of equilateral knots, whose results are reported in this

paper, consist of all 102 topological knot types, prime and composite, through 9 crossings. While, as noted

above, only 11 of these have been constructed with 8 edges, all of these knots can be constructed with 16

edges. The 32 edge knots in this study are constructed by subdividing the 16 edge knots. In the 16 edge

Monte Carlo exploration, we observed topological knot types with more than 9 crossings, but did not

observe all of the 9 crossing knots that we were able to construct explicitly.
The topology and the geometry of knot space plays a critical role in understanding the conceptual basis

of this research. In the case of GeoðnÞ and EquðnÞ, we will use the structure induced from the Euclidean

spaces in which they naturally lie. Thus, GeoðnÞ is a 3n-dimensional open submanifold of 3n-dimensional

Euclidean space and EquðnÞ is the codimension n quadric subvariety of GeoðnÞ defined by the requirement

that all edges have unit length. Since the point ð1; 1; . . . ; 1Þ is a regular value of the function,

f : GeoðnÞ ! Rn that calculates the length of the individual edges (Corollary 1, [45]), EquðnÞ is a smooth 2n-
dimensional submanifold of GeoðnÞ.

It is convenient to consider the subspaces defined by requiring that the first vertex be at f0; 0; 0g, i.e., we
factor out the Euclidean translations. These spaces are denoted Geo0ðnÞ and Equ0ðnÞ, respectively. The
geometric knot types, i.e., the connected components, in GeoðnÞ and Geo0ðnÞ are invariant under ho-

motheties of 3-space. This shows that the structure of these spaces can be studied by considering their

intersection with the unit sphere or unit ball in 3n-space. EquðnÞ and Equ0ðnÞ are subsets of the smooth

sphere of knots whose total edge length is equal to one (of course some edges may be degenerate) and,

therefore, have compact closure in this sphere. These compactifications allow us to estimate the fraction of

the space consisting of knots of a specified topological knot type or, equivalently, the probability that a

randomly selected geometric knot will be of specific topological knot type.
The fact that EquðnÞ and Equ0ðnÞ are submanifolds of Euclidean space will play a significant role in the

application of numerical methods to their computer assisted exploration. A knot K is determined by its

vertex set, K ¼ fv0; . . . ; vn�1g. We denote the edges of K by eðKÞ ¼ fe0; . . . ; en�1g with ei denoting the edge

connecting vi to viþ1 and en�1 connecting vn�1 to v0. Let d denote the standard metric on R3. Extend this

metric to R3n by taking the maximum of its values on each of the n 3-dimensional subspaces, that is

dðfv0; . . . ; vn�1g; fw0; . . . ;wn�1gÞ ¼ max
06 i6 n�1

dðvi;wiÞ:

The induced metric on EquðnÞ and Equ0ðnÞ is denoted by dðK;K 0Þ where K ¼ fv0; . . . ; vn�1g and

K 0 ¼ fw0; . . . ;wn�1g. This metric will play an important role in the study of the structure of knot spaces.

Definition 1. For a knot, K, in GeoðnÞ, define lðKÞ to be the minimum of the minimum distances between

non-adjacent edges of K.

We note that lðKÞ is no larger than the length of the shortest edge of K.

Definition 2. Let TubeðK; rÞ to be the union of open balls centered at the vertices of K and of open cy-

lindrical tubes with the edges of K as axes, both of radius r.

Proposition 1. For any r < lðKÞ=2, Tube(K,r) is an embedded torus whose center curve is K.

Proof. The balls of radius r centered at the vertices are pairwise disjoint as each vertex belongs to a non-

adjacent edge. The union of the cylinders associated to an edge and the ball associated to the vertices of the

edge is a convex region that is, therefore, topologically a ball. Two such balls intersect only if they are

associated to adjacent edges. In this case, their intersection is a convex ball containing the ball of radius
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lðKÞ=2 centered at their common vertex. The proposition is proved by taking the union of these balls

following an increasing arc of edges in K. By induction, until the last edge is reached, at each stage one has

the union of a ball, with a convex ball associated with the next edge. The intersection is a convex ball. The

result is, therefore, a ball. In the case of adding the final edge, the intersection consists of two disjoint

convex balls. The resulting union is the required torus. �

Corollary 1. Every knot, K 0, with dðK;K 0Þ < lðKÞ=2 lies within TubeðK; lðKÞ=2Þ and is geometrically
equivalent to K by a path of geometric knots lying within the tube.

Proof. This isotopy is defined by moving the vertices of K 0 to those of K radially within the ball neigh-

borhoods of the vertices of K and extending linearly to the associated edges. �

One way in which to interpret this result is to say that all knots, K 0, within the ball centered at K of edge

length lðKÞ=2 are non-singular and geometrically equivalent to K. That is to say that the map from the

regular polygon to the vertices of K 0 is an embedding and that there is a path connecting K 0 to K consisting

of such knots. Note that the ‘‘ball’’ in this metric is actually the product of n 3-dimensional balls. As such, it

might better be imagined as a ‘‘cube’’ centered at K of edge length twice the radius of the ball. The open ball

centered at K with radius lðKÞ=2 is the largest ball centered at K that does not intersect the singular set, i.e.,
lying entirely within the component of knots containing K, since any larger radius would permit the in-

tersection of non-adjacent edges. If the edge lengths are relatively small compared to the separation of

distant edges, the first singularities that arise with expanding radius correspond to ‘‘type I Reidemeister’’

singularities that do not create different geometric knot types.

The radius of the ball neighborhood of K disjoint from other geometric knots types is related to the

radius of the tubular neighborhood of K. It is a measure of the ‘‘thickness’’ of K, a spatial or physical aspect
of the knot reflecting the degree to which perturbations of K do not change the knot type. Another physical

way to understand the role of K is as an ‘‘average’’ of the knots in the ball of which it is the center. The
study of such physical characteristics of polygonal knots is a principal objective of this paper and it is the

subject of the next section.

3. Physical knot theory

We use the term ‘‘physical knot theory’’ to refer to those aspects of knots that arise in the study of

physical models and which are captured by the geometry of the polygonal knot configuration. Our first
example is that of a knot energy. This notion is inspired by the desire to create a dynamical method to

realize a family of allowable transformations taking any given manifestation of a topological unknot to the

standard unknot. Minimal energy conformations have been proposed as ‘‘canonical models’’ of the knot

type and these energies are cited as examples of knot invariants. An initial proposal for an energy consisted

of a uniform charge along the knot which was subjected to an inverse-square repulsion force. There are

many examples of energies that have been proposed, each with different properties [10–

13,16,18,19,27,28,31,39–42,48,51,52,56]. While much has been learned, the original goal of this project has

yet to be accomplished. In this paper we shall employ a version of the O�Hara [39] and Freedman–He–
Wang M€oobius energy [16], that has been adapted to polygonal knots from their formulation for smooth

knots. This adaptation is, in fact, an energy proposed and studied by Jon Simon [56]. Simon defines an

energy to be the sum, over non-adjacent edges of the polygon, of the product of the lengths of the edges

divided by the square of the minimum distance between the edges. By subtracting an intrinsic term, the

energy of the regular n-gon, one defines a regularized energy, EMDðKÞ, that approximates half the value of

the integral giving one form of the M€oobius energy. In this normalization, the regular n-gon has energy 0. By
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giving an explicit estimation of the error, Rawdon and Simon [49] have demonstrated the convergence of

EMDðKÞ to half of the M€oobius energy as the number of edges increases and the polygonal knot ‘‘ap-

proaches’’ a smooth conformation. While the M€oobius energy is unchanged by M€oobius transformations of a

smooth knot, this is not the case for EMD of an approximating polygonal knot, KP. First, the transfor-

mation does not preserve the polygonal structure of KP. Second, EMD of the polygonal approximation to

the image of a M€oobius transformed smooth knot differs significantly from EMD of KP. A consequence of the

special geometric properties of EMD is that the minimal energy conformations exhibit a spatial rigidity that

does not occur for smooth knots and the M€oobius energy. This rigidity of the optimized conformation
provides a new method by which one can study the spatial properties of the polygonal knot and to observe

the behavior as one changes the number of edges of the representatives of a given topological knot type.

A second example of a physical knot property is the thickness and ropelength of the polygonal knot

configuration. The injectivity radius, RðKÞ, of a smooth knot conformation, K, is the supremum of the radii

such that normal discs of that radius at each point of the knot are disjoint. By dividing the injectivity radius

by the arc length of the knot, we obtain a scale-invariant quantity called the thickness, sðKÞ, of the knot

that measures how thick this knot could be when tied with a unit length cord. The reciprocal of sðKÞ is

called the ropelength, qðKÞ, of the knot [31]. This measures the shortest length of unit radius cord needed to
tie the knot. The injectivity radius is shown to be the minimum of MinRadðKÞ and 1

2
DCSDðKÞ where

MinRadðKÞ is the minimum of the radius of curvature of K and DCSDðKÞ (doubly-critical self-distance) is
the minimum distance between pairs of distinct points whose connecting segment is perpendicular to the

tangents to the knot at both points.

