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Images of knotting and linking are found in many of the drawings and paintings of Leonardo da Vinci,
but nowhere as powerfully as in the six engravings known as the cartelle of the Accademia Vinciana.
We give a mathematical analysis of the complex characteristics of the knotting and linking found
therein, the symmetry these structures embody, the application of topological measures to quantify
some aspects of these configurations, a comparison of the complexity of each of the engravings, a
discussion of the anomalies found in them, and a comparison with the forms of knotting and linking
found in the engravings with those found in a number of Leonardo’s paintings.
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1. Introduction

In addition to his roughly fifteen celebrated paintings and his many journals and notes of widely
ranging explorations, Leonardo da Vinci is credited with the creation of six intricate designs
representing entangled loops, for example Figure 1, in the 1490’s. Originally constructed as
copperplate engravings, these designs were attributed to Leonardo and ‘known as the cartelle of
the Accademia Vinciana’ [1]. The Academia Leonardi Vinci is thought to have been a ‘casual
coming together of cultivated individuals for the purpose of dialog and exchange’ [2]. The group
was loosely associated with the court of the Duke of Sforza in Milan, and contributed to the era
historically proclaimed as Milan‘s ‘Golden Age’ [2]. Leonardo da Vinci spent seventeen years in
Milan (1482-1499) [3], and it was during that time that he is to have created the six designs
of the cartelle. Although each is stunningly symmetric and artistically impressive, the cartelle
engravings have been (and continue to be) a matter of some mystery. The general focus among
art historians on masterpieces associated with Florence and Rome has served to obscure the
cartelle from the public attention [2].

Since their creation, the entangled designs of the cartelle have been surrounded by the mis-
conception that each one is formed with a single line. This error can be attributed in part to
Giorgio Vasari, an Italian painter, architect, and writer, famous for his publication of Lives of
the Most Eminent Painters, Sculptors, and Architects [4] in 1550. He wrote, ‘Leonardo spent
much time in making a regular design of a series of knots so that the cord may be traced from
one end to the other, the whole filling a round space’. Upon studying the cartelle designs, one
can easily discern that they are not created with a single curve, but instead, each one is formed
by linking several curves together. The misconception, ignited by Vasari’s comment, apparently
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Figure 1. The sixth of Leonardo‘s six engravings (With permission of the British Museum)

diffused through scholarship and connected the cartelle engravings with the medieval idea of a
labyrinth, or a maze. In reality, the entangled designs are comprised of multiple components that
intertwine to create the overall effect of a maze, but are not true labyrinthine representations.
These engravings have been the subject of speculation from many philosophically different per-
spectives. They have been copied by the German artist, Albrecht Diirer in a widely visible series
of wood cuts produced in about 1506-7, during Diirer’s second visit to Italy. Initially trained as
a goldsmith by his father, his unusual talents lead to an apprenticeship with an artist and the
study of woodcuts. His first visit to Italy occurred when he was only 23 and already quite famous
for his work. The woodcuts of the cartelle provide a quite faithful copy of those of Leonardo,
including some of their anomalies, though there are quite subtle changes in local scale that may
give insight into their creation. We use several of these in cases where we have been unable to
find complete images of Leonardo’s engravings, see Figures 20, 31 and 52.

1.1 How we came to study the cartelle

In 2010, Caroline Cocciardi contacted Ken Millett seeking a mathematical analysis of the em-
broidery on the Mona Lisa’s bodice, Figure 2, whose structure had become more clearly visible
with the application of Pascal Cotte’s photography able to achieve a resolution of 240 million
pixels. Caroline had recently produced a documentary, Mona Lisa Revealed, and was interested
in pursuing the implications of the structure found in this embroidery. Though not containing
any mathematically knotted features, one observes a significant regularity as well as a viola-
tion of the apparently intended regular structure. Caroline shared her passion for the Mona
Lisa, in particular, as well as her interest in understanding the presence of ‘knotted’ features
in Leonardo’s paintings. In addition, she shared images of the six engravings whose startling
degree of complexity and symmetry immediately provokes interest. This made the subject of
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Figure 2. The Mona Lisa showing the bodice detail. Along the upper border one observes a chain of linked
circles and, below this, a twisted cord.

Leonardo’s knots a perfect addition to the Spring 201 undergraduate honors seminar on ‘Knots
in Nature’ that Ken was leading at the University of California, Santa Barbara. With this expe-
rience, the following fall six honors students, Corrine Cooper, Jessica Hoy, David Hyde, Bryan
Lee, and Erica Mason, enrolled in a ten-week honors course focused on learning the underlying
mathematical knot theory and applying this knowledge to initiate a topological analysis of the
engravings. In Spring 2012, Corrine took an art history class for which she wrote a paper on
the cartelle that has enriched our historical understanding of them. In Fall 2012, Jessica and
Ken began work on assembling the results of the honors course and extending and completing
the mathematical analysis, as well as producing a report on what has been discovered over the
course of these two years. This article is a summary of the results of this mathematical analysis.

