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ABSTRACT

The structure of classical minimal prime knot presentations suggests that there are
often, perhaps always, subsegments that present either the trefoil or the figure-eight knot.
A comprehensive study of the subknots of the minimal prime knot presentations through
15 crossings shows that this is always the case for these knot presentations. Among this
set of 313, 258 prime knot presentation, there are only 547, or 0.17%, that do not contain
a trefoil subknot. Thus, 99.83% of minimal prime knot presentations through 15 crossings
contain trefoil subknots. We identify several infinite minimal alternating prime knot
families that do not contain trefoil subknots but always contain figure-eight knots. We
discuss the statistics of subknots of prime knots and, using knot presentation fingerprints,
illustrate the complex character of the subknots of these classic minimal prime knot
presentations. We conclude with a discussion the conjectures and open questions that
have grown out of our research.
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1. Introduction

In a May 2009 lecture during the Conference on Knot Theory and its Applications

to Physics and Biology held at the Abdus Salam International Centre for Theo-

retical Physics Advanced School in Trieste, Italy, two conjectures concerning the

fine structure of prime knots, understood as either minimal crossing prime knot

diagrams or ideal representations of the prime knot type, were proposed. They are:

First Conjecture The probability that a minimal prime knot diagram contains

a trefoil segment goes to one as the crossing number goes to infinity.

Second Conjecture The probability that a minimal prime knot diagram con-

tains a trefoil slipknot segment goes to one as the crossing number goes to infinity.

In this report, we describe our efforts in support of the first conjecture and to

confirm, at least for minimal prime knot diagrams through 15 crossings, the follow-

ing conjecture:

1
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Third Conjecture Every minimal prime knot diagram contains a trefoil or

figure-eight knotted segment.

In 2006, Millett had noticed that many of the presentations of prime knots in

standard tables, e.g. Rolfsen [10], contained subsegments that were intrinsically tre-

foil or figure-eight knotted arcs. After a preliminary visual analysis, the project of

a systematic analysis of the known prime knots was undertaken in collaboration

with Joseph Migler, who wrote a computer code that identified all those containing

trefoil knots. Supplemented with a case by case visual analysis of those remain-

ing, it seemed that every prime knot contained either trefoil or figure-eight knots

or both. This data lead to the conjectures proposed in the 2009 lecture. Slavik

Jablan and Ken Millett explored these conjectures from which a more precise in-

terpretation of the conjectures was formulated as reported in [6]. In this report,

the preliminary results of a computer implementation of the refined analysis of

all prime knots through 16 crossings was reported. In this report, we give a brief

historical account of these conjectures ending with their present formulation. We

describe the implementation of a new exhaustive analysis of the subknots of prime

knot diagrams through 15 crossings in light of the conjectures, give the data for

all prime knots through 10 crossings and describe the character of the data for the

prime knots from 11 through 15 crossings, and describe several infinite families of

minimal crossing alternating prime knots that do not contain trefoil subknots but al-

ways contain figure-eight subknots. Access to the data set is provided at the website

http://www.math.ucsb.edu/ millett/KnotsinKnots. We conclude with a discussion

of the conclusions drawn from the analysis of the data and their implications for

the conjectures and further research.

1.1. Historical Perspectives

Seeking a mathematically robust method to identify knotting in open arcs, for

example protein structures, in contrast to the classical mathematical theory of

knotting that is restricted to circular arcs, Dobay, Millett, and Stasiak [7] devel-

oped and employed a new method that could be applied to open molecular chains

such as proteins or other macromolecular structures modeled by open arcs. The

method uses a statistical analysis of the knotting in a collection of closures of the

arcs by connecting its ends to points on a very large sphere containing the open

chain, approximating the “sphere at infinity”. With this new method, one is able

to assess the influence of knotting in an open chain on its radius of gyration and

determine how it scales with increasing length. Millett and Sheldon [8] reassessed

the presence of knots in proteins, Millett [5] measured the average size of knots

and slipknots in random walks, and, more recently, Sulkowska et. al. [11] undertook

a systematic analysis of known protein structures and the biological character of

those containing knots. In 2006, Millett noticed that many of the presentations of
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prime knots in standard tables, e.g. Rolfsen [10], contained subsegments that were

intrinsically trefoil or figure-eight knotted arcs. After a preliminary visual analysis,

a systematic analysis of the known prime knots was undertaken by Joseph Migler

and Millett using a computer code that identified all those containing trefoil knots.