Rawdon [48,51,52] has provided an analogous definition of injectivity radius for polygonal knots and, as

above, provides definitions of thickness and ropelength. The polygonal thickness and ropelength functions

have the property of convergence to the corresponding quantities for smooth knots, for families of in-

scribed polygons converging to the smooth knot. Rawdon�s polygonal injectivity radius is the minimum of
a polygonal version of the doubly-critical self-distance function and a minimal radial distance arising from

the adjacent edges due to curvature.

A third example is the average crossing number of the configuration. Here, one takes the average of the

number of crossings, overall generic planar projections of the configuration. By assigning a sign, +1 or )1,
to each of these finitely many crossings and taking the algebraic sum averaged over all generic projections,

one defines the average writhe of the configuration. Average writhe is often referred to as just writhe.

However, we use the term average writhe to highlight its relationship with the average crossing number and

to stress that the quantity is measured on a conformation, not a knot type. There is a wide variety of
quantities that can be defined by this averaging procedure, several of which have provided important in-

formation about knots in the past. Another example is given by the average number of maxima of pro-

jections to lines in 3-space overall possible line directions. This average is equal to the total curvature of the

configuration, i.e., the sum of the exterior angles at each of the vertices [15,36].

The large scale ‘‘shape of a configuration’’ is another facet of physical knot theory. In this paper we will

focus on the comparison of the shape of two knots having the same number of vertices in an optimal

configuration with respect to ropelength or energy. Two knots would have the same ‘‘shape’’ if they are

sufficiently close in knot space or, more generally, if there is an isometry of knot space taking one suffi-
ciently near the other. Thus our measures of shape should be continuous functions of the knot, as deter-

mined by the vertices, and should be invariant under isometrics of knot space. Among such physical shape

properties of a knot are the volume, surface area, and dimensions of a smallest standard shape containing

the knot. One step in this direction is the shape of a standard smallest rectangular box containing the knot.

The dimensions of the box give a rough quantitative description of the spatial shape of the knot. Is the knot

‘‘squat and broad’’, ‘‘bulbous’’, or ‘‘long and skinny?’’ These dimensions can provide a crude indication of

such spatial characterizations. We will call the largest dimension, the box length of the knot. The standard

box for a given polygonal knot is defined as follows: the length of the polygonal knot, K, is defined to be the
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maximum distance between the vertices, BLðKÞ. Consider the projection of K to a plane perpendicular to

the line passing through these extremal vertices (or the set of such projections, if there are more than one

pair) and take the pair of image vertices of maximal distance. Define this distance to be the width of K,

BW ðKÞ. Finally, in this plane, project the image of K to a line perpendicular to the line passing through

these extremal vertices (or the set of such projections, if there are more than one pair) and take the pair of

image vertices of maximal distance. Define this distance to be the height of the knot, BHðKÞ. The vertices

defining the box length, box width, and box height of K determine a box containing K as well as the shape

of this box.

Proposition 2. Let a non-trivial knot, K, have maximal thickness (i.e., minimal ropelength) in its equilateral
knot type. The box length of the knot is P lðKÞ. The box height of knot K is P lðKÞ.

Proof. The quadrisecant theorem, [26,37,38,43], states ‘‘Every non-trivial piecewise linear or smooth knot in

general position has four collinear points’’. The separation between any pair of the four points must be at

least equal to lðKÞ if they involve non-adjacent edges. At least two of these points are not adjacent on the
knot. Their distance is at least lðKÞ giving this as a strict lower bound for the box length. The projection of

K to the plane perpendicular to the height direction is close to a regular projection. lðKÞ is the minimum

distance between non-adjacent edges. Crossings, therefore, have a difference in height at least lðKÞ. This
height difference is no larger than the box height of the knot. �

In fact, one expects that 3lðKÞ is the lower bound of the box length. This is the case for minimal edge

equilateral knots of maximal thickness because the triangle determined by any pair of adjacent edges must

be pierced by a distant edge, i.e., one whose distance from each of the adjacent edges is at least lðKÞ. For
equilateral knots with a large number of edges, compared to the minimal number of edges required to

construct the knot, the four collinear points lie on non-adjacent edges. In this case lðKÞ is not controlled by

the edge length and the quantity of interest is the thickness of the knot.
Other interesting physical properties of the knot are the volume and surface area of the associated box.

They reflect the ‘‘density of the knot’’ and the ‘‘accessibility of the knot’’. The smaller the volume of the

box, the more tightly or more densely packed the knot. Similarly, the larger the surface area of the box, the

more exposed the knot will be to contact from the exterior. We will also consider a related approach to

assessing the density and accessibility of a knot by means of the surface area and volume of the convex hull

of the knot.

For knots having a spherical or cubical shape, the volume is proportional to the 3/2�s power of the

surface area. If, on the other hand, the knot has a broad squat cylindrical shape, the volume will be ap-
proximately a linear function of the surface area. Thus one useful measure of the shape of a knot, its density

and accessibility, is the functional relationship between volume and surface area. The surface area/volume

relationship should also be dependent on the number of vertices in the optimal configuration and the

polygon number of the knot (the least number of edges required to construct a knot of that knot type). For

example, when the number of vertices is close to the polygon number, the knot is ‘‘difficult to construct’’

and is quite likely to be flatter and broader in nature compared to optimal configurations of the same knot

type with more vertices. There are an insufficient number of edges to achieve a truly thick conformation.

While this appears to often be the case, by analysis of individual knot types, one will see that the data shows
a far more complex relationship between the number of edges and the spatial shape of the conformation

associated to a given topological knot type as the number of edges increases.

We will also explore the potential for an elementary relationship between these physical aspects of an

optimal exemplar of an equilateral knot type and the size of the component of equilateral knots having the

same topological knot type. For example, one might expect that knots whose optimal conformations are

quite thick or whose convex hulls have larger volume would be more likely to occur than those that are

K.C. Millett, E.J. Rawdon / Journal of Computational Physics 186 (2003) 426–456 433



thinner or whose convex hulls have small volume or which are relatively squat. Thus, we explore the degree

of correlation between these physical quantities and the relative probability of the geometric knot type.

4. Estimation of physical knot properties

In this study of physical knot properties we employ Metropolis Monte Carlo [32] population estimations,

weighted random walk optimizations, and other computer-based calculations involving knots in EquðnÞ.
The very nature of such numerical calculations, however, takes one out of EquðnÞ into GeoðnÞ by virtue of

the fact that calculations are not exact. The purpose of this section is to discuss our methods and to explain

why the calculations, although not exact, do provide estimates of quantities actually associated to EquðnÞ.
One underlying principle is the existence of a tubular neighborhood of EquðnÞ in GeoðnÞ. This structure

provides a retraction of a neighborhood of EquðnÞ that respects the geometric knot type. In other words, if

there is an approximately equilateral knot, then there is a geometrically equivalent equilateral knot nearby.

The definition of ‘‘approximately equilateral knot’’ includes a specific estimate of how close to length one

the edges must be in order to apply the theorem. The result is a condition that is easily verified during the
calculation in computer simulations and implies the existence of an equilateral knot with the desired

properties. A second consequence is a condition on how close a deformation in GeoðnÞ of an equilateral

knot must remain to EquðnÞ in order to insure that a purely equilateral deformation exists.

These results derive from a study of the regular values of the function, L : GeoðnÞ ! Rn, that calculates

the lengths of the edges. Thus, while the optimization algorithms in theory take elements of EquðnÞ to

elements of EquðnÞ through various geometric movements, the numerical nature of the computer imple-

mentation of the algorithm actually takes one out of EquðnÞ into GeoðnÞ. The accuracy of the algorithms

insure that the result remains near EquðnÞ in a measurable way that insures that nearby elements or paths in
EquðnÞ exist. These quantities are continuous functions on GeoðnÞ so, as a consequence, the calculated

values are close to those of the element of EquðnÞ whose existence has been demonstrated.

Another way in which the calculations are often estimates rather than precise calculations derives for the

fact that the HOMFLY polynomial [17,30] is used as a surrogate for the topological knot type. This is not a

faithful representation [21]. Furthermore, we do not identify chiral representatives as is often customary in

knot theory nor is the HOMFLY polynomial successful in always distinguishing chiral knots. As a con-

sequence our estimates of knot types are estimates of the chiral knot types, and limited by the lack of

faithfulness of the HOMFLY polynomial as well as the fact that they are statistical estimates derived from
our simulations.

Proposition 3. If a geometric knot is sufficiently close to being equilateral, there is a nearby equilateral knot of
the same geometric knot type.