1.2 What has been learned

While there are some anomalies, the apparent overall structural regularity is supported by our
careful topological assessment of the local structure of each of the individual designs. From a
geometric perspective, we see a sufficiently significant level of local variation, and thus we are
confident that these engravings were created without the use of a precise template to guide
their construction. We observe that one can quantify the visually apparent aggregate symmetry
using symmetry groups visible in the structure of the components that constitute the aggregate
structure in each of the links. As the basic structural symmetry originates from equilateral
triangles and squares, one is lead to wonder why a pentagonal base was not employed, especially
because it is often proposed that the engravings were intended to puzzle the viewer. There is a
much wider variation in the number of components than one might assume without a careful
analysis of each of the engravings.
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Figure 3. The tablecloth knot found in the Last Supper.

1.3 Organization of our report

In section 2, we will briefly describe the underlying mathematical concepts employed in our
analysis. In section 3, we will provide a description of the overall symmetry and topological
elements, followed by our analysis of each individual design in section 4. In section 5, we will
describe the anomalies, that is the exceptions to the apparent structural regularity characteristic
of the cartelle and finally, in section 6, we will give a concluding overview of what we have
discovered.

2. The mathematics employed in our analysis of the cartelle

There appears to be no conclusive evidence concerning the methods utilized by Leonardo in
the creation of the cartelle links, but one can speculate about methods that may have guided or
inspired him in their realization. In her lecture ‘DaVinci’s Knots, Caroline Cocciardi describes her
research of Leonardo da Vinci and his use of ‘knots”. She states that in every one of his thirteen
masterpieces, Leonardo ‘always leaves an interlocking knot’ [5]. From a traditional mathematical
perspective, this assertion requires elaboration as classical knot theory concerns the spatial
structure of closed curves in three dimensional space [6]. For many important purposes, this
constraint is inadequate and one finds it necessary to provide a mathematical theory that is
consistent with one’s common sense notion of knotting encountered in open spatial curves. This
has been accomplished through a careful analysis of a closure that successfully captures knotting
important in the spatial structure of macromolecules [7]. Although ‘The Mona Lisa bodice, Figure
2, contains only linked chains and an unknotted (at every scale) open twisted cord,'The Last
Supper, Figure 3 (among other da Vinci works) does contain an open knot, here found tied in
the right hand corner of the tablecloth.

None of the many knotted conformations found in Leonardo’s paintings come close to the
complexity of the structure found in the cartelle designs. Many elements of the cartelle links
exhibit similarities to both Celtic Knots and Mirror Curves, suggesting a possible similarity
with the Celtic and Tamil construction methods. Art historians agree that the entangled designs
were most likely created by Leonardo da Vinci as a puzzle, but were used later in various
textile applications. Albrecht Durer, a German artist of the Renaissance period most known
for his printmaking and woodcut engravings [8], likely acquired a set of Leonardo’s copperplate
engravings during his stay in Venice in 1506-07 [2]. He then published a series of six woodcut
engravings entitled Sechs Knoten, which appear to have faithfully duplicated Leonardo’s designs.
Each of Ddurer’s engravings is an exact replica of the corresponding cartelle link, with minor
embellishments of the ancillary corner components, and an omission of the Academia Leonardi
Vinci inscription in the center. We have analyzed both the original and Durer copies of the
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Figure 4. The dihedral group, Dg, of the octagonal stop sign.

six entangled designs of the cartelle, sometimes referred to as medallions, from a mathematical
perspective as well as reviewing the historic and artistic commentary in the hope of developing
new illuminating information that might deepen our understanding and guide further study.
For example, historically the designs were often discussed under the assumption that each one
consisted of a single uninterrupted cord. This misconception led some to the belief that each
design was a representation of a labyrinth, an ancient concept that became popular during the
Renaissance. The labyrinthine idea was then connected to notions of femininity and possessed
deep philosophical and religious significance. These views were undermined as the consequence of
later observation that each of these did not, in fact, consist of a single component (i.e. a individual
closed strand) but rather, each were composed of differing numbers of components. The number
of individual components in each of the designs is just the first possible mathematical feature
that can inform one’s understanding of the nature of the medallions.

2.1 The mathematical foundations of our analysis

We employ the mathematics of algebra, geometry, and topology to analyze each of the six
medallions of the cartelle. Though interconnected, each of these facets of mathematics captures
distinct important structural features that will play essential roles in our analysis. To set the
stage for the discussion of our analysis, we will review a few essential elements of each of these
areas.