Supplemented by a careful visual analysis of the remaining cases, it seemed that all

prime knots contained either a trefoil or a figure-eight knot or both. The resulting

data lead to the conjectures proposed in the 2009 lecture and the research reported

in [6] and this note.

1.2. Subknots of a Knot

The fundamental challenge is to determine “How can one identify a knot supported

on a subsegment of a minimal crossing prime knot diagram?” To describe our strat-

egy, we consider the case of the K11a135 knot is shown in Figure 1. Imagine that

the entire figure lies in the plane except for small ”indentations” at the crossings

where the lower strand dips below the plane. For example, we take the short seg-

ment of K11a135 indicated by the starting green circle, the terminating red circle,

and containing the orientation arrow as shown in the center. One might expect

that almost all of the closures would result in a trivial knot due to the essentially

planar character of the segment and its evidently unknotted character. In fact, as

the initial and terminal points of the segment lie in the same complementary region

of the complement of the projection of the segment, shown on the right of Figure

1, center, almost all closures result in the unknot.

Fig. 1. Presentation of K11a135 on the left. In the center, a short initial segment of K11a135
oriented in the direction of the arrow, starting at the green circle, and ending at the red circle
is shown. The remaining portion of the K11a135 diagram is modified to represent a strictly
monotonically rising complementary segment passing over the short segment until just before
arriving at the green circle where is descends rapidly to complete the circuit. The short segment,
with the modified complementary segment is shown on the left.

Jablan and Millett explored several possible definitions that might better cap-

ture the intent of the conjectures and to, eventually, facilitate a rigorous proof of
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the conjecture(s) without employing the statistics of the closures to ‘the sphere at

infinity.’ We focused on crossing changes modifying the minimal presentation of the

prime knot consistent with the focus on the structure of subsegments and proposed

the following definiton [6]:

Definition A knot, K*, will be called a subknot of a knot K if it can be ob-

tained from a minimal diagram of K by crossing changes that preserve those within

a segment of the diagram and change those outside this segment so that the com-

plementary segment is strictly ascending and lies over the subsegment.

Observe that this captures the structure in the K11a135 subknot case, a trivial

knot, described above. The result of the crossing changes for the complementary

subsegment are realized in the right in Figure 1 giving a classical trivial knot.

Fig. 2. Presentation of K11a135, a long segment starting at the green circle in the direction of
the arrow until the red circle giving a 77 subknot, the crossings of the complementary segment
removed and, the equivalent result with the complementary segment crossings changed as required.

A more complex case is shown in Figure 2, where we consider a larger subseg-

ment giving the 77 knot in K11a135 as shown in the left. Removing the comple-

mentary segment leaves an arc whose majority closure is a 77 knot. Here, again, we

change the crossings in the complementary segment to achieve a strictly ascending

structure lying over the selected subknot and show the result on the right in Figure

2. If one further shortens this subsegment as shown in Figure 3, the result is a

figure-eight knot, 41. As for the previous 77 case, we also show the configuration

with the complementary segment removed and with the crossings of the comple-

mentary segment changed to achieve a strictly ascending segment lying over the

selected subsegment in Figure 3.

The knot fingerprint [9], shown in Figure 4, is adapted to the case of subsegments

of a minimal crossing prime knot presentation and shows the entire specturm of

subknots of the given presentation. The circular array is indexed by the length of the

segment of crossings, each crossing being counted twice, so that each under crossing

in made an over crossing exactly once and each over crossing remains unchanged.

The knot types of the segments are coded by color according to the color code
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Fig. 3. Presentation of K11a135, a long segment starting at the green circle in the direction of
the arrow until the red circle giving a 41 subknot, the crossings of the comple mentary segment
removed and, the equivalent result with the complementary segment crossings changed as required.

provided to the left of the circular array. In the array one can observe the presence

of the blue figure-eight knot, 41, contained within the pink 77 by following the ray

from the red unknot center at about 3 o’clock toward the boundary. The K11a135

knot is an example of an alternating prime minimal crossing knot that does not

contain a trefoil knot. The K11n123 is a non-alternating prime minimal crossing

knot that does not contain a trefoil but it too contains a figure-eight knot. Note

that by looking at the bounday of the knotting fingerprint one can observe that

the knot diagram contains two single crossing changes that unknot it. These are

the only two 11 crossing minimal crossing prime knot diagrams that do not contain

trefoils.