Proof. Suppose that K is a geometric knot whose edge lengths are within � of being unit length, i.e., if Li

denotes the length of the ith edge, then jLi � 1j < �. We first describe the construction of an equilateral
knot, K 0, near K. Suppose that the vertices of K and K 0 are denoted by vi and v0i, respectively. Let v

0
0 ¼ v0 and

define v01 by v00 þ ððv1 � v00Þ=ðkv1 � v00kÞÞ so that the first edge has unit length. The key issue is the distance

between v1 and v01 since this will determine the degree of edge length distortion of the geometric knot.

kv1 � v01k ¼ v1

���� � v00

�
þ v1 � v00
kv1 � v00k

����� ¼ jkv1 � v0k � 1j ¼ jL0 � 1j < �:

For 1 < i < n� 1, we define

v0i ¼ v0i�1 þ
vi � v0i�1

kvi � v0i�1k

434 K.C. Millett, E.J. Rawdon / Journal of Computational Physics 186 (2003) 426–456



and compute that

kvi � v0ik ¼ vi

���� � v0i�1

�
þ vi � v0i�1

kvi � v0i�1k

����� ¼ jkvi � v0i�1k � 1j < i�:

This follows, by induction, from the fact that

1� �� ði� 1Þ� < kvi � vi�1k � kvi�1 � v0i�1k6 kvi � v0i�1k6 kvi � vi�1k þ kvi�1 � v0i�1k
< 1þ �þ ði� 1Þ�:

In order to insure that the last two edges have unit length, a slightly more careful choice of v0n�1 is re-
quired. Note that the vn�2, vn�1, and v0 determine an almost isosceles triangle with almost unit length legs

having the v0 and vn�2 as end points of its base. See Fig. 2. Except in degenerate situations, the new vertex,

v0n�1, can be selected to lie in the plane determined by this triangle such that the isosceles triangle it de-

termines, with the edge connecting v0 and v0n�2 as its base, will have exactly unit length legs. Degenerate

cases occur when the three vertices are collinear or when the distance between the v0 and v0n�2 is either 0 or is

2 or larger, otherwise the choice is a continuous function of the coordinates of v0n�2 and converges to the

isosceles vertex associated to v0 and vn�2 as v0n�2 tends toward vn�2. Then v0n�1 is close to vn�1.

These facts can be verified analytically by considering, without loss of generality, the case in which the
first vertex is at the origin, the ðn� 2Þnd vertex is a point f0; y; 0g and, ðn� 1Þst vertex is in the first

quadrant of the xy-plane, close to the point f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðy2=2Þ

p
; y=2; 0g. The new ðn� 2Þnd vertex is at the point

fr; y þ s; tg with the magnitude of the vector fr; s; tg less than ðn� 1Þ�.
The selection of the ðn� 2Þnd vertex is a smooth function of its variables except possibly at y ¼ 0 or

y P 2. The case y ¼ 0 represents a singular position that can be avoided by selecting v0n�2 to be on the unit

sphere centered at v0n�2 close, but not equal, to the singular position determined by the formula. The sit-

uation for y P 2, represents another singular position and care must be exercised to insure that an im-

possible configuration is not imposed by the choice v0n�2. In this case, the distance between v0 and vn�2 is less
than 2þ 2�. The vertex v0n�2 can be chosen to be on the interval connections these vertices at distance 2 from

v0 and v0n�1 can be chosen to the be the midpoint of the interval connecting v0 and v0n�2. In this case, v0n�2 is

within 2� of vn�2 and v0n�1 is within 2
ffiffi
�

p
. �

Fig. 2. Selecting v0n�2 and v0n�1 from Proposition 3.
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Corollary 2. Every n edge almost equilateral knot, K 0, with

jLi � 1j < minflðKÞ=n; lðKÞ2=4g;

where Li denotes the length of the ith edge, is equivalent to an equilateral knot K.

For example, the seven edge ‘‘almost equilateral’’ figure-8 knot shown in Fig. 1 has l � 0:027727 while
the maximal difference of the edge length from 1 is less than 0.000001 proving the existence of an equilateral

figure-8 knot.

Theorem 1. For each equilateral knot, K, there is an �ðKÞ > 0, such that any equilateral knot, K 0, within �ðKÞ
of K is equivalent to K by a sequence of pivots, translations, and rotations.

Proof. Starting at the distinguished vertices, move the first vertex of the first knot to the first vertex of the
second via a translation. By a rotation, move the second vertex of the first knot to the second vertex of the

second knot. We proceed by induction on the vertices which differ. Suppose the positions of the vertices, vj
and v0j, respectively, of the two knots are identical through the first j vertices.

Suppose j < n� 2. In the plane determined by the vertices vjþ1; vjþ2, and vjþ3 of the first knot, there is a

new vertex, v00jþ2, such that, in the vertex set of the first knot, the result of replacing the vjþ2 with v00jþ2 and

replacing vjþ1 with v0jþ1, is a new equilateral knot near the second knot and with vertex agreement through

the first ðjþ 1Þ vertices. K and this new knot are connected by a sequence of three small rotations, see Fig.

3, as follows. By a small rotation about the axis determined by the vertices vjþ1 and vjþ3 of the first knot,
move the vjþ2 such that its distance from vj and the distance of v00jþ2 from vj are equal. Next, by small

rotation about the axis determined by the vj and vjþ3, move vjþ1 and vjþ2 until the later coincides with v00jþ2.

The third, and final rotation in this sequence, is about the axis determined by v00jþ2 and vj. This small ro-

tation takes vjþ1 of the first knot to v0jþ1.

If j ¼ n� 2, take the rotation using the vn�2 and the v0 as the axis to achieve the final coincidence of the

last vertices. �

Corollary 3. If two equilateral knots are of the same geometric knot type by virtue of a path of geometric
knots that are sufficiently close to being equilateral at each stage, there is an equilateral equivalence of the two
knots.

Fig. 3. The three step move from Theorem 1.
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Proof. Using the compactness of the path, one approximates by small intervals, the path by almost equi-

lateral knots with a sequence of equilateral knots that are sufficiently close so as to be connected by a

sequence of pivots, translations, and rotations as provided by Theorem 1. �

Corollary 4. Any path in Equ0ðnÞ can be approximated arbitrarily closely by a path consisting of pivots,
rotations, and translations.

Theorem 1 has important implications with respect to computer optimization of energy and ropelength

for knots in EquðnÞ. The optimization strategy employed, with various modifications, has the following

structure. First, with respect to uniform distributions, two knot vertices and a rotation angle are selected

within the relevant tolerance range necessary to preserve the knot type. A test conformation is constructed
by means of a pivot of the chosen angle about the axis specified by the two vertices applied to the vertices

lying along one of the arcs between the selected vertices. The quantity to be optimized is calculated for the

test conformation and the value compared to the current value. If better, the test case replaces the current

case and the procedure continues. In some of our algorithms, the successful pivot data is used again,

perhaps with modification, until no further improvement is observed. If there is no improvement, a new

choice of angle and vertices is tested. Since spatial rotations and translations are isometries of 3-space they

do not lead to a change in the physical knot nor an improvement in the quantity under consideration.

Theorem 1, therefore, implies that the pivots of breadth one and two are infinitesimal generators of the
tangent space of EquðnÞ for the generic knot, i.e., one whose vertex set is in ‘‘general position’’. This implies

that in testing for locally optimal configurations, one need only verify that none of these 2n pivots leads to

an improvement of the value.

Corollary 5. A locally optimal value of a spatial knot quantity occurs for a generic knot precisely when none of
the 2n pivots leads to an improved value.

The modifications to the above strategy include allowing a random selection of cases that do not im-

prove the optimizing quantity (the simulated annealing strategy) and a strategy in which the movement

leading to the better value is amplified and the resulting value tested. The former strategy is designed to help

avoid local optima in a search for global optimal values while the latter strategy is analogous to the gradient

path method in which one follows the gradient path until a locally optimal value is reached. One recom-

putes the gradient at this new point and follows the resulting curve in search of next local optimum. Be-

cause of the structure of polygonal knot space and the lack of differentiability of the functions being

optimized over polygonal knots, we do not pursue the gradient method in this project but employ these
various modifications of a random walk instead.

5. Presentation and analysis of data

For the energy and ropelength calculations, we focus our attention on equilateral knots composed of 8, 16,

and 32 edges. Only 11 knots have been realized as equilateral knots with 8 edges, namely

01; 31; 41; 51; 52; 61; 62; 63; 820; 31#31, and 31#� 31. These knots compose the population of study for 8
edge knots. Many more knots are realizable with 16 and 32 edges. The knot population for 16 and 32 edge

knots includes all knots through 9 crossings. This includes the prime knots and the composite knots

31#31; 31#� 31; 31#41; 31#51; 31#� 51; 31#52; 31#� 52; 31#� 61; 31#� 61; 31#62; 31#� 62; 31#63; 41#41; 41
#51; 41#52; 31#31#31; 31#31#� 31, a total of 102 knots. The initial conformations for the 8 and 16 edge knots

were created by Rob Scharein using KnotPlot [54] and the 32 edge knots were obtained by subdividing each

edge of the 16 edge optimized knot. The tables of data in this section consist of the 40 knots that have the lowest
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calculated ropelength values for 32 edges. The unknot appears to be a highly anomalous case in that the data it

provides masks the often highly systematic behavior of the other cases. As a consequence, we have not in-

cluded the unknot in the data presented and analyzed here. For consistency, we retain the ordering suggested

by the 32 edge minimal ropelength values throughout this section. The complete set of data, including vertex

coordinates and orderings with respect to the different quantities, are posted at http://www.math.ucsb.edu/

�millett/knotdata.html and http://www.mathcs.duq.edu/�rawdon/knotdata.html.