2.1.1 Algebraic considerations

The powerful initial impression of the engravings is the thematic presence of symmetry. While
each design displays a distinct pattern of knotting and linking with a varying number of com-
ponents, each of these components, in themselves and collectively, display varying degrees of
symmetric spatial structures contributing to the stunning degree of complexity and regularity
displayed in the aggregate structure. The three dimensionality portrayed in the engravings is
fundamental to understanding and quantifying the nature of the symmetric spatial structure.
In this context, symmetry means the existence of a three dimensional rigid motion taking an
object exactly to itself thereby defining its group of symmetries [9]. In this case, the object
is the spatial conformation of curves portrayed in a medallion. In order to make concrete the
mathematical concepts we require, we first consider the octagonal ‘Stop Sign’ shown in Figure
4. One facet of the Stop Sign symmetry is that its placement will be unchanged by a %” rotation
in a counter-clockwise direction in the plane of the image and about its center. This rotation
can be repeated, so that along with the identity (no rotation at all), one defines a set of eight
transformations known as the rotation group whose motions are shown in the first line of Figure
4. There is, however, another symmetry given by reflection across an edge, the effect of which
is to change the ‘orientation’ of the edges of the octagon as suggested by the changed image of
the word ‘Stop.” The addition of this reflection and its composition with the rotations double
the number of transformations in this group of symmetries to sixteen and defines the classical
dihedral group, Dsg.

In the present context of Leonardo’s medallions, we will see that the effect of a mirror reflection
is a change in the topological identity of the spatial structure. Nevertheless, the relevant group
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Figure 5. The negative trefoil knot, -T, —3; in the Alexander-Briggs classification.

of symmetries is still the dihedral group formed by replacing the planar reflection with a three
space rotation. This is illustrated by considering the trefoil knot shown in Figure 5. Here one
observes invariance under rotations by 2?” giving a three element rotation group. Notice that one
may rotate the trefoil about the ‘vertical” axis in the plane of the image passing through the
two upper strands and between the lower crossing strands by 7 to take the trefoil to itself but
reversing the direction along the spatial curve. As a rigid spatial motion, this has not changed
the type of knot (as a mirror reflection would have done), thereby giving a new symmetry which,
when added to the rotations, creates a three dimensional representation of the dihedral group,
Ds.

We will see that dihedral groups of exactly this type quantify the symmetry found in Leonardo’s
medallions and their constituent components giving concrete substance to the degree of three
dimensional symmetry they manifest. For example, these significant manifestations of symmetry
enable one to factor the aggregate structural symmetry into subfamilies that exhibit this sym-
metry and contribute to the specific symmetry of the whole. We pose two questions: (1) What
is the source of the desire to attain these certain symmetries in the atomic conformations? (2)
What is the nature of their contributions to the whole? We observe that the symmetry groups
of the designs are all dihedral groups, reflecting the apparent circular symmetry of each of the
links. However, as noted, these arise in a manner significantly different from the usual dihedral
groups in which two dimensional or planar reflections through an axis of symmetry classically
play the role of one of the generators. Leonardo‘s dihedral symmetry is one that is fundamentally
three dimensional in nature in that the second generator is given by a three dimensional rotation
about an axis of symmetry. With the exception of rare errors in the design, one striking feature
of the structure is the alternation of under and over crossing when traversing the path of each
of the constituent cords in the aggregate structure. The three dimensional symmetry is required
to preserve the alternating nature and chiral structure of the conformations, as the normal pla-
nar reflection across an axis would invert the over and under crossings, and thereby change the
three dimensional structure to an inequivalent one as we would see when taking topology into
consideration.

2.1.2 Geometric considerations

In this context, the fundamental notions of geometry that will concern us pertain to those of
curves in space, i.e. spatial distance and length along a curve, measures of curvature or bending,
and twisting or torsion [10]. While assessing the group of the symmetries apparent in each of
Leonardo’s engravings, one wonders how such a complex design could have been produced. For
example, did Leonardo create a template for a portion of the design having periodic boundary
structure that allowed him to use the template to realize the symmetric structure? One feature
of the use of such a template would be the exact reproduction of the local geometry in each of
the locations corresponding to a specific feature. This can be tested by employing local geometric
measurements such as the length of the curve between crossings or the curvature in the bending



November 3, 2014

Journal of Mathematics and the Arts Leonardov4

Figure 6. The trivial knot is any conformation which can be lambently deformed in space to the standard
circle pictured here.

Figure 7. The Borromean Rings. This Wikipedia im-
age is considered to be in the public domain. Figure 8. The Borromeo family crest [24]

inherent to an individual loop, as seen in the trefoil, Figure 5. These fundamental quantities
must be preserved under rigid symmetry as well as being reflective of the use of a template in
creation of the structure.

