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A mathematical knot is simply a closed curve in three-space. Classifying
open knots, or knots that have not been closed, is a relatively unexplored
area of knot theory. In this note, we report on our study of open random
walks of varying length, creating a collection of open knots. Following
the strategy of Millett, Dobay and Stasiak, an open knot is closed by
connecting its two open endpoints to a third point, lying on a large
sphere that encloses the random walk deeply within its interior. The
resulting polygonal knot can be analyzed and its knot type determined,
up to the indeterminacy of standard knot invariants, using the HOMFLY
polynomial. With many closure points uniformly distributed on the large
sphere, a statistical distribution of knot types is created for each open
knot. We use this method to continue the exploration of the knottedness
of linear random walks and apply it also to the study of several protein
chains. One new feature of this work is the use of an Eckert IV planar
projection, preserving area, of the knotting distribution on the sphere to
characterize the spatial properties of the distribution.

1. Introduction

Proteins are linear polymeric chains of amino acids connected in a specific
sequence and folded into a specific spatial structure. While the linearity
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of proteins precludes them from forming real (closed) knots, their spatial
structure has been shown to contain knotted conformations in a number of
distinct methods developed for this purpose. Mansfield6,7 used a method in
which the protein structure is extended from the endpoints to two different
points on a sphere that enclosed the protein at a relatively far distance.
These two endpoints were then connected by a length of the generically
unique great circle on the sphere and the knot type determined using knot
invariants. Mansfield performed this operation 100 times for a protein in
order to find a dominant knot in the resulting data. Taylor9 described a
continuous deformation of the protein structure in which the ends were
held fixed and the rest of the protein is deformed around them until no
further smoothing is possible. From the final configuration Taylor expects
that the knot type can be identified. Applications of this method on a given
protein can, however, yield different results depending upon order in which
the deformations take place.8 Both of these methods have something in
common: in defining knots in proteins there is a degree of uncertainty.

The method we used, developed by Millett, Dobay and Stasiak,8 is sim-
ilar to Mansfield’s as it attempts to find the dominant knot type from
multiple closures of the protein structure. In their method a large sphere,
relative to the size of the open knot, is created and centered at the cen-
ter of the smallest sphere that encloses the protein (small-ball). A point
is then picked at random with respect to the uniform distribution on this
sphere and the two endpoints of the open knot are connected to this point,
effectively closing the knot as shown in Figure 1.

The resulting knot, now closed, is analyzed by computing the HOMFLY
polynomial.4,3 When multiple random points are chosen on the sphere, a
spherical distribution of knot types is thereby created that is associated to
the single open knot. These distributions provide the information, i.e. the
knotting spectrum of the configuration, that is used to identify the domi-
nant knot type of the configuration. In this study, we have first tested the
method on sets of 1000 random walks, each set consisting of walks of a
specific length. This analysis provides a some insight into the structure of
knotting. We wish, however, to have a deeper spatial sense of the distribu-
tion of knot types as they occur on the surface of the sphere containing the
closure points. In order to capture the relative proportion and the spatial
distribution, we selected the Eckert IV equal area projection of the sphere
on which we have coded the knot types by color.

The analysis of the data has provided some insight into the spatial
structure of the random walks and how this structure is reflected in the
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Fig. 1. A random walk of length 50 is closed to a random point on an enclosing sphere,

generating a unique knot type.

knotting spectrum. In addition, we applied this method to eight proteins,
those studied by Taylor, in order to test the extent of agreement between
the two methods. In all cases, except the instance of 1kopA, the results are
in agreement. In 1kopA,1 Taylor9 finds a figure-eight knot while we find no
dominant type but, rather, a balance between the unknot and the trefoil
knot.

2. Random Walks and Knotting

Before analyzing the knottedness of protein chains we extended that initial
work of Millett, Dobay, and Stasiak8 by applying the method to sets of
1000 classical random walks composed of uncorrelated equilateral segments
with varying numbers of steps (50, 100, 150, 200, 250, and 300 steps). For
each linear random walk in a set, the smallest enclosing sphere was deter-
mined and 10,000 random points on the large enclosing sphere were chosen
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Fig. 2. The knot spectrum associated to a single linear random walk of 50 steps. 5*

denotes the collection of knots with 5 crossings. Similarly for 6*, etc.

and analyzed via the HOMFLY knot polynomial invariant computation.3

Typically an open knot will produce different closed knot types depending
upon the choice of closure point on the sphere. In some regions, this knot
type will be the same as the end-to-end closure of the configuration. As the
choice of closure point moves about the sphere, the two closing segments
will pass through segments of the linear random walk. Such passages may
or may not have the effect of changing the closed topological knot type of
a specified open knot.