Fig. 4. Both 11a135 and 11n123 minimal diagram knot presentations contain figure-eight knots
but do not contain trefoils.
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2. Subknot Data Generation

Given a minimal crossing diagram of a prime knot, we must systematically enumer-

ate all segments defined by cutting the implied circle at points between crossings

and identify the knot type to be associated to the segment. Even though the number

of subsegments of each diagram grows quadratically with the number of crossings,

the number of minimal crossing diagrams grows exponentially making the efficiency

of the method of great importance.

The algorithm for subknot generation employs 5 steps:

(1) The systematic idenfification of all subsegments of a give knot presentation.

(2) Identifying and preserving crossings within the subsegment.

(3) Lifting the crossings of complimentary segment above those of the subsegment.

(4) Changing the appropriate crossings in the complimentary subsegment as as to

be strictly ascending.

(5) Simplifying the resulting knot presentation and identifying the knot type of the

subsegment.

Several different programs are used to generate all possible subknot data from

a given knot. First, a Matlab code is used to generate a list of altered code from

input of the prime knot’s minimal diagram Dowker-Thistlethwaite (DT) code I,

[3]. The program does this in several steps. The input DT code is separated into

two different sequences of information: crossing data D and sequential data S.

Given an n-crossing knot, the crossing data is presented in the form of a 2 × n

matrix, with each column representing the signed crossings as given by the DT

code. Sequential data is represented in a 1 × 2n vector recording the expanded

sequential path indicated by the Dowker-Thistlethwaite algorithm from crossing

point 1 until crossing point 2n. The knot 51, see Figure 5, with DT code

I =
[
6 8 10 2 4

]
has crossing data

D =

[
−1 −3 −5 −7 −9

6 8 10 2 4

]
and sequential data

S =
[
−1 2 −3 4 −5 6 −7 8 −9 10

]
Subsegments are defined using the sequential path. The algorithm sequentially

considers all possible starting points p ∈ S and all possible segment lengths l such

that l < 2n. The subsegment Up,l is defined to start immediately before crossing

point p and end immediately after crossing point (p+ l− 1)mod(2n). We represent

this by extracting a vector of length 1× (p+ l− 1) directly from our sequence S. In
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Fig. 5. Knot 51

our example, the subsegment that starts immediately before crossing point p = 7

of length l = 6 is defined to be

U7,6 =
[
−7 8 −9 10 −1 2

]
Note that, from our definition, the number of possible subsegments of an n crossing

knot is 2n(2n− 1).

Once a subsegment has been defined, the program, using crossing data D, applies

steps 2− 4 to the crossings within the segment, the crossings between the segment

and its compliment, and then, the crossings within the compliment. Crossings within

the segment are preserved in the output DT code. In U8,7 we see crossings (−3, 8),

and (−9, 4), and thus preserve the sign of 8 and 4 in our output. Crossings of the

segment with the compliment are then identified and analyzed to determine which

section passes above. If the segment passed above the compliment, the signs of the

crossing number are switched to reflect lifting the compliment above the segment.

In our example, we have crossings (−1, 6), (−5, 10) and (−7, 2). -1 is in our segment

and passes above 6, thus we switch the signs to produce output crossing (1,−6).

The remaining crossings have the segment passing beneath the compliment, and are

therefore preserved in the output. The compliment is then scanned, starting from

(p+l−1)mod(2n) to (p−1)mod(2n). Any crossings within the compliment such that

the later section passed beneath the earlier section has its signs switched to reflect

strict ascending structure of the compliment. In our example, the compliment does

not have self-crossings; however, in U7,4 we observe crossing (−1, 6) in our output,

and record (1,−6) to reflect strict ascension.

We have produced a DT code that is not in simplest form. In our example with

segment U8,7, the output is

O8,7 =
[
−6 8 10 2 4

]
A quick visual analysis confirms that this is a trefoil. For larger knots, this is not so

easy to see. Try, for instance, to simplify the subknot produced from segment U4,19

of knot 11a135. While it is possible to do visually (it is 77), we utilized a program,
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unraveller provided by Morwen Thistlethwaite, to simplify the initial raw subknot

DT code. The program takes DT code as input, and outputs DT code in a simpler

form, allowing us to more easily identify its associated knot type. This code easily

simplifies both of our examples, producing the DT code for 31 and 77 respectively.