2.1.3 Topological considerations

Because each emblem of the cartelle consists of multiple strands, they are mathematically
classified as links, i.e. consisting of a collection of non-intersecting spatial closed curves. The
case of a one component is called a knot: the trivial knot (Figure 6) and the trefoil knot (Figure
5), are the simplest examples. Colin Adams [6] describes a link as ‘a set of knotted loops all
tangled up together’. The Borromean Rings, shown in Figure 7, provide a familiar example of a
three component link. The link consists of three interlocked rings, and is of special mathematical
interest because while no two rings are linked to one another, the union of the three is inseparable.
Note that this image suggests that it can be realized by three standard circles. This is, however,
not true. This image is a popular illusion. The rings are named for the Borromeo family of
fifteenth century Milan. The symbol was a ‘gift from Francesco Sforza as recognition of the
support that the Borromeo family had given in defense of Milan” [24]. The rings can be seen on
the Borromeo family crest (Figure 8) in the bottom right corner of the left half. While, in this
case, each of the components is a trivial knot, this is not always the case. We catalog Leonardo’s
six medallions as Link 1 - Link 6, see Figures 20, 31, 41, 52, 67 & 80. Due to the complexity of
these conformations, we will require several distinct measures of topological structure in order
to describe their individual character in a manner that will support a comparative analysis.

Classical knot theory defines the linking number between two oriented components to provide
a tool with which to quantify the linking of two oriented curves. To compute this linking number,
one must first assign an orientation to each of the curves in the link, i.e. a direction on each of
the curves. A generic projection of the spatial conformation contains a finite number of places
where one component crosses the other. Each crossing of the two different components is then
designated as a positive or negative crossing; positive if the curve on the top comes from the
left, see Figure 9, and negative if the curve on the top comes from the right, see Figure 10. The
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Figure 9. +1 crossing Figure 10. —1 crossing
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Figure 11. At a single crossing in a presentation of an oriented link, L, one makes two changes to create a
family of three links. These enable the fundamental relation defining the HOMFLY-PT polynomial.

sum of all the positive and negative crossings, divided by two, gives the integer linking number
of the two oriented curves. If one adds only the self-crossings of a single component, the result
is called the writhe of the given presentation. While the linking number of two oriented curves
is a topological invariant, unchanged under ambient isotopy equivalence of links, the writhe is
not a topological invariant. We calculate the linking numbers of some of the links or sublinks in
the cartelle as an aid in uncovering fundamental structural information.

Each design of the cartelle consists of a principal link as well as four ancillary knots or links
in the corners. We will want to identify and categorize these smaller components as well as the
motifs found in the more complex design. This will be accomplished, where possible, using a
contemporary knot invariant, the HOMFLY-PT polynomial P(L) [13], of an oriented link, L,
to identify the conformation using the Alexander-Briggs [17] or Hoste-Thistlethwaite classifica-
tions [14]. The HOMFLY-PT polynomial is the unique two-variable, ¢ and m, extension of the
1923 Alexander [11] and the 1985 Jones [12] polynomials enjoying the following properties: (1)
P(unknot) = 1 and (2) if three link presentations, Ly, L_, and Lg differ at a single crossing
as shown in Figure 11, then ¢ P(Ly) 4+ ¢~ P(L_) + m P(Lg) = 0. By appropriately chang-
ing crossings one may use these properties to determine the HOMFLY-PT polynomial of any
oriented knot or link and, under most circumstances, identify the given knot [15].

For example, the HOMFLY-PT polynomial of the negative trefoil knot, -T, shown in Figure
9, is

P(-T) = =202 — 14 + ’m?2.

The positive trefoil, +T, is defined by reversing each of the crossings in the presentation. One
can see from the HOMFLY-PT polynomial definition, that the calculation of P(+7") will follow
the same steps but with £ replaces by % to give

P(4+T) = ¢4 — 2072 4 (2m2,

9

From the fact that these two equations are different, one sees that the ‘-> and ‘4’ trefoils are
topologically distinct, i.e. it is impossible to ambiently evolve one trefoil to the other. This is
typical of how one can apply a polynomial knot invariant to the analysis of a conformation and
in comparisons between conformations.

The Jones polynomial can be determined from the HOMFLY-PT polynomial by setting ¢ =
it~!and m = z'(t%1 —t2) from which one finds that the Jones polynomial of -T is —t 4 +¢ 3 4+¢~1
and that of +T is t! + 3 — ¢4,

Due to the complexity of the medallions, we often wish to compare portions of the designs and,
thereby wish to apply a type of knot theory that works for open ended cords that are frozen
in position (see Figure 12). From a classical topological perspective, such conformations are
unknotted in that they can be evolved into a collection of straight segments. Nevertheless, the
theory of such knots has proved to be critical in the analysis of, for example, protein structures
[16]. Our analysis will make use of those open knots as they arise as local portions of the
constituent components of the global structure. We will also use the analogously frozen version
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Mﬂ

Figure 12. The open overhand knot becomes the minus trefoil, -T, when its ends are closed as shown [25]

of tangle theory involving collections of open segments naturally lying in a selected region.
Elements of tangle theory naturally arise in the study of knots and knot polynomials [6, 15].