In the following subsections, we describe the techniques and exceptional circumstances unique to each

computation as well as tables and analysis for the data obtained.

5.1. Injectivity radius, thickness, and ropelength

In this section, we describe the computations that find the ropelength-minimized (i.e., thickness-maxi-
mized) conformations for the 8, 16, and 32 edge knot populations. Table 1 contains the ropelength values of

these conformations. The method for computing the ropelength of a polygonal knot is described in

[48,51,52]. As mentioned in Section 3, the injectivity radius of a polygonal knot is the minimum of

MinRadðKÞ (minimum radius of curvature) and 1
2
DCSDðKÞ (doubly-critical self-distance). For an equilateral

knot K,MinRad is the minimum, overall vertices of K, of the radius of a circular arc that can be inscribed in

K so that the arc intersects the adjacent edges tangentially at the midpoints. We compute MinRadðKÞ as the
minimum, overall vertices vi, of the length of an edge divided by two times the tangent of half the exterior

angle at vi. A point y 2 K is called a turning point for x 2 K if the distance function dxðyÞ ¼ kx� yk either
changes from increasing to decreasing or decreasing to increasing at y (with respect to the orientation of K).

DCSD is the minimum distance between distinct pairs of points ðx; yÞ where x is a turning point for y and y

is a turning point for x. The thickness, sðKÞ, is the injectivity radius divided by the length of the knot and

the ropelength, qðKÞ is the multiplicative inverse of thickness [48,51,52]. In Fig. 4, we show a 32 edge

ropelength-optimized figure-8 knot drawn once with tubes of a small radius to show the shape of the knot

and drawn a second time with tube whose radius is the injectivity radius.

Ropelength does not lend itself to a traditional gradient descent. Optimization of the ropelength value is

obtained through simulated annealing on random crankshaft rotations (RCR, described in steps 1–4). One
step of the algorithm consists of:

1. Randomly choose two non-consecutive vertices of the knot K.

2. Compute a swivel-angle bound, hmax, so that the topological knot type will not change.

3. Choose a random angle h such that �hmax 6 h6 hmax.

4. Rotate one of the arcs between the two vertices through an angle of h about the axis passing through

the two selected vertices to create a new knot K 0 of the same knot type.

5. If the ropelength of K 0 is less than the ropelength of K, K 0 is selected.

6. If the ropelength of K 0 is greater than or equal to the ropelength of K;K 0 is chosen with a probability
of expfððqold � qnewÞ=qoldÞ � cg.

During the process c begins at 10 and is reduced to 2, 0.8, and 0.1. The constants were chosen through

experimentation in an effort to provide appropriate convergence rates. To maximize the likelihood of

finding a global minimum of ropelength, a logarithmic reduction in the constant would have to be used [32].

This, however, implied an impractical amount of processing to compute the data for this study. As a result,

the knots may not be global minima for the ropelength function.

The knots obtained, however, are local minima up to the maximum reliability of the computer. Using

Corollary 5, we can check to see if a knot is a local minimum. EquðnÞ is a 2n-dimensional manifold (i.e.,
there are 2n tangent directions). A basis of the tangent directions (in the generic case) are the pivots created

by rotating about the axis passing through pairs of vertices separated by 1 and 2 vertices. If by completing a

rotation at the angle at a low computer tolerance (�:0000000000000001) for each of these tangent direc-

tions, no lower ropelength can be detected and random crankshaft rotations do not lower the ropelength,
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then we can conclude that we are indeed at a local minimum. We use an algorithm, derived from this

process, to find local minima after the simulated annealing. We begin by selecting a rotation angle of 0.1

and cycling through all 1 and 2-step pivots of 0.1 and )0.1 until none of these rotations result in an im-

proved ropelength. The angle is then halved and the procedure is repeated until the angle is at the lowest

computer tolerance. At the end of this process, we are guaranteed to be at a local minimum up to the

maximum reliability of the computer. When the simulated annealing algorithms were completed, this al-

gorithm was applied and each knot was inspected visually using TOROS [47] to insure that the knot was in

a position consistent with being a global minimum.

Table 1

Minimum energy and ropelength of 8, 16, and 32 edge knots

Knot Energy Ropelength

8 edge 16 edge 32 edge 8 edge 16 edge 32 edge

31 103.91 50.59 41.31 52.92 36.91 33.88

41 377.79 90.38 66.87 108.10 49.91 43.82

51 1316.28 122.05 83.41 225.50 59.99 50.49

52 1311.58 136.42 91.80 214.74 63.72 52.63

61 1972.22 197.95 118.42 258.32 77.28 61.82

31#� 31 2525.21 178.93 108.33 257.65 75.51 61.85

31#31 6292.12 177.78 108.26 415.13 75.49 61.89

63 1443.26 217.05 130.35 215.00 80.94 63.02

62 1238.93 201.32 124.56 201.29 80.73 63.74

819 211.00 141.68 73.60 64.59

71 263.19 134.81 90.73 68.83

820 2504.14 245.85 153.70 257.24 84.40 69.30

73 278.32 151.59 95.61 71.11

72 311.33 147.69 92.06 71.46

74 284.14 157.13 98.01 72.32

821 289.59 164.98 93.33 73.15

77 315.26 168.81 98.70 73.37

31#41 290.81 146.43 98.34 73.71

76 326.74 164.96 103.56 74.17

75 331.27 160.51 105.07 74.45

946 313.15 185.84 92.04 75.05

942 313.24 183.99 95.31 76.00

943 364.39 194.93 102.31 79.72

944 419.96 199.35 110.67 80.03

31#� 51 372.98 172.64 111.03 81.16

83 436.98 187.18 116.95 81.62

81 397.15 181.13 117.68 81.65

31#51 376.12 174.38 110.69 81.96

82 636.43 189.22 120.41 82.52

87 422.54 201.42 124.02 82.92

89 460.69 202.06 117.74 83.19

85 478.88 198.24 127.66 83.45

41#41 502.27 189.58 119.89 83.71

31#52 459.76 182.59 124.80 83.77

948 415.17 210.17 119.03 83.80

947 510.93 224.85 118.00 83.87

31#� 52 419.70 184.36 119.90 84.22

811 414.72 204.43 126.05 84.35

949 428.71 211.00 117.63 85.00

814 489.60 209.69 126.34 85.09
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We have observed distinct local minima resulting from different initial conformations. In Fig. 5, we show

an example of the 939 knot in which much of the tangling is concentrated in a small region on the right side

of the figure. In instances of this type, the simulated annealing process is unable to free this tight region of

knotting which creates a local minimum in knot space. Despite increases in the constant c and more

repetitions, the algorithm was unable to free this tight region of knotting. In such cases, the free portion of
the knot is unlikely to change because the definition of ropelength is a local one (often times determined as

the radius of curvature at only one vertex or the distance between only one pair of doubly-critical self-

distance points). Thus, the free portion of the knot is unlikely to change as it is not implicated in the

determination of ropelength. It need only avoid creating any tight regions. This shows that the graph of

ropelength over knot space will be constant in several, if not many, directions with very steep slopes in the

remaining directions. We believe this accounts for the difficulty simulated annealing encounters in trying to

escape from this type of ropelength valley.

This behavior is also seen for knots with fewer edges. With the exception of 01; 31; and 41, the 8-edge
knot population studied here can be made with a minimum of 8 edges. Thus, the components of Equð8Þ
corresponding to these knot types are tight and the knots may become stuck in local minima that are

different from a global optimal position. The research of Calvo [4] suggests that there may in fact be more

than one component of an equilateral knot type that cannot be attributed to translations, rotations, or

dihedral actions on the edge numbering. If this is true, initial conformations in separate components will

lead to distinct optimal equilateral knots. For 16 and 32 edges, the knots in this study have more freedom

within the components and the additional edges provide more potential pivots with which to explore the

components. In Fig. 6, we see two different local minima for the 63 knot with 8 edges. While it is difficult to
determine whether these are two different conformations from the figure alone, the respective ropelength

Fig. 4. A figure-8 knot conformation shown with a small tube radius and a tube radius equal to the injectivity radius.

Fig. 5. Local minimum conformation of the 939 knot from first optimization attempt, qðKÞ ¼ 375:71.
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values of the 63 knots in Fig. 6 are 353.59 and 215.00. This verifies that these are indeed different equi-

laterally equivalent local minima with very different ropelengths.
At the outset of this project, the set of initial conformations were generated by the Monte Carlo

samples of EquðnÞ. Many of these conformations were tightly woven, uneven, and difficult to optimize,

(as seen in Figs. 5 and 8). As a consequence, we decided to use another source of initial conformations.