Using these tools, we are able to generated all possible subknots of a given knot

and identify their topological type. The results are then organized and analyzed

using a Perl program. These base programs are applied to the lists of presentations

of minimal crossing prime knots and to generate our final data. This data, through

15 crossings, can be found at http://www.math.ucsb.edu/millett/KnotsinKnots.

3. Subknots of Minimal Prime Knot Diagrams

Following an initial visual analysis of the first minimal crossing prime knot dia-

grams, through eight crossings, three phenomena are apparent: (1) not all diagrams

contain trefoils, e.g. the figure-eight diagram does not contain a trefoil; (2) a large

number of diagrams do contain trefoils; and (3) every diagram contained either a

trefoil (all but 41 and 61), or a figure-eight subknot (confirmed in 41 and 61). Joseph

Migler then wrote a program to search minimal crossing prime knot diagrams for

the presence of trefoil knots [12,3]. Those that did not contain trefoils were vi-

sually analyzed to determine if they contained figure-eight knots. Encouraged by

this primitive analysis, we undertook the systematic study of the subknots of the

standard minimal crossing prime knot presentations.

3.1. Computer Analysis of Knot Types of Subknots

Table 1 reports the percentage of distinct trefoil segments and the percentage of

figure-eight knotted segments among all subknot segments of prime knots through

seven crossings. For example, there are 30 segments in the 3 crossing trefoil. In order

to have a trefoil subknot, according to our definition, the complementary segment

must be exactly a single over crossing. As a consequence, the trefoil contains exactly

3 trefoil, i.e. 31, subknots or 10% and no figure-eight, i.e. 41, subknots as indicated in

the first row of the table. In the same way, of the 56 subknots of the 4 crossing figure-

eight knot, there are exactly four 41 subknots and no 31 subknots as is reported

in the second row of the table. Note that the fourth column reports the number of

distinct knot types observed among all the subknots. Two types always occur, the

unknot and the knot type of the diagram. Thus, for example, for the 51 knot, we

observe 01, 31 and, 51 or three distinct knot types as is indicated in the third row

of the table.

Table 2 reports the analysis of the eight crossing prime knots. Among the 21

eight crossing prime knots, there are 3 that do not contain 31’s: 81, 83,& 812. As

earlier, each of these does, however, contain 41 subknots.

All nine crossing prime knots, Table 3, contain 31’s.

Tables 4 and 5, for ten crossing prime knots, show that 96% contained trefoil
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Table 1: Analysis of Subknots in Minimal 3 to 7 Crossing Prime Knots

Knot percentage 31 percentage 41 Unique Subknots

31 10 0 2

41 0 7.143 2

51 22.222 0 3

52 13.333 0 3

61 0 12.121 3

62 9.09 9.09 4

63 26.667 0 3

71 15.38 0 4

72 6.593 0 4

73 10.981 0 5

74 8.791 0 4

75 15.38 0 5

76 10.981 6.593 5

77 2.198 13.28 4

knots. The 7 minimal 10 crossing prime knots without trefoils are 101, 103, 1013,

1035, 1045, 1058, and 10123.

For the 552 eleven crossing knots, 99.6% contain trefoils. The only two knots

without trefoils are 11a135 and 11n123. The contain figure-eight subknots.

For the 2, 176 twelve crossing knots, 98.6% contain trefoils. There are 31 that

do not contain trefoils. They contain figure-eight subknots.

For the 9, 988 thirteen crossing knots, 99.7% contain trefiols. There are 29 that

do not contain trefoils. They contain figure-eight subknots.

For the 46, 972 fourteen crossing knots, 99.77% contain trefoils. Thus, 0.23% or

109 do not contain trefoils. They contain figure-eight knots.

For the 253, 263 fifteen crossing knots, 99.86% contain trefoils. Thus, 0.14% or

366 do not contain trefoils. They contain figure-eight knots.