3. The mathematical analysis of the cartelle

In our analysis of the cartelle we will consider the central designs as well as the corner links. The
latter contain some of the same local elements, but are overall much simpler than the central
entangled designs. Often, these ancillary components consist of only one strand, and are thus
one component links, i.e. knots. The complexity of each central emblem results from the number
of its components, from the symmetry group of each of the individual components, collections of
components, and the entire design, and from the structure of the entanglement of the individual
components and the associated consequences for the symmetry of the aggregate structures.
Among the six designs, we identify two dominant structural classes, radial and circular, although
each exhibits both to some degree. The dominant radial structure (seen in Links 1, 2, and 3) is
characterized by a presence of concentric rings of different shapes. When viewing these emblems,
one’s attention is drawn to the different radial layers of local knots or links (Figures 20, 31, 41).
These conformations have symmetry group Di1g. We note that the conformations that exhibit the
radial structure appear, visually, to be simpler than those that belong to the circular structural
category. In the latter, the eye is drawn to a central circular design surrounded by a number
(reflecting different orders of symmetry) of identical designs. Alternating with the outer circular
designs, one observes a number of smaller linked components. In the case of Links 4 and 6, the
circular structure exhibits Dg symmetry and thus the outer circular designs form a hexagon
around the center (Figures 52, 80). This structure appears to be more complex than the radial
structure because the central and outer circular designs are constructed in different ways. They
are formed by the linking of different components yet result in designs that are locally identical.
The fifth conformation has a dominant circular structure despite having a symmetry group Ds,
a subgroup of the Dig symmetry that is characteristic of the radial structures. When viewing
Link 5, the eyes are drawn to eight circular designs around the outer portion of the design, as
well as a central circle (Figure 67). Contrary to the circular structure defined above, the outer
circle is different from the center circle and the two exist as concentric rings much as in the
radial structure.

3.1 Common elements

With the exception of a small number of anomalies, all of the designs exhibit an alternating
motif. That is, as one traverses any of the cords in any of the diagrams one alternates between
going over and going under at each successive crossing. Though they dominate the classical
prime knots with few crossings, the alternating knots and links become exponentially rare with
increasing numbers of crossings in the minimal crossing representations within the knot or link
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Figure 13. curl Figure 14. quatrefoil Figure 15. twisted quatrefoil

type. In addition, this class enjoys very special properties that have made them an attractive
target for topological analysis and the focus of theorems. Why then, one wonders, did Leonardo
choose to so limit his designs to those that are alternating when, in nature, one more often
sees non-alternating conformations? Specifically, if the objective was to create the most puzzling
conformations, one must wonder why non-alternating conformations weren’t employed, at least
in a few cases.

Several thematic motifs, or subdesigns, and small knots are repeated throughout all six of
the cartelle emblems. Most striking is the large numbers of curls that one could imagine simply
untwisting (see Figure 13) to simplify the structure. These curls are seen in the Mona Lisa
bodice (see Figure 2) and other paintings and are ubiquitous in the cartelle. While they surely
contribute to the apparent complexity of the design and to the writhe of the conformations, they
are topologically irrelevant. In classical knot theory, these elements are called nugatory crossings.
They occur frequently in the total conformation due to the apparent symmetry requirements.
We note that these curls are common in the symbols of many cultures; they appear to be present
widely in geometric figures of the Middle Ages, and there is often a connection to the Christian
fish symbol, which has its roots in the early days of the Christian religion.

There is another component that is used abundantly in five of the six emblems. We call it the
twisted quatrefoil, Figure 15. This figure can be described as a connected sum of four Christian fish
symbols, Figure 13, and it is similar to the symbol known as a quatrefoil, Figure 14, prevalent in
Gothic architecture and elsewhere in traditional Christian symbolism. This prevalent component
may also be described as a simple example of a mirror curve [18]. We note one example of the
twisted quatrefoil we have seen in a mosaic floor tile in the Basilica of Aquileia [20] in northern
Italy. The twisted quatrefoil can be seen in the upper right corner of Figure 16. The Basilica was
built in 1031 on the ruins of the previous structure destroyed in 452 AD. The existing structure
today has pieces originating from between the 11th and 17th centuries, so it is difficult to say
when the mosaic in the image was created. Some of the mosaics in the basilica even date from
the 4th century.

The designs also incorporate familiar knots such as the trefoil, Figure 5, the figure-eight knot,
Figure 17, and versions of the endless knot Figure 19 (mathematically known as the 74 knot,
Figure 18), among others. One must wonder if designs such as these were also cultural symbols
familiar to Leonardo.

4. Analysis of individual engravings

In this section we will carefully describe the individual characteristics and properties of each
of the six corner and the six principal links of the cartelle and, to the extent possible, provide
an overall characterization of each of them. The principal links 1, 2, and 3 exhibit the radial
structure as defined above and are members of the D¢ aggregate symmetry group family. The
principal links 4 and 6 exhibit the circular structure, and both have aggregate Dg symmetry
group. The principal link 5 demonstrates both the radial and circular structures and has Dg
aggregate symmetry group. We will describe the symmetry of the respective components of each

10
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Figure 16. Mosaics in the Basilica of Aquileia, Italy including a twisted quatrefoil in the upper right corner
[21].