These were generated by Rob Scharein using his program KnotPlot [54]. The knots were created by

manipulating conformations that minimize a knot energy used in KnotPlot. The program first reduced

the number of vertices from between 30 and 60 (depending on the knot) to 16 while retaining the knot

type. Next, two forces were applied to the knot: one that favors the length of an edge to be 1 and

another that guarantees that no edges pass through each other. The knot was randomly perturbed and
the forces applied until the ratio of the longest to shortest side was appropriately close to 1. The al-

gorithm has little trouble finding a knot that is much closer to the global minimum from the more

regular starting conformation.

We often observe slight differences in the locally minimal values. In Fig. 7 we show the final confor-

mations derived from two different ropelength minimizations of the 32 edge 51 knot. The knots appear

identical and both have been confirmed to be local minima; however, the ropelength values are 50.478804

and 50.622445, guaranteeing that these two knots are truly distinct and not the same knot viewed from a

different perspective. Other examples of this behavior are common. A slower cooling in the simulated
annealing algorithm may make this phenomenon more rare, although we conjecture that the ropelength

surface is nearly flat with small dents near a global minimum. If so, it would be easy for the knot to end in a

shallow puddle that is near the global minimum but difficult to find a true global minimum. The distinct

local minima with similar ropelength values that we have encountered have always been very similar

Fig. 6. 8 edge ropelength local minima for the 63 knot with qðKÞ ¼ 215:00 and qðKÞ ¼ 353:59, respectively.

Fig. 7. 32 edge ropelength local minima for the 51 knot with qðKÞ50:48 and qðKÞ ¼ 50:62, respectively.
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looking knots. For this population with 16 and 32 edges, we have not observed any distinct local minima

that appear to be near global minima but are very different looking conformations.

The results of the optimizations mentioned above are contained in Table 1.

5.2. Knot energy

In this section, we discuss the process of determining the minimum energy of the equilateral knots. The

algorithms for optimizing the polygonal version of the M€oobius energy are identical to those explained in

Section 5.1 for ropelength and the computation of energy is a straightforward application of dot products

and norms. Recall that in this discretization, we approximate half the traditional M€oobius energy. Table 1

contains our estimated minimal energy values for our knot population.

In these energy calculations, we have not been able to find global minima. In fact, none of the con-
formations are even local minima. The algorithm described in Section 5.1 was employed to search for a

local minimum. Slight improvements (on the order of 10�3) were observed during each application of the

algorithm. However, these processes failed to converge to a local minimum.

The M€oobius energy is a substantially different quantity compared to ropelength in several funda-

mental ways. First, it includes interactions between every pair of non-adjacent edges. Therefore, one

pivot that successfully reduces the energy affects the energy calculations for many of the pairs of edges

in the sum. On the other hand, we have observed that the injectivity radius of a knot, is usually re-

alized as half the distance between one particular doubly turning pair or as the radius of curvature at
one vertex. Still, there may be many other doubly turning pairs whose distance is close to the injectivity

radius or vertices whose radius of curvature is close to the injectivity radius. To reduce the ropelength,

the injectivity radius realizing value must be increased without disturbing any of the other values. If a

knot is near a local minimum, very few pivots are likely to do this. Second, as mentioned earlier, the

M€oobius energy of a smooth knot is invariant under M€oobius transformations of 3-space. While this

property fails for polygonal knots, the polygonal energy does approximate the M€oobius energy and

converges to it in the limit and, therefore, is not greatly changed by relatively small M€oobius trans-

formations. As a consequence, one expects especially small changes in the energy of a polygonal knot
in knot space directions associated with M€oobius transformations. Together, these two features make the

search for locally energy optimal polygonal knots even more difficult. Thus, compared to ropelength,

there are many more pivots that could reduce the M€oobius energy than one would expect from the study

of ropelength.

Still, we are able to test the criticality of the equilateral knots by using the program Ming, written by

Ying-Qing Wu [62], Ming uses a gradient-type flow to find energy minima for knots in GeoðnÞ. Upon

completing the simulated annealing in EquðnÞ, the knots were imported into Ming and the gradient descent

algorithm applied. Little improvement was observed for any of the knots. Since the gradient-type descent
works in GeoðnÞ, some improvement is always likely to occur because the tension to keep the knot equi-

lateral has been released. Because very little improvement is observed using Ming, we believe that each knot

is very close to a global equilateral energy minimum. In the case of GeoðnÞ, many distinct local energy

minima have been found by Simon and Tockle [55] using Ming. As above, other examples of local minima

with similar energies are common, but no pair of globally minimal conformations have been found that

appear to be very different. Thus, it seems that the energy surface in GeoðnÞ is also nearly constant yet

dented near a global minimum.

The result of the energy minimization process applied to the 16 edge 939 knot from Fig. 5 is shown in Fig.
8. Notice that the energy minimization algorithm was unable to loosen the tight region of the knot as was

also the case for ropelength. However, the more global nature of the energy forces the free portion of the

knot to become more circle-like to minimize the self-interactions of the edges in this region. Thus, the

energy surface is not constant in directions related to moving the free portion, as is the case in ropelength,
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but gently slopes towards this final conformation. Still, the steep slopes in the remaining directions make it

difficult for the knot to find even more relaxed conformations.
The results of the energy optimizations mentioned above are contained in Table 1.

5.3. Average crossing number, average writhe, and total curvature

We have calculated the average crossing number (ACN), average writhe (AW), and total curvature (TC)

for the ropelength and energy optimized equilateral knots of 8, 16, and 32 edges. As described in Section 3,

the average crossing number of a knot conformation is the average overall viewing directions of the number

of observed crossings. For a polygonal knot conformation, the average crossing number can be computed

in closed form as a function of the vertices via an algorithm derived by Banchoff [1]. The average writhe can

be determined by a similar computation in which the signed crossings are averaged. Since we make no

distinction in this paper between mirror images, we report the absolute values of the average writhes de-

termined by our computations. The total curvature of a polygonal knot conformation is the sum of the
exterior angles at the vertices. The computed values for 32 edge knots is given in Table 2. Data for all

conformations is found on the data webpage.

5.4. Box dimensions of knots

We have calculated the values of the box length (BL), box width (BW), box height (BH), box volume

(BV), and box surface area (BSA) (defined in Section 3) for ropelength and energy optimized equilateral

knots of 8, 16, and 32 edges. In reporting the values, the length of the knot was set to 100 in order to better

display the relative changes in values. The computed values for 32 edge knots is given in Tables 3 and 4.

Data for all conformations is found on the data webpage.

5.5. Surface area and volume of convex hulls

We have calculated the values of the convex hull volume (HV) and surface area (HSA) for ropelength

and energy optimized equilateral knots of 8, 16, and 32 edges. The convex hulls were established by finding

the triplets of vertices that determine bounding planes for the polyhedron. The sum of the areas of the

triangles related to these triplets is the surface area. Each triplet with the addition of the center point of the

knot (the average of the coordinates of the vertices) determines a pyramid: the sum of the volumes of these

pyramids is the volume of the convex hull. In reporting the values attained in these calculations, the length

of the knot was set to 100 in order to better display the relative changes in values. The computed values for
32 edge knots is given in Tables 3 and 4. Data for all conformations is found on the data webpage.

Fig. 8. Energy local minimum conformation of the 939 knot from first optimization attempt, EðKÞ ¼ 2389:12.
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5.6. Numerical estimation of knot probabilities

If an equilateral polygon is selected at random, what is the probability that it will represent a specified

topological knot type? Equivalently, what proportion of equilateral knot space consists of knots of this

type. This data is an update of that provided in [5,35,34].

The knot probabilities are estimated by means of a Metropolis Monte Carlo sampling method. The basic
operation is the random selection of a pair of vertices of the equilateral polygon and the random selection

Table 2

32 edge optimized knots: ACN, AW, TC and ln (probability)

Knot 32 edges ln (pr32)