4. A Ubiquitous Family: Trefoils, Figure-Eights and, Others?

So far, every minimal diagram of a prime knot has contained either a trefoil or

a figure-eight knot. Perhaps, if our conjecture is not true, there may still be a

finite collection of prime knot types with the property that every minimal diagram

contains one of these. We considered possible prime knot types that might contain

neither a trefoil nor a figure-eight knot but have failed to identify a counter-example

to the conjecture. Interesting possible cases have included the Conway knots, 8* =

818, 9* = 940, and 10* = 10123, Figure 8. The first case, 8*, has been discussed in

[6] and does contain trefoils. In Table 3 we see that 940 does contain trefoils but

that, in Table 5, 10123 does not contain trefoils. Both of contain figure-eight knots.
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Table 2: Analysis of Subknots in Minimal 8 Crossing Prime Knots

Knot percentage 31 percentage 41 unique subknots

81 0 0.066 4

82 0.1 0.05 6

83 0 0.066 4

84 0.05 0.066 6

85 0.166 0.033 6

86 0.1 0.066 6

87 0.15 0 5

88 0.183 0 5

89 0.1 0.033 5

810 0.216 0 7

811 0.033 0.05 7

812 0 0.166 4

813 0.083 0.016 6

814 0.066 0.1 6

815 0.2 0 6

816 0.15 0.016 6

817 0.116 0.033 5

818 0.133 0 3

819 0.225 0 7

820 0.158 0 7

821 0.166 0.025 6

Thus, so far, all the evidence suggests that the conjecture may be true.

4.1. Knots Without Trefoil Subknots

To further test the conjecture, we analyze the known minimal crossing prime knot

presentations that do not contain trefoils with the twin goal of proving the existence

of infinite families of knots without trefoil subknots and to determine whether or

not each of them contains figure-eight knots. The first class of knots to consider are

the rational knots, i.e. those given by the Conway notation [n1 n2 . . . nk] [2]. The

first class consists of 41=[ 2 2 ], 812=[ 2 2 2 2 ], 12a477=[ 2 2 2 2 2 2 ], . . . , 61=[ 4 2 ],

1013=[ 4 2 2 2 ], . . . , 81=[ 6 2 ], 12a691=[ 6 2 2 2 ], . . . , 101=[ 8 2 ], 14a??=[ 8 2 2 2 ],

. . . , 12a803=[ 10 2 ], . . . . This class also includes 83 = [ 4 4], 103 = [ 6 4 ], 1013 =

[ 4 2 2 2], 1035 = [2422], 12a1166 = [ 8 4 ], 12a482 = [ 4 4 2 2 ], 1035 = [ 2 4 2 2 ],

12a197=[ 2 6 2 2 ], 12a471=[2442],12a690=[4242],12a1127=[4224],12a1287=[66].

Theorem 4.1. Knots with a Conway notation of the form [ k1 k2 . . . kn ] consisting

of sequence of n ≥ 2 positive even numbers k1, k2, . . . , kn do not contain trefoil

subknots but always contain 41 = [ 2 2 ] knots.
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Table 3: Analysis of Subknots in Minimal 9 Crossing Prime Knots

Knot perc. 31 perc. 41 unique subknots Knot perc. 31 perc. 41 unique subknots

91 0.117 0 5 92 0.039 0 5

93 0.091 0 7 94 0.065 0 7

95 0.052 0 6 96 0.117 0 7

97 0.143 0 7 98 0.130 0.052 7

99 0.117 0 8 910 0.065 0 7

911 0.078 0.039 8 912 0.065 0.026 8

913 0.104 0 8 914 0.026 0.065 7

915 0.039 0.091 7 916 0.196 0 8

917 0.052 0.091 6 918 0.065 0 8

919 0.013 0.143 6 920 0.130 0.013 8

921 0.065 0.039 7 922 0.098 0.091 10

923 0.104 0 6 924 0.156 0.039 9

925 0.091 0.091 9 926 0.091 0.052 8

927 0.091 0.065 7 928 0.183 0 6

929 0.143 0.052 9 930 0.111 0.078 10

931 0.169 0 6 932 0.078 0.052 9

933 0.104 0.039 8 934 0.052 0.078 6

935 0.078 0 5 936 0.124 0.065 11

937 0.013 0.091 6 938 0.169 0 8

939 0.078 0.052 8 940 0.039 0.078 5

941 0.039 0.078 6 942 0.078 0.088 10

943 0.117 0.088 12 944 0.084 0.055 11

945 0.127 0.058 11 946 0.045 0.062 8

947 0.052 0.098 6 948 0.140 0.013 7

949 0.137 0 6

Proof. For these rational knots one may simply choose the complementary segment

that reduces the second entry to 2, eliminates undercrossings in the remaining ki,

and, then, reduces k1 to 2. An example implementing this observation for 12a471

= [ 2 4 4 2 ] is shown in Figure 7. The fact that they do not contain trefoils follows

from the observation that their subknots always have Conway notations with only

positive even entries.