Figure 17. Figure-eight knot, 4, Figure 18. The 74 knot, KnotAt-
KnotAtlas [14]. las [14]. Figure 19. The endless knot.

conformation and their contribution to the overall symmetry. We will also describe the particular
knots and links that we have identified in each emblem in the cartelle.

4.1 Analysis of Link 1

The first engraving, Link 1, is shown in Figure 20. This is Diirer’s copy including his added
embellishments and provides an excellent starting point for our analysis as we will see that it
exhibits a rich mathematical structure.

4.1.1  The corner configurations

The Link 1 corner configuration, Figure 21, is related to the endless knot, Figure 19, or topo-
logically, the 74 knot in the Alexander-Briggs enumeration. Many contemporary knot theorists
will also know the endless knot as the knot found on the cover of the early editions of Dale
Rolfsen’s celebrated 1976 book, ‘Knots and Links,” [19], Figure 22. The difference between the
corner knot in Leonardo’s design and its familiar cousin is the absence of one of the two curls or
nugatory crossings typically found in presentations of the endless knot, Figure 19. The endless
knot is one of the Eight Auspicious Symbols, and thus holds significance in Tibetan Buddhism.
Wikipedia [22] states that it represents ‘the interweaving of the Spiritual path, the flowing of
Time and Movement within That Which is Eternal.”

4.1.2  The central link

Link 1 has six components shown in Figure 23, one outer ring (Figure 24), four middle compo-
nents (Figure 25), and one inner ring (Figure 26). The middle components connect the outer and
inner rings. Their symmetry groups are Dig, D1g, and Dy respectively. Each of the four identical
middle components exhibits D4 symmetry but, when all four components are placed together,
the global Dig symmetry is created (Figure 27). The four isomorphic middle components are
each a symmetric connected sum of four copies of the knot 85, and differ from the adjacent

11
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Figure 21. The corner design of Link 1 Figure 22. 1976 Cover of Rolfsen’s ‘Knots and Links’

copies by a g rotation. Individually, each middle component is topologically unlinked from the
outer ring.

When you look at two adjacent middle components, the outer ring is linked in a manner
reminiscent of the Borromean rings, Figure 28. We take a closer look at the local structure
of the outer ring and two adjacent middle components (Figures 29 and 30) and find that it
forms a three component, eleven crossing alternating link with the following Jones polynomial:
—t75 4+ 5t — 13t73 + 23t72 — 3171 + 37 — 36t + 33t — 23> + 15t — 615 + t°. We note that
the alternation of signs of the coefficients is in concert with its minimal alternating crossing
presentation. The spread of the degrees is eleven, equal to the number of crossings. Using the
Jones polynomial and the assistance of Morwen Thistlewaite, we identified this link as L.11a520
[14], the 520" link in the Hoste-Thistlethwaite classification of 11 crossing prime alternating
links. In this local three-component link, the rings from the adjacent middle components are in
fact linked to one another, but the piece from the outer ring is unlinked to either of the rings
(Figure 30). If one critical crossing were changed, any two of the three components would be
unlinked from one another, individually, and the three pieces would all be topologically linked
as a three-component link. With this critical crossing changed, the local structure would thus
resemble the traditional representation of the Borromean rings, with a slight embellishment in
the linking of the top ring. This local structure in Link 1 could thus be one of the many variations
of the traditional symbol.

The outer ring of Link 1 is topologically unknotted, consisting only of an alternating sequence
of 16 single and 16 double curls, giving Djg symmetry (Figure 23). The inner ring of this link
is a (3,16) torus knot [6], which is linked with the middle components (Figures 26 and 27). To
achieve the Dig symmetry, this single component must wind around the center in a number of
turns that is relatively prime to 16. Three is the smallest such number. The union of this torus
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Figure 27. The union of the four middle components of Link 1

knot with the four interlocking components defines the central structure. Following from the
symmetry, we note that the linking of this torus knot with the four middle components is 48.

4.2 Analysis of Link 2

While Link 1 has an ‘angular” appearance, i.e. consisting of straight line segments and sharp
angles, Link 2 is rounder with smoothly turning curves in its design and appears to be less
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Figure 28. Location of local link- Figure 29. Borromean like link-
ing ing in Link 1 Figure 30. The 7 crossing link

Figure 31. Durer’s version of Link 2 Figure 32. Link 2 has two components

complicated, or at least less dense (Figure 31). Indeed Link 2 has only two components, as seen
in Figure 32.