The first task is translating the 10,000 point knotting distribution, an
approximation of the continuous distribution, into a histogram representing
the knot spectrum of the knot. Of great interest is not only determining
the dominant knot type in the spectrum, but identifying a standard by
which a certain knot type should be considered as dominant and, therefore,
considered as the knot type associated to the open walk. One standard,
“strong dominance”, could be to require its occurrence in over 90% of the
closures while, alternatively, one could require that its occurrence be twice
as large as its nearest competitor, described as “dominance”. Similarly, one
could require that the knot type appear in 50% or more instances, giving
“weak dominance”. In Figure 2 we show the spectrum associated to a single
linear random walk having 50 steps. In Figure 3 (Color Plate 1) we have
collected 1,000 such spectra to give a sense of the presence of knots in such
linear random walks. Figures 3 through 6 provide visual evidence of the
increasing complexity of the spectra as the number steps in the random
walk increases from 50 through 300 steps.
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Fig. 3. The collected knot spectra for 1000 random walks of length 50.

For random walks of length 50, 95.9% (959 out of 1000) showed a certain
knot type for over 90% of its closures, see Figure 3 (Color Plate 1). Of
those, 32 had a single closure type with, therefore, a probability of one. All
of these closures were the unknot. Applying the “weak dominance” criteria,
one finds that in 99.1% of the analyzed random walks showed a dominant
knot type that was formed in more than 50% of the random closures for
each individual random walk. In a walk of this relatively short length, 50
steps, the dominant knot type appears to be easy to recognize. For longer
walks one expects a higher degree of uncertainty as to the dominant type.
For a random walk of length 300, see Figure 8 (Color Plate 6), only 86.1%
(861 out of 1000) showed a certain knot type for over 90% of its closures.
In this case, no knots had a probability of one but 18.6% had a knot type
of probability 0.99 or more. Out of 1000 cases, only 4 random walks of
length 300, 0.4%, had no knot type appearing in more than 50% of its
closures. This provides concrete evidence that while longer walks produce
greater complexity in determining a dominant knot type, this method has
significant identification power at scales of interest in the natural sciences.

We have explored the relationship between the spatial character of the
linear random walks and the observed knot types. For example, one of
these spatial properties is the end-to-end length, i.e. the distance between
the start of the walk and its end. One knows that the average end-to-end
length is proportional to the square root of the length of the walk. There are
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Fig. 4. Knot spectra for 1000 random walks of length 100.

Fig. 5. Knot spectra for 1000 random walks of length 150.

statistically very few instances of random walks with extreme end-to-end
lengths (either very short or very long) in relation to the number of steps in
the random walk, see Figure 9. In either extreme, the distribution of knot
types is more likely to have a strongly dominant knot. For small end-to-end
lengths, this will be the knot type of the direct closure, and for large end-to-
end lengths, one expects the trivial knot to dominate. Indeed, behavior of
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Fig. 6. Knot spectra for 1000 random walks of length 200.

Fig. 7. Knot spectra for 1000 random walks of length 250.

this character is reflected in the data. For example, consider the case of 50
step linear random walks shown in Figure 10. The relationship between the
end-to-end length, d, of a random walk of length L and the complexity of the
knotting, as measured by the number of knot types observed, N(d), seems
to take the form of a power function: N(d) = Constant ∗L/

√
d. While this

functional relationship is surprisingly simple, we believe that it warrants
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Fig. 8. Knot spectra for 1000 random walks of length 300.

Fig. 9. The probability distribution of end-to-end lengths for 1000 random walks of
length 50

further investigation in view of data developed in this project. What it tells
one is certainly quite intuitive: the shorter the end-to-end length, the more
knot types will appear up to a certain threshold point at which time most
of the knots will be of the type determined by the end-to-end closure.