Note that the requirement that the ki are positive even is necessary because the

trefoil knot has a Conway representation as [ 2 -2 ].

The 10 crossing knots without trefoil subknots are 1045 = [21111112],

1058 = [22, 22, 2], and 10123 = [10*].

The 11 crossing knots without trefoils are 11a135 = [8 ∗ 22] and

11n123 = [2.21,−2.2].
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Table 4: Analysis of Subknots in Minimal 10 Crossing Prime Knots

Knot perc. 31 perc. 41 unique subknots Knot perc. 31 perc. 41 unique subknots

101 0 4.31 5 102 8.421 3.257 8

103 0 4.31 6 104 3.158 4.31 8

105 12.63 0 7 106 7.368 4.31 9

107 2.105 3.257 10 108 6.316 4.31 9

109 10.521 2.105 8 1010 5.263 2.105 9

1011 6.316 4.31 9 1012 13.68 0 9

1013 0 9.573 7 1014 7.368 6.415 10

1015 12.63 0 8 1016 2.105 4.31 10

1017 12.63 0 6 1018 5.263 3.257 9

1019 9.474 2.105 10 1020 11.571 4.31 8

1021 5.263 3.257 11 1022 9.474 4.31 8

1023 8.421 0 9 1024 3.158 4.31 10

1025 9.474 3.257 11 1026 5.263 4.31 10

1027 12.63 1.152 10 1028 10.521 1.152 9

1029 4.211 7.368 9 1030 3.158 6.415 10

1031 9.474 0 7 1032 11.571 1.152 9

1033 4.211 3.257 8 1034 16.84 0 7

1035 0 14.83 6 1036 4.211 11.67 8

1037 10.521 0 6 1038 6.316 4.31 9

1039 8.421 4.31 10 1040 11.571 0 8

1041 1.053 10.62 9 1042 5.263 6.415 9

1043 16.84 1.152 8 1044 7.368 7.368 9

1045 0 14.83 6 1046 15.781 2.105 10

1047 17.89 0 10 1048 17.89 0 11

1049 16.84 0 11 1050 11.05 2.105 13

1051 15.26 0 13 1052 13.151 1.152 13

1053 14.21 0 12 1054 17.89 0 11

1055 12.63 0 10 1056 13.68 2.105 12

1057 15.781 0 12 1058 0 17.46 7

1059 4.211 15.26 11 1060 1.053 14.83 9

1061 10.521 4.31 9 1062 15.781 0 11

1063 11.571 0 9 1064 13.68 1.152 9

1065 12.63 1.152 13 1066 15.781 0 10

1067 3.158 4.31 11 1068 8.421 1.152 9

1069 7.368 4.31 9 1070 6.842 11.67 12

1071 13.68 5.263 10 1072 10 8.421 13

1073 7.895 8.421 12 1074 4.211 4.31 10

1075 6.316 7.368 6 1076 18.941 3.257 9

1077 16.84 0 10 1078 13.68 3.257 8

1079 20 0 9 1080 20 0 11

1081 18.941 2.105 9 1082 11.571 2.105 10

1083 6.316 1.152 11 1084 18.941 0 9

1085 13.68 1.152 12 1086 5.263 3.257 9
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Table 5: Analysis of Subknots in Minimal 10 Crossing Prime Knots