4.2.1 The corner configurations

The Link 2 corner configuration (Figure 33) also contains two components, and is the only
ancillary figure in the cartelle that is a link instead of a knot. Three of the four (all except the
lower right corner) are alternating links. Each is the union of an unknotted component and a
negative trefoil knotted component, and is the mirror reflection (i.e. all crossings are reversed) of
the link ‘L9a32” in the Hoste-Thistlethwaite enumeration [14]. They are topologically equivalent,
by removing the visible nugatory crossings, to the mirror reflection of the configuration known
as the triquetra entangled with a circle which is a symbol associated with the Christian Trinity
(Figure 34). Much art in the Middle Ages was associated with the Christian church. A triquetra
consists of three entangled semicircles, and is often described as consisting of three Christian
fish symbols, another reference to the notion of the trinity. Note that this is an illusion, much
like the Borrmean ring shown in Figure 7, in the sense that it cannot be actually constructed
from arcs of circles in the manner suggested by the image. One might wonder if there are other
cultural or religious symbols embedded in the knots and links of the cartelle. The triquetra is
also known as a trefoil, and is ubiquitous in the study of knots and topology because it the
simplest possible knot, aside from the unknot. The lower right corner configuration (Figure 35)
is not an alternating link. It is still consists of an unknotted component and a trefoil knotted
component, but in this case the trefoil is positive instead of negative as are the other three. This
anomalous corner is the link ‘L9In15” in the Hoste-Thistlethwaite enumeration [14] and one of
very few instances in which the conformations are not alternating.
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Figure 34. Corner 2 is topologi- Figure 35. The anomalous lower
cally the same as the triquetra right corner in Link 2

Figure 36. Outer component of Link 2 Figure 37. Inner component of Link 2

“_----..
g ~

3

AY
)

-
'— §~
Scam=

LY 4 Yo
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Figure 38. Location of local linking the linking in Link 2

4.2.2 The central link

Link 2 has only two components (Figure 32): one outer ring, and one inner component (Figures
36 and 37, respectively). The component symmetry groups are both Dyg. Although this emblem
has the fewest number of components, it is not necessarily the simplest design. As described
above, several factors contribute to the complexity of each knot. No single characteristic defines
the complexity or simplicity of all the designs, but rather it is a combination of characteristics.
The core component of Link 2 contains many complex local knots thereby increasing the overall
complexity.

The outer ring of Link 2 is topologically unknotted, and consists of alternating curls and
quatrefoils, similar to the cord in the bodice of the Mona Lisa (Figure 2). Indicative of the D1g
symmetry there are 16 curls and 16 quatrefoils. The inner component makes up the majority of
the medallion, and is comprised of concentric rings of different shapes and links. It defies local
resolution as it is a prime knot, a direct consequence of Menasco’s Theorem [23] on alternating
knot and link presentations. There are 32 removable curls that outline a circle in the center.
Forming a ring around this circle are 16 copies of a twisted quatrefoil. Just outside the quatrefoils,
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Figure 40. The Whitehead link, L5al

Ay

Figure 41. Link 3 (With permission of the British Mu-
seum) Figure 42. Link 3 has six components

is a ring composed of 16 74 knots. We see that these are identical to the endless knots in Link
3 (Figure 41), aside from the fact that they are formed from a single component rather than
from the amalgamation of two different pieces. The two components in Link 2 are algebraically
unlinked (i.e. their algebraic linking number is zero), but they appear to be topologically linked
in a manner analogous to, but much more complex than the Whitehead link, Figure 40. Looking
at the local structure of the linking between the two components suggests another instance of
a Borromean imitation. Considering the outer ring and the two looping pieces of the middle
component that link it (Figures 38 and 39), we discover the same three component link as in
Link 1, but with opposite sign crossings. While the local link is the same in both instances
(Figure 30), the Borromean-like structure of Link 2 differs because the bottom two rings whose
linking undermines the full expression of the Borromean rings actually belong to the same
global component. We conjecture, from this instance of Borromean mimicry, that while the two
components of Link 2 are algebraically unlinked, they are actually topologically linked. As a
consequence, it is plausible that the Dig symmetry propagates this local structure such that
the two components are indeed topologically linked. The global linking is so complex that, at
this point, a rigorous proof of the topological linking would seem to require a new or stronger
method than that employed to show the Whitehead link is topologically linked.

4.3 Analysis of Link 3

The symmetry and composition of Link 3 (Figure 41) resembles that of Links 1 and 2 (Figures
20 and 31) in the continuation of the radial nature of their composition featuring prominent
concentric rings of motifs. As is the case of Link 1, Link 3 has six components (Figure 42).
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4.8.1 The corner configurations

The Link 3 corner (Figure 43) is a 40 crossing alternating composite knot that
has 32 irreducible crossings once the visible nugatory crossings are removed. Topolog-
ically, it consists of two left-handed trefoils and a core prime alternating 26 cross-
ing knot. The Dowker—Thisthlethwaite [14] code of this prime alternating knot is:
410 20 22 2 28 36 38 24 8 6 26 18 52 12 46 48 50 44 32 34 14 16 40 42 30 and its Jones
polynomial is: 026 : —1 10 —54 206 —609 1481 —3077 5605 —9097 13340 — 17825 21840
—24648 25677 —24716 21972 —18004 13550 —9315 5801 —3233 1585 —666 230 —61 11 —1.
The code for the Jones polynomial indicates that the powers of ‘t” vary from 0 to 26 with the
coefficients of each power listed in increasing order. Thus the constant, 0" power term is —1.
Observe that the terms of the DT code are all positive and that the signs of the coeflicients of
the Jones polynomial alternate in sign. These are a consequence of that fact that one has an
alternating knot or link. The DT codes and Jones polynomials also serve to demonstrate that
various knots and links are distinct. Thus, when possible, we include this information in order
to better identify the precise knots or links that occur in these configurations.