E-minimized q-minimized

ACN AW TC ACN AW TC

31 4.18 3.35 14.66 4.30 3.38 16.59 )2.88
41 6.10 0.00 17.41 6.57 0.01 20.54 )4.76
51 7.27 5.88 21.23 7.89 6.19 23.13 )6.27
52 7.76 4.71 20.29 8.35 4.60 22.58 )5.75
61 9.28 1.45 23.72 10.29 1.20 25.03 )7.52
31#� 31 8.29 0.00 23.37 9.58 0.00 26.07 )7.71
31#31 8.37 6.70 23.38 9.55 6.73 25.58 )7.69
63 9.85 0.03 22.20 10.77 0.01 25.98 )8.06
62 9.57 2.61 23.00 10.71 2.71 26.54 )7.40
819 10.54 8.44 21.35 10.60 8.42 21.92 )9.87
71 10.27 8.30 28.40 11.79 8.98 29.67 )10.04
820 11.06 2.08 23.60 12.15 2.07 23.66 )9.10
73 10.98 7.22 25.65 12.07 7.42 27.47 )9.96
72 10.80 6.23 27.28 12.21 5.79 27.83 )9.26
74 11.21 6.12 25.84 12.37 5.83 27.40 )9.92
821 11.55 4.62 23.91 12.95 4.68 25.83 )9.63
77 11.69 0.70 25.41 13.13 0.64 27.47 )9.77
31#41 10.32 3.36 26.49 12.60 3.37 27.65 )8.44
76 11.52 3.24 26.18 13.02 3.35 27.94 )8.99
75 11.34 7.35 26.02 12.88 7.31 29.02 )9.24
946 12.74 2.89 24.33 13.33 2.96 24.82 )11.04
942 12.62 1.11 24.38 13.55 1.10 25.93 )10.49
943 12.88 5.23 25.47 13.97 5.31 27.10 )10.71
944 13.22 1.42 25.89 14.58 1.41 27.64 )10.57
31#� 51 11.56 2.50 29.66 13.25 2.80 31.14 )10.70
83 12.67 0.02 28.27 14.16 0.01 30.13 )12.34
81 12.44 3.00 30.41 14.54 2.32 30.61 )11.65
31#51 11.64 9.20 29.47 13.75 9.53 30.44 )11.08
82 12.61 5.03 29.91 15.20 5.57 30.50 )11.76
87 13.11 2.59 28.37 15.13 2.79 30.08 )11.24
89 13.16 0.06 27.80 15.01 0.03 29.76 )12.11
85 13.27 5.05 28.19 15.03 5.44 31.83 )11.63
41#41 12.18 0.00 29.55 15.14 0.01 30.07 )11.79
31#52 11.95 8.12 29.43 14.68 7.97 31.43 )10.29
948 13.57 4.05 26.77 15.19 4.02 29.20 )12.39
947 14.25 2.65 24.66 15.41 2.68 26.90 )13.87
31#� 52 12.14 1.39 29.37 14.38 1.21 30.74 )10.23
811 13.31 3.97 27.93 15.09 3.93 30.42 )10.89
949 13.73 8.11 25.97 15.50 7.93 29.64 )14.78
814 13.50 4.05 28.31 15.59 4.02 31.33 )11.32
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of an angle of rotation for which there are no constraints imposed. A rotation of this angle is applied to the

segment of the polygonal configuration lying between the two designated vertices about the axis they define.

This algorithm is known to generate an example of every equilateral knot conformation [34]. This operation

is applied sequentially and the results are selected randomly or according to fixed criteria, e.g., every 10th
step, to define the knot population sample. In this project, we have studied the populations consisting of

equilateral polygons with 8, 16 and, 32 edges.

Table 3

Box and convex hull dimensions for 32 edge energy-minimized knots (length¼ 100)

Knot 32 edge E-minimized

Box data Hull data

BL BW BH BV BSA HV HSA

31 18.83 17.70 11.73 3907.69 1523.16 1154.62 643.95

41 16.11 14.28 13.69 3148.86 1292.02 904.97 532.83

51 16.39 15.35 6.62 1665.69 923.54 657.91 480.41

52 16.84 13.39 11.43 2576.76 1141.89 757.49 465.16

61 15.87 12.18 10.06 1943.44 950.59 636.33 419.12

31#� 31 19.58 13.01 6.34 1614.41 922.60 642.16 470.75

31#31 19.44 10.71 8.13 1693.72 907.03 648.75 467.39

63 14.97 11.64 9.80 1707.65 870.06 602.77 393.47

62 15.63 11.96 8.93 1670.09 866.86 611.13 407.35

819 14.34 13.98 8.51 1706.05 882.96 584.83 385.72

71 15.72 15.26 4.29 1027.69 745.06 491.64 404.75

820 15.70 12.08 8.16 1547.35 832.58 515.18 366.76

73 16.86 10.91 9.44 1735.80 892.00 528.17 374.43

72 15.98 11.81 8.26 1559.85 836.85 524.05 380.11

74 16.19 10.66 9.35 1612.77 846.99 507.54 365.54

821 14.13 13.60 8.41 1615.85 850.59 488.25 361.09

77 13.99 11.48 7.43 1193.96 699.91 499.09 349.96

31#41 18.42 11.21 8.35 1724.88 908.06 567.93 407.64

76 13.70 11.72 9.81 1574.12 819.54 510.96 355.48

75 14.88 10.48 10.40 1620.84 839.06 526.85 365.13

946 14.48 10.74 9.43 1467.32 786.96 463.93 337.58

942 13.73 12.49 9.07 1554.73 818.40 469.13 337.28

943 13.88 11.33 10.03 1577.28 820.21 452.02 332.55

944 13.73 11.30 9.13 1416.42 767.27 447.73 328.78

31#� 51 18.49 10.78 5.04 1004.71 693.87 409.66 365.72

83 16.34 9.73 8.95 1422.52 784.47 452.41 342.91

81 15.66 11.89 7.29 1357.59 774.20 469.38 352.83

31#51 18.84 9.73 6.91 1266.94 761.56 462.62 374.86

82 16.14 11.07 6.46 1154.33 708.86 438.52 342.17

87 14.94 10.79 8.74 1408.28 771.96 426.22 329.84

89 15.76 10.25 8.39 1355.48 759.63 438.65 327.71

85 14.23 10.25 10.18 1485.47 790.34 451.17 327.57

41#41 17.29 10.87 9.86 1852.42 930.94 494.91 365.55

31#52 18.16 9.58 6.78 1179.50 724.02 476.19 370.63

948 14.10 11.27 8.08 1284.77 728.11 414.27 318.05

947 11.93 11.77 10.82 1519.10 793.63 417.88 298.28

31#� 52 16.00 12.44 8.76 1743.23 896.28 497.26 371.06

811 14.99 9.68 8.18 1187.20 693.89 450.76 324.56

949 12.32 11.78 10.52 1527.48 797.56 439.41 319.34

814 13.44 11.04 9.46 1402.15 759.39 435.79 320.73
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For the purposes of this project, the coordinates of the vertices of the knot are reported as well as a

carefully constructed expression of the crossing data. The first provides the initial data used in our first

attempts to study the physical knot quantities and the second provides a reconstitution of the knot of the

same topological knot type. This crossing data is analyzed by means of the HOMFLY knot invariant
program developed by Ewing and Millett [14]. The HOMFLY polynomial [17,30] has integer coefficients

and has as variables L and M and their formal inverses. While the calculation of the HOMFLY polynomial

is known to be an exponentially difficult problem [22], its calculation in this population has proved to be

Table 4

Box and convex hull dimensions for 32 edge ropelength-minimized knots (length¼ 100)

Knot 32 edge q-minimized

Box data Hull data

BL BW BH BV BSA HV HSA

31 18.41 17.17 10.44 3300.02 1375.07 1047.80 613.61

41 14.51 14.03 13.70 2788.78 1189.09 836.29 490.16

51 16.58 11.95 10.13 2008.15 974.60 680.30 444.92

52 16.09 11.89 10.50 2009.04 970.27 677.15 425.47

61 14.88 13.06 8.05 1564.18 838.40 556.24 378.58

31#� 31 17.52 13.35 6.44 1507.68 865.89 517.57 390.56

31#31 17.58 10.04 8.39 1479.20 815.88 576.58 396.99

63 13.64 13.00 9.58 1700.26 865.57 532.53 353.73

62 13.90 11.87 9.82 1621.07 836.40 523.44 354.02

819 14.37 13.96 8.27 1657.98 869.40 538.29 369.91

71 15.12 11.89 7.31 1314.25 754.45 474.48 345.43

820 14.08 11.71 10.29 1697.56 860.86 487.92 335.72

73 15.62 10.33 8.84 1426.42 781.53 465.42 342.53

72 15.26 9.78 8.77 1309.21 737.81 449.27 333.85

74 14.73 10.66 8.38 1315.60 739.51 450.50 329.49

821 13.03 11.19 9.83 1432.81 767.63 448.35 318.04

77 12.26 11.32 10.92 1514.44 792.19 441.65 310.95

31#41 13.83 10.69 10.35 1530.37 803.33 456.00 324.27

76 14.37 10.46 10.25 1540.18 809.46 435.21 315.40

75 14.53 10.32 9.15 1372.65 754.88 429.19 315.09

946 13.29 11.45 11.14 1693.48 854.97 440.18 319.50

942 12.74 11.94 10.70 1627.47 832.32 449.22 317.90

943 13.28 12.61 9.35 1566.34 819.26 404.09 304.25

944 11.33 11.26 10.27 1309.43 718.87 402.70 293.09

31#� 51 15.83 10.17 6.87 1106.31 679.39 393.60 324.47

83 14.49 10.33 7.49 1120.87 671.01 411.26 314.03

81 13.15 11.28 7.95 1179.06 685.02 398.97 300.62

31#52 14.67 9.95 7.36 1074.44 654.42 409.25 316.64

82 12.69 10.12 8.23 1058.27 632.83 380.38 282.82

87 13.53 9.69 8.14 1066.65 640.05 372.17 284.08

89 13.13 10.91 7.82 1119.69 662.29 383.35 291.40

85 12.49 9.96 8.77 1091.03 642.59 373.76 284.30

41#41 13.79 10.20 9.44 1327.56 734.15 364.40 285.39

31#52 12.94 11.64 7.57 1139.72 673.24 399.59 298.95

948 12.48 11.53 7.94 1142.69 669.13 383.95 291.74

947 11.72 11.28 9.46 1250.39 699.45 380.38 278.06

31#� 52 13.71 10.77 8.36 1235.56 705.06 428.74 312.83

811 13.11 10.89 8.86 1265.02 710.82 376.31 287.74

949 12.77 10.42 9.34 1242.85 699.34 378.46 282.56

814 12.56 11.46 7.70 1108.19 657.71 360.79 274.27
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exceptionally fast, and therefore provides an excellent research tool for this study. Indeed, based upon these

calculations, one might conjecture that the calculation of the HOMFLY polynomial of a random polygonal

knot has polynomial complexity with probability one.