Knot perc. 31 perc. 41 unique subknots Knot perc. 31 perc. 41 unique subknots

1087 14.731 2.105 11 1088 1.053 10.62 6

1089 2.105 9.573 9 1090 10.521 5.263 10

1091 17.89 0 10 1092 16.84 2.105 12

1093 14.731 4.31 12 1094 14.731 2.105 10

1095 17.89 0 12 1096 5.263 14.83 10

1097 8.421 8.421 11 1098 8.421 2.105 12

1099 18.941 0 9 10100 14.731 1.152 12

10101 12.63 0 11 10102 5.263 3.257 11

10103 13.68 1.152 10 10104 11.571 1.152 10

10105 5.263 7.368 10 10106 10.521 2.105 11

10107 10.521 3.257 11 10108 7.368 3.257 10

10109 17.89 0 9 10110 3.158 10.62 12

10111 14.731 4.31 11 10112 13.68 0 8

10113 9.474 5.263 9 10114 6.316 3.257 7

10115 7.368 2.105 8 10116 15.781 0 8

10117 11.571 0 11 10118 9.474 3.257 8

10119 4.211 8.421 12 10120 21.05 0 7

10121 10.521 2.105 9 10122 10.521 0 7

10123 0 10.62 4 10124 18.151 0 10

10125 18.68 0 11 10126 13.941 0 12

10127 17.361 1.678 11 10128 15 0 12

10129 11.311 1.152 12 10130 12.361 0 12

10131 11.05 1.678 13 10132 8.684 0 10

10133 18.68 0 10 10134 18.151 0 11

10135 16.05 0 10 10136 3.158 12.46 9

10137 0.526 13.68 12 10138 2.632 15.26 10

10139 16.311 0 10 10140 13.151 4.31 13

10141 15.26 1.152 10 10142 13.68 0 11

10143 16.311 0 12 10144 10.521 7.105 11

10145 9.211 0 10 10146 10.26 4.31 9

10147 4.474 6.415 12 10148 17.63 0 12

10149 16.84 1.678 12 10150 16.571 3.257 12

10151 18.941 0 11 10152 21.05 0 8

10153 18.941 0 11 10154 23.151 0 8

10155 9.211 6.415 9 10156 10.521 1.152 10

10157 11.84 0 7 10158 6.053 9.573 7

10159 13.941 0 10 10160 8.421 2.731 12

10161 10 0 10 10162 7.105 5.789 11

10163 6.579 3.257 9 10164 7.105 1.678 9

10165 11.311 5.789 12
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Fig. 6. Both 940 and 10123 knots contain figure-eight knots

Fig. 7. 12a471 = [ 2 4 4 2 ] and a 41 complement in 12a471

The 12 crossing knots without trefoils are shown in Table 6.

The 13 crossing knots without trefoils are shown in Table 7.

The 14 crossing alternating knots without trefoils are shown in Table 8.

We note that the eleven crossing knots that do not contain trefoils but they

do contain 7.7’s which do contain trefoils. Thus, the subknot relationship is not

transitive in the setting of subknots of minimal crossing prime knot presentations.
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Fig. 8. Both 11a135 and 11n123 knots contain figure-eight knots

Table 6: Minimal 12 Crossing Prime Knots without Trefoil Subknots

12a125 [(22; 2)(22; 2)] 12a128 [24; 22; 2]

12a181 [22; 22; 2 + 2] 12a183 [42; 22; 2]

12a204 [23111112] 12a265 [8 ∗ 21110]

12a286 [8 ∗ 21.20.2] 12a448 [4; 22; 22]

12a460 [2.21.210.2] 12a518 [41111112]

12a975 [8 ∗ 20 : 20 : 20 : 20] 12a1022 [9 ∗ 20 : .20 : .20]

12a1124 [2.2.2.2.20.20] 12a1202 [2.2.20.2.2.20]

12a1213 [101 ∗ 30] 12n11 [231;−211; 2]

12n18 [(22; 2)(211; 2−)] 12n298 [8 ∗ −2110 : .20]

12n525 [21 : 21 : −30] 12n556 [3; 21;−21; 21]

12n844 [8 ∗ 2.20.2 : .− 20]

Table 7: Minimal 13 Crossing Prime Knots without Trefoil Subknots

13a1 13a21 13a563 13a577
13a597 13a655 13a757 13a1250
13a1415 13a1443 13a1717 13a2428

13n1 13n3 13n38 13n63

13n87 13n182 13n1354 13n1523

13n2014 13n2325 13n2614 13n2767

13n2827 13n3155 13n3229 13n3230

13n3286

5. Conclusions and Open Questions

These are just the first steps toward a complete analysis of subknots present in

small minimal knot diagrams of prime knots. They provide some optimisitic and

limited evidence in support of the conjectures. Due to the limitations of our com-
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Table 8: Minimal 14 Crossing Prime Knots without Trefoil Subknots