Another possibly interesting spatial characteristic is the compactness
of the linear random walk. We calculated the ratio of the diameter of the
smallest ball containing the walk and its end-to-end length distance. A
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Fig. 10. The distribution of knot types as a function of the end-to-end distance for 1000

random walks of 150 steps. This function, the number of knot types, appears to be a
simple function of the end-to-end distance, d, and the number of steps in the walk, L:

Constant ∗ L/
√

d.

smaller ratio signals a relatively compact walk. The general trend observed
was that the more compact the random walk, the greater number of distinct
knot types it would likely contain. See Figure 11.

We also looked at the distribution of the probabilities of the unknot
knot. We observed that the distribution of the unknot in random walks
was strongly bimodal. For a random walk, it is most likely that either
almost all closures of a linear random walk are unknots, or almost none of
the closures are unknots. For example, see Figure 12.

3. Visualization of the Knotting Spectrum

The principal objective of this project is to develop a method to visualize
the distribution of knotting that occurs with the spherical closure of the
linear knot under investigation. To do so, we graphically reproduce the
sphere and indicate the type of the knot closure at each point by means
of a color assigned to each point on the sphere depending upon the type
of knot created by closure from that point The resulting image provides a
richer picture of the knotting spectrum of the random walk. This procedure
determines, on the closure sphere, a collection of regions areas defined by
the equally colored points within them. The regions of a given color may
be disconnected or not simply connected, as a given knot type may show
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Fig. 11. A scatter plot of the number of knot types versus the ratio of the end-to-end

length to the small ball radius for 1000 random walks of length 150.

Fig. 12. The bimodal distribution of trivial knots versus the ratio of the end-to-end
length to the small ball diameter for 1000 random walks of length 150.

up in distant regions of the sphere.
Key to attaining our principal objective is to employ an area preserv-
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Fig. 13. An Eckert IV projection of the spectrum of the protein 1cmxA

ing planar representation of the sphere so as to link the statistics of the
knot spectrum with the visual qualities of the image. The Eckert IV equal
area projection10 of the closure sphere appears to be an excellent vehicle to
accomplish this purpose. This is a pseudocylindrical projection that is non-
conformal, but presents the area with minimal distortion, one of its most
important properties. See Figure 13 (Color Plate 7).2 Using this projection
greatly simplifies the analysis of a sphere distribution and an equal area
projection was chosen in order to visually reproduce the statistical preva-
lence of each knot type: a knot type occurring in 30% of closures will have
an area equal to 30% of the projection of the sphere. In view of its finer
presentation of the knotting spectrum of the random walk, we call this the
spectral sphere.

We believe that the local and global structure of the regions associated
to the knot types presented in the spectral sphere are potential reflections of
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the spatial properties of the random walk. From a topological perspective,
generically, the borders between two regions on the spectral sphere’s knot
types represent the passage of one edge through another. Such a passage
can result in the change of the knot type but may knot always do so.
In the spectral sphere we only record those instances in which there is a
change in the knot type. Typically, such a change is reflected by a change of
exactly one crossing in the minimal knot diagram of one of the associated
knots. This may lead to substantial simplification of the diagram of the
subsequent knot showing extensive global topological change between two
closures. Cases in which two contiguous knot types in the spectral sphere
can only be connected by a topological process involving more than one
crossing change provide evidence of an insufficient resolution of closures
necessary to accurately render the detail of the local properties.

4. Applications to the Identification of Knotting in Proteins

While we tested the spectral sphere method of analysis on linear random
walk, the purpose for its development was its application to protein struc-
ture. The existence of classical knots in cyclic DNA, forming a closed path,
is already well established. Knots in protein molecules have been studied
but by taking into consideration the entire network of the protein,5 by sim-
plifying the the structure,9 or by a closure method.6,7 To test our spectral
sphere method, we selected the 8 protein segments which had been studied
by Taylor9 from the Protein Data Bank.1 This data consists of coordinates
of the alpha-carbons in the backbone of the selected proteins. When the
number of carbon atoms was too large for our HOMFLY programs, e.g.
1yve, 1znc, and 2btv, it was necessary to reduce the number of points by
taking every other carbon atom in the backbone. In these cases, the data
for both the full and reduced protein is shown when possible, Table 1. The
case of 1yve256 is included as we were unable to get good data for 1yve513