Since the HOMFLY polynomial is not a faithful detector of the topological knot type, i.e., two distinct

topological knots may have equal HOMFLY polynomials, the data used in this study is only an estimation

of the knot population. Jim Hoste [20] reports that for the 2,092,241 topological knot types, with minimal

crossing representations of no more than 16 crossings, there are 1,471,651 distinct HOMFLY polynomials.

For those with no more than 12 crossings, the HOMFLY polynomial is more than 90% faithful. For the
population of knots in Equð16Þ, the foundation of this study, the HOMFLY polynomial appears to be an

effective identifier of the knot type. As a consequence, the fraction of occurrences of the corresponding

HOMFLY polynomial of the associated topological knot type provides an effective provisional estimate of

the knot population.

Thus, the knot probabilities are actually estimations of the occurrences of the corresponding HOMFLY

knot polynomial given by the ratio of the number of occurrences of the HOMFLY polynomial of the

topological knot type to the total size of the sample. In a very few cases, we have studied the convergence of

these estimates as the size of the sample increases. This has been the principal method of assessing the
quality of the estimate and providing a more accurate estimate of the actual number of knot types and their

relative frequency, see [5] or [34]. Data for 32 edge knots is given in Table 2. Data for 8, 16, and 32 edges is

found on the data webpage.

6. Comparison of physical knot parameters

In addition to a desire to carefully explore the relationship between energy and ropelength over a large class
of knots, an underlying motivation for undertaking the collection of this data is the search for unforeseen

relationships amongphysical knot parameters andother artifacts of geometric and statistical knot theory.One

example is the discovery and use of fundamental quantities as a means to define or measure notions of

complexity of knots. Another example is to determine how well these notions correlate with experimental

measures of knot complexity such as the flow of DNA knots in gel electrophoresis. Do these various measure

reflect the same information or do they capture independent dimensions of knot complexity?

The data presented in the previous section concerns knots that have been optimized with respect to either

ropelength or energy. Some of the relationships involving these quantities, that we will discuss in this
section, have been developed in the work of other researchers. For example, Freedman et al. [16] have given

a bound relating the energy and the average crossing number. Buck and Simon [3] and Rawdon and Simon

[50] have explored the relationship between the energy and the ropelength. Stasiak et al. [57] have studied

the relationship between another definition of ropelength, the average writhe, the average crossing number,

gel speed, etc., for knots with a large number of edges.

6.1. Energy, ropelength, and average crossing numbers

Freedman et al. [16] show that the average crossing number of a knot is bounded above by

ð11=12pÞEðKÞ þ ð1=pÞ. Rawdon and Simon [50] show that the energy of the knot is bounded by 4.57 times

the 4/3 power of the ropelength implying a 4/3 power bound of the average crossing number by the

ropelength. In his March 19, 1998 letter to Nature [2], Buck describes the reasons why this 4/3 power law
bound of the average crossing number of a knot by its ropelength cannot be improved. Following up on

earlier work [24,25,57] with simple knots suggesting a linear relationship between the average crossing

number and the ropelength, Stasiak et al. [59] have explored this relationship between (2; n) torus knots for
36 n6 63. This data shows that the rate of growth of the relation increases with increasing number to
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twists. Pieranski [44] has further studied the relationship between the average crossing number and the

ropelength by considering prime knots through nine crossings and observes that the relationship, ‘‘ap-

parently linear at the beginning, is clearly non-linear in the larger interval’’.

In this project, we have added the composite knots to the population. Let Kqn denote the equilateral n-

edge ropelength optimized knot. Similarly, KEn will denote an equilateral n-edge EMD optimized knot. The

relationship between the ropelength and the average crossing number of the knot is approximately linear, as

is shown graphically in Fig. 9. This relationship is given by the formula:

Equð32Þ : ACNðKq32Þ ¼ �3:14þ 0:22qðKq32Þ; R2 ¼ 0:97:

The energy is bounded by 4/3 power of ropelength according to [50]. To test this relationship we have

fitted a 4/3 power equation to this data as follows:

Equð32Þ : EMDðKq32Þ ¼ �81:94þ 0:89qðKq32Þ4=3; R2 ¼ 0:97:

This data is shown in Fig. 10. This suggests that the bound actually provides an excellent approximation

to the relationship between the data.

Fig. 9. ACNðKq32Þ versus qðKq32Þ.

Fig. 10. EMDðKq32Þ versus qðKq32Þ4=3.
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Thus, these apparent relationships suggest a 3/4 power law relationship between energy and average

crossing number. This data is shown in Fig. 11. The relationship is expressed by the following equation:

Equð32Þ : ACNðKq32Þ ¼ 1:55þ 0:22EMDðKq32Þ3=4; R2 ¼ 0:99:

Finally, since it appears that there may be spatial differences between energy and ropelength optimized

knots of the same type, we tested the correlation between the average crossing numbers and the energy of
the 32-edge energy optimized knots. This data is shown in Fig. 11. The relationship is expressed by the

following equation:

Equð32Þ : ACNðKE32Þ ¼ 0:99þ 0:23EMDðKE32Þ3=4; R2 ¼ 0:99:

This provides further evidence that the bound actually provides an excellent approximation to the re-
lationship between the data.

6.2. Comparison of ropelength and energy optimized knot conformations

Earlier, we mentioned that the ropelength and candidate energy optimized conformations are distinct

despite some visual similarities. In this section we discuss the similarity and difference between the corre-

sponding optimizations of knots in our population.

In Fig. 7, we see two ropelength local minima of the 32 edge 51 knot. The conformations appear very

similar. The energy minimizing conformation for the 32 edge 51 knot is shown in Fig. 12. Notice that the

shape of this conformation is much different. The energy minimizing conformation exposes more of the

Fig. 11. ACNðKÞ versus EMDðKÞ3=4 for ropelength and energy minimized 32 edge knots.

Fig. 12. 32 edge energy local minimum 51 knot, EðKÞ ¼ 83:41.
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symmetries of the knot, while the ropelength minimizing conformation attempts to efficiently consume as

much of the space about the knot as possible. Despite the differences between the two functions and be-

tween their optima, some spatial measures of the optima are surprisingly similar.

For example, the similarity in the average crossing numbers as expressed by the equation:

Equð32Þ : ACNðKE32Þ ¼ 1:36þ 0:77ACNðKq32Þ; R2 ¼ 0:95:

6.3. Probability, ropelength, and energy

In Sections 2 and 3 we have discussed the relationship between lðKÞ, the existence of embedded tubes

with the knot K as its core, the ropelength, and thickness. When the thickness is smaller than half the

shortest edge length, lðKÞ provides the dominant contribution to the thickness and connects thickness to

the radius of a neighborhood of the knot in Equ0ðnÞ that lies entirely within the component containing K. In

this regime, a configuration of optimal thickness lies in the largest region of the component defining the

equilateral knot type. Its size, one might postulate, should provide an indicator of the relative size of the

component in knot spaces as measured by the proportion of knot space it defines. As a rough approxi-

mation, if the components are quite concentrated about the optimal ropelength knot, there should be a
correlation between the ropelength or thickness and the proportion of the space in that component, as

measured by the knot probability.

Graphs of probability versus ropelength, thickness, and energy show that this is not the case and suggest,

rather, a possibly exponential relationship. An analysis or our data shows that,

Equð32Þ : lnðPRðKÞÞ ¼ 2:21� 0:16qðKq32Þ; R2 ¼ 0:85:

Thus, based on the data developed in this project, there appears to be no evidence that the probability of

an equilateral knot type is simply related to the ropelength, qðKq32Þ, of the thickest representative of the

knot type although the general trend is visible in Fig. 13. Alternatively, this data might suggest that the

component if not concentrated about the thickest representative but, rather, is somewhat dispersed in knot

space.