14a5 14a69 14a743 14a1424
14a1427 14a1450 14a1452 14a1465
14a1491 14a1499 14a2075 14a2085
14a2116 14a2128 14a2141 14a2160
14a2460 14a2552 14a2555 14a2556
14a2558 14a2651 14a2666 14a2705
14a2757 14a2904 14a2984 14a3195
14a3376 14a3387 14a3530 14a3534
14a3543 14a4368 14a4437 14a4917
14a5072 14a5157 14a5581 14a5697
14a5771 14a5773 14a5845 14a5846
14a5958 14a5959 14a5973 14a5983
14a6002 14a6048 14a6127 14a6166
14a6211 14a6404 14a6414 14a6555
14a6561 14a6650 14a7185 14a7192
14a7271 14a7282 14a7382 14a7447
14a7898 14a8233 14a9261 14a9329
14a9414 14a9489 14a9585 14a9594
14a9599 14a9634 14a9641 14a9866
14a10167 14a10415 14a10552 14a11685
14a11689 14a11690 14a11859 14a12162
14a12741 14a14500 14a14510 14a14525
14a14888 14a14926 14a14934 14a14943
14a15415 14a16442 14a16480 14a17322
14a17385 14a17388 14a17406 14a17730
14a18051 14a18053 14a18241 14a18309
14a18617 14a18626 14a18723 14a19429
14a19478

putational capacity, we have not completed the analysis of the 16 crossing prime

knot presentations. We wonder, if one were to undertake a complete analysis of the

already classified prime alternating and non-alternating knot presentations, what

would one find? Would there be additional evidence to confirm these conjectures

or might one find it necessary to add a new basic knot type to the trefoil and

figure-eight types? Nevertheless, based on our analysis to date, one expects to find

either trefoils or figure-eight subknots as, in some sense, these are still quite simple

presentations.

If the evidence supports the conjectures, then one must face the question of how

one might go about constructing a proof. This seems to be a rather complex question

if only because we have not been able to envisage a systematic abstract algorithm
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Fig. 9. K11a135 and K11n123

to test the conjecture. We have been able to prove the existence of an elementary

infinite family of algebraic knots that do not contrain trefoils but do contain figure-

eight knots and have detected other such knots that are not incompassed by this

theorem.

The perspective of the 2009 Trieste conversation was the search for a small col-

lection of irreducible knot types from which every prime knot is created, a theory of

“elementary knot types.” An unexplored dimension related to the presence of these

unknots concerns their topological consequences. For example, one reason that a re-

sult of this type would be interesting is that it could lead to an elementary strategy

by which one could prove that certain knot invariants, e.g. the Jones polynomial,

could detect non-trivial knotting. Others would be the implications for the genus

of the knot or for non-trivial representations of the knot group.

There are several additional questions that we wish to suggest as some may find

then attractive. First, we have looked only at the ‘standard’ minimal crossing pre-

sentations of prime knots. There are, however other minimal crossing presentations

of these knots. Thus one lead to ask

Question: How does the subknot population depend on the minimal

crossing presentation?

Jablan and Millett proposed a very specific definition of the knot type of a

segment in a knot presentation [6]. Thus, one is lead to ask

Question: How does the subknot population depend on the closure

identification method?

For example, Jablan and Millett used the ‘above’ closure definition as this is

a natural perspective of one looking at knot presentations but one might imagine

using a ‘below’ closure. Alex Rich implemented this approach and collected the data

through eight crossings for the sake of comparison with our data. He found slight

differences for the following knots: 76,88,810,814,819, and 820. The most striking

difference is found for 820 where the ‘up’ closure does not find any 41’s but they

are present in the ‘down’ closure.

As the rational knots, also known as the 2-bridge knots, have simple Conway
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Knot type Up number Down number

01 167 155

31 38 48

31#31 7 7

41 0 4

76 2 2

820 10 10

presentations, form an attractive first class on which to test conjectures, the fol-

lowing questions is attractive:

Can one identify the entire family of minimal crossing prime 2-bridge

presentations that do not contain trefoils and prove they contain figure-

eight subknots?

From the perspective of physical knots, one hopes that the analysis of presen-

tations provides insight into the spatial properties of the knots and is lead to ask

Question: How do the populations of minimal crossing prime knot

presentation subknots compare with the collections of subknots of spatial

knots such as the ‘KnotPlot” or the ‘Ideal’ knots studied in [9]?

More generally, one is lead to ask

What does the population of subknots of a knot imply about the

complexity of the knot [4] or its spatial character?

Especially,

What does the subknot structure of a minimal crossing presentation

of a knot imply about knot invariants associated to the knot?
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