(where the second number is the number of carbon atoms analyzed). We
call attention to the fact that there are significant differences in the re-
sults between these two cases. For that reason, we are unable to draw any
conclusions from the spectral calculations for those examples. Due to the
computational constraints arising in our HOMFLY programs, we are lim-
ited to under 1,000 crossings is the knot projections. As a consequence,
we were unable to apply our method to 2btvB885 because this data pro-
duced too many crossings. Fortunately, taking every other carbon atom did
produce useable data.
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Table 1. The analysis of seven protein segments, labeled with the num-
ber of carbon atoms employed. The dominant knot is bold and the direct

closure is indicated by italics. In the table, SMD is small ball diameter,
EEL is end-to-end length, Ratio is EEL/SMD, EPsn is the termini dis-
tance from the small ball center divided by the small ball radius, Types is

the number of distinct knot types observed, and the remaining data gives
the proportion of knots of the indicated type.

Protein SMD EEL Ratio EPsn Types 01 31 41 51 52 6+

1cmxA214 74.6 33.4 0.45 0.48 13 0.29 0.64 0.00 0.01 0.04 0.02

1dmxA237 74.9 30.1 0.40 0.68 11 0.25 0.65 0.02 0.05 0.01 0.02

1fugA383 66.7 29.3 0.44 0.91 10 0.11 0.85 0.01 0.01 0.01 0.01

1hcb248 63.6 41.4 0.65 0.70 11 0.28 0.60 0.02 0.07 0.02 0.02

1kopA223 48.1 36.9 0.77 0.82 10 0.45 0.45 0.01 0.06 0.02 0.01

1yve256 68.8 43.2 0.63 0.64 14 0.09 0.01 0.66 0.00 0.00 0.23

1zncA262 55.1 35.9 0.65 0.65 14 0.35 0.51 0.02 0.06 0.02 0.04

2btvB442 260.7 29.9 0.11 0.92 21 0.22 0.02 0.64 0.00 0.00 0.12

We note that, in the protein data, the expected termini behavior was
not uniformly analogous to that observed in the linear random walks on
which we tested our methods. To explore the consequences of this difference,
we calculated the distance of the termini from the small-balls center and
divided it by the small-balls radius. This provides one measure by which
we can quantify the relative positon of the termini of the protein. A smaller
ratio suggests that the termini maybe closer to the center of the protein
mass. For the proteins investigated in this project (excluding 1yve) the
average ratio was 0.751. Anticipating that the termini would lie close to the
surface of the small ball enclosing the protein,7 this number is smaller than
expected with 1cmxA having the lowest ratio of 0.479. The consequences
this might have upon the observation of knotting encountered in the protein
may be worthy of further investigation.

The types of knots found through our analysis were not surprising in
view of previous analysis of the presence of knotting in these proteins.6,7,9

The dominant knots are relatively simple ones: unknot, trefoils and figure-
eight. Only one protein (1fugA) had a dominant knot type above 80%.
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1kopA is especially interesting because it has two essentially equally likely
knot types, the unknot and the right trefoil, whereas Taylor9 found the
right trefoil. In all other cases we find agreement with Taylor’s results. We
note, however, that in only two of the eight cases did the direct end-to-end
closure result in the same knot type.

5. Conclusions and Speculations

This project principally consisted of an effort in numerical analysis, the de-
velopment of a spectral sphere data visualization method, applied to linear
random walks and, ultimately, to eight proteins. Our findings strengthen
the proposal that certain properties of classical closed knots can be iden-
tified and quantified in open knots. The relationship between end-to-end
length and the number of knots in a random walk was experimentally dis-
covered and, we believe, could be explained by theoretical mathematical
analysis. An observation that is attractive for further investigation is the
bimodal nature of distributions of the unknot; it suggests the exploration
of this property for other knot types. An analytical proof of this would
provide a strong foundation on which to build a theoretical understanding
of the knotting spectrum of an open chain.

We suggest that the geometry of the spectral sphere is a rich arena
for further research. The mechanics of changes in knot type and crossings
of an open knot is closely related to the structure of the boundaries and
connectivity of the knot regions on the spectral sphere. What is the fractal
dimension of the boundary of the knotting regions on the sphere? How is
the geometry of the knotting regions reflected in the spatial structure of
the open knot or in the properties of the protein?

While it may appear that our explorations have raised more questions
than it has answered, we believe that it has provided new evidence that
this method of analysis of the presence of knotting in open chains is a
powerful and potentially important new approach to a quantitative measure
of knotting.
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