Considering the possibility of a similar relationship between probability and energy gives a consistent

structure

Equð32Þ : lnðPRðKÞÞ ¼ �2:39� 0:045EMDðKE32Þ; R2 ¼ 0:87:

Fig. 13. ln(probability 32) versus qðKq32Þ.
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6.4. Volume and surface area associated to spatial knots

One way in which to enclose a spatial knot is to construct a small box surrounding the knot and another

is to take the convex hull of the knot. These data clearly suggest a linear relationship between the volume

and surface areas of each of the encapsulating shapes. In each of the spaces Equð8Þ; Equð16Þ, and Equð32Þ
the data provides the following equations:

Equð8Þ : BV ðKq8Þ ¼ �779:44þ 2:90BSAðKq8Þ; R2 ¼ 0:99;

Equð16Þ : BV ðKq16Þ ¼ �806:23þ 2:90BSAðKq16Þ; R2 ¼ 0:98;

Equð32Þ : BV ðKq32Þ ¼ �745:62þ 2:84BSAðKq32Þ; R2 ¼ 0:99;

where BV ðKÞ ¼ BLðKÞ � BW ðKÞ � BHðKÞ and BSAðKÞ ¼ 2ðBLðKÞ � BW ðKÞ þ BLðKÞ � BHðKÞ þ BW ðKÞ�
BHðKÞÞ.

If one changes the variables to L0, W 0, H 0 by subtracting 5.79667, 5.88434, and 5.72324 from each of BL,

BW, and BH in Equð8Þ; Equð16Þ, and Equð32Þ, respectively, the following equations result:

Equð8Þ : L0W 0H 0 ¼ 2:90 � 2ðL0W 0 þ L0H 0 þ W 0H 0Þ;

Equð16Þ : L0W 0H 0 ¼ 2:90 � 2ðL0W 0 þ L0H 0 þ W 0H 0Þ;

Equð32Þ : L0W 0H 0 ¼ 2:84 � 2ðL0W 0 þ L0H 0 þ W 0H 0Þ:

By dividing, one has the following relationship between the dimensions of the box:

Equð8Þ : 0:172414 ¼ ð1=L0 þ 1=W 0 þ 1=H 0Þ;

Equð16Þ : 0:172414 ¼ ð1=L0 þ 1=W 0 þ 1=H 0Þ;

Equð32Þ : 0:176056 ¼ ð1=L0 þ 1=W 0 þ 1=H 0Þ;

showing that the reciprocals of L0; W 0 and H 0 line in a plane.

This type of linear structure is not restricted to the case of an enclosing box. Let HV ðKÞ and HSAðKÞ
denote the volume and the surface area of the convex hull of K. In each of the spaces Equð8Þ; Equð16Þ, and
Equð32Þ the data supports a linear relationship:

Equð8Þ : HV ðKq8Þ ¼ �235:62þ 1:99HSAðKq8Þ; R2 ¼ 0:97;

Equð16Þ : HV ðKq16Þ ¼ �239:17þ 2:07HSAðKq16Þ; R2 ¼ 0:96;

Equð32Þ : HV ðKq32Þ ¼ �190:68þ 1:98HSAðKq32Þ; R2 ¼ 0:98:

Another manifestation of the special nature of the shape of the ropelength optimized knots is the re-
lationship between HV ðKÞ and sðKÞ. For the following two equations, the HV ðKÞ has been renormed so

that the length of the knot is 1. In Equð32Þ, we have

Equð32Þ : HV ðKq32Þ ¼ �0:0001þ 0:040sðKq32Þ; R2 ¼ 0:98:
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Alternatively,

Equð32Þ : HV ðKq32Þ ¼ 0:0002þ 0:36 � psðKq32Þ2; R2 ¼ 0:93;

providing a comparison between the volume of the convex hull and the volume of a torus neighborhood of

the knot with radius equal to the thickness. This torus takes up approximately 1/36th of the volume

suggesting a rather irregular position for the knot.

7. Connections to the molecular biology of DNA

Knotted molecular configurations occur in research studies designed to identify useful mechanisms

describing the action of various classes of enzymes on DNA. Principal examples are the topoisomerases and

enzymes mediating site-specific recombination. An understanding of the variation of the nature of knotting

that arises under specific physical structural constraints is a useful tool in these studies. The coarsest grained
structure is that of the polygonal knot for which there are no constraints on the length of edges, the angle

between adjacent edges, or other spatial constraints. Estimates based upon polygonal knots structure

represent a limiting behavior. Equilateral knot space is a codimension n subspace of polygonal knot space.

How does the structure of equilateral knot space compare with that of polygonal knot space? This is a

complex question in as much as certain helpful aspects of the geometry and topology are inherited by the

subspace. For example many local aspects of the structure of knots vary with the size of the perturbation in

the same manner without respect to whether the knots are equilateral or merely polygonal. On the other

hand, we know that the topological structure of the components of equilateral knot space is more complex
than those of polygonal knot space [4]. This may imply that many elementary spatial properties may vary in

a complicated fashion with the imposition of constraints on the angles or distinct families of subsets of

equilateral knot space.

The central theme of the book, Ideal Knots [58], edited by A. Stasiak, V. Katritch, and L.H. Kauffman,

is an exploration of whether there is a most ‘‘natural’’ representation of a knot type. While some elements

of this discussion reflect a search for symmetry or visual simplicity, the underlying objective is the iden-

tification of conformations that arise most frequently, at least in some average manner, in the context of

physical phenomena. Such ‘‘ideal’’ conformations are, it is proposed, those which provide optimal values
for certain knot energies, for the thickness or the ropelength, for the average crossing number, or for the

ratio of knot volume divided by surface area. In the previous section we have discussed the interrela-

tionships between the characteristics of such optimal conformations. One way by which the degree of

success of these ideal conformations can be measured is through the comparison of the various spatial

parameters and the electrophorectic separation of knots from the unknotted circle. This method is used by

Stasiak et al. in ‘‘Electrophoretic mobility of DNA knots’’ [57] derived from [9] and [23].

We wish to emphasize the disclaimer mentioned by Stasiak et al. to the effect that the correlations

observed between the real physical behavior of DNA knots should not be construed as evidence that these
represent the actual conformation. Only that these physical parameters appear to capture some charac-

teristic of the ‘‘average’’ conformation that correlates to the physical behavior. In many cases, the devel-

opment of a physical model that explains these observed relationships is the most important research

objective in the mathematical domain.

Note that Stasiak et al. employ ‘‘mean inverse distances’’ and state that these are directly proportional to

the average crossing numbers. ‘‘The mean of inverse distances in a molecule is an accepted measure of

molecular compactness and is simply related to the sedimentation constant’’ [29].

In [60], they propose to demonstrate ‘‘that the expected sedimentation coefficient of randomly fluctuating
knotted or catenated DNA molecules in solution shows approximately linear correlation with the average

452 K.C. Millett, E.J. Rawdon / Journal of Computational Physics 186 (2003) 426–456



crossing number of the corresponding knots or catenanes’’. Later, ‘‘one of us (A.V.) developed recently a

method to calculate the expected sedimentation coefficient of DNA molecules with a given topology [53]’’.

We see the same striking relationships between the ropelength, energy, average crossing number (opti-

mized knots) and the gel mobility of the corresponding DNA knots. These relations are shown in Figs. 14

and 15.

8. Conclusions, conjectures, and questions

One of the major objectives of this project has been the study of known relationships between physical

knot parameters and the search for new relationships. From one point of view, we have developed evidence

that implies the independence of many of these parameters. In other cases, for example ropelength and

energy optimized knot configurations, the geometry of the knot is similar but not identical. Thus, similar

but different properties of knots are connected. Finally, we have observed a few new relationships.
One example of this is the apparent linear relationship between volume and surface area of optimal

enclosing figures, boxes and convex hulls. While we are not able to prove this is the case, in general, we wish

to propose the following conjecture:

Conjecture: There is a linear relationship between the volume and surface area of the ropelength opti-

mized configurations of the equilateral knot types with the same number of edges;

and, propose the following question:

Fig. 14. Relative velocity of DNA versus qðKq32Þ and ACNðKq32Þ.

Fig. 15. Relative velocity of DNA versus EMDðKE32Þ and ACNðKE32Þ.

K.C. Millett, E.J. Rawdon / Journal of Computational Physics 186 (2003) 426–456 453



Question: What properties are implied by the existence of a linear relationship between the volume and

surface area of a family of ropelength optimized equilateral knots?

In looking at the knot probability, we have observed the absence of a strong correlation between the size

of the largest ball centered at the ropelength optimized knot and the probability. This suggests that the

proportion of the volume, in a ball centered at this knot, of knots of the same geometric type falls off

rapidly as the function of the radius. This is a measure of the degree of dispersal of the given knot type in

knot space. As a consequence, we propose the following question:

Question: What is the rate of dispersal of the knot types as a function of the radius of the ball centered at
the minimal ropelength conformation (the conformation of maximal thickness)?

The geometric properties of the equilateral representatives (especially their optimized representatives)

appear to undergo a phase transformation as a function of the number of edges. At one extreme, one has

the minimal equilateral edge number model which is a very ‘‘tight’’ conformation. At the other extreme, one

has models that closely approximate the ropelength optimized smooth knot of the same topological type.

Our data provide preliminary evidence of the existence of this behavior and suggest some consequences in

terms of the spatial nature of the equilateral model. Further research is required to demonstrate the ex-

istence of this transition and to capture and exploit potential connections between the behavior of the
equilateral knots in the two regimes. One expected outcome is the ability to identify differences that strongly

correlate with observed physical behavior such as gel mobility of DNA knots.
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