4.83.2  The central link

Link 3 has six components: one outer ring (Figure 44), four middle components (Figure 45),
and one inner ring (Figure 46). Their symmetry groups are Dig, Dy, and Dijg, respectively.
The middle components connect the outer and inner rings. Each of the four identical middle
components exhibits D4 symmetry. When all four components are placed together, the global
D¢ symmetry is preserved (Figure 47).

In this third link, the outer ring is a connected sum of 16 positive trefoils. Aside from the
trefoils, there are looping pieces on the edge that we identify as twisted quatrefoils (Figure 14).
Individually, the middle components are topologically unknotted. Each one is linked to the outer
ring with a linking number of 16, and to the inner ring with a linking number of 12, resulting
in a linking between one middle component and the inner and outer rings of 28. There are two

pairs of middle components that differ from each other by a 7 rotation (Figure 48); each one
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Figure 48. The middle linking in Link 3 Figure 49. The middle linking in Link 3

is linked with linking number 28. There are two pairs of middle components that differ from
each other by a g rotation (Figure 49); each one is linked with linking number 36. The sum of
all the linking between the six components gives a total linking number of 312. This number
is surprising because it is not evenly divisible by 16, and thus might not seem to be consistent
with the 16-fold rotational symmetry. The center ring is topologically unknotted and consists of
32 curls: 16 on the inside, and 16 on the outside of the ring (Figure 46).

As noted previously, Link 3 exhibits the radial structure (i.e. consists of concentric rings of
different shapes). The center consists of a ring of intertwined curls from the middle components
and inner ring. Outside of this band lie 16 copies of a component that resembles the endless knot
(Figure 18). The local endless knot components are woven together by two middle components
that differ from each other by a g rotation (Figure 50). Smoothing the crossings and looking at
the piece locally, we discover the endless knot that also appears in Link 2 and in the corners of
Link 1 (Figure 21). The ring just outside of the endless knot components consists of 16 copies
of a component that is an intertwining of all four middle components. Smoothing the crossings
in one of these local conformations results in a design of circles precessing around a center point
(Figure 51).

4.4 Analysis of Link 4

Link 4 (Figure 52) and the other remaining designs, have a large number of components arising
from the repetition of individual components (six or eight fold, naturally collected into families
depending on the symmetry group). Link 4 comprises 38 components (Figure 53) that together
give the aggregate Dg symmetry group.
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Figure 51. The precessing circles in Link 3

Figure 54. Corner in Link 4 Figure 55. The corner of Link 4 contains an endless knot

4.4.1 The corner configurations

The Link 4 corner (Figure 54) has 36 crossings, but after removing the eight visible nu-
gatory crossings, one sees that it is a prime alternating 28 crossing knot. Its DT code is:
412 26 56 18 2 8 50 20 10 14 28 36 6 48 40 44 24 46 32 52 30 38 34 54 16 42 22 and its
Jones polynomial is =35 —7:1 —12 76 —335 1136 — 3116 7143 — 14038 24146
—36948 50939 — 63872 73325 — 77397 75303 — 67613 56034 — 42846 30183 — 19543 11584
—6247 3040 —1316 499 —160 42 —8 1. In the upper portion of knot, excluding the nugatory
crossings, one can see a segment that is the mirror reflection of the endless knot theme found in
the corner of Link 1 (Figure 55).

4.4.2  The central link

There are five unique components, rotated and repeated to achieve the total of 38 compo-
nents. Two different components make up the outer ring (Figures 56 and 57); each component
individually possesses Zy symmetry (given by 3-dimensional rotation about a central axis) and
is repeated six times. Each component differs from the previous one by a % rotation about the
center of the medallion, giving rise to the Dg symmetry. The inner ring and another central body
component (Figures 58 and 59) are unknotted configurations each also having Dg symmetry.
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Figure 60. Four orientations of one of the middle components of Link 4

There is a core component repeated 24 times in four different orientations (Figure 60). Two
collections of six of these components have the Dg symmetry (Figures 61 and 62) while two other
collections (Figures 63 and 64) have a specific ‘pinwheel” rotation orientation thereby limiting
their individual symmetry to the rotational group of order 6, Zg. Taken together, however, we
see their union once again achieves a Dg symmetry group as the three dimensional rotation takes
the ‘right” facing orientation to the ‘left” facing orientation.

There are 6 identical copies of each outer ring component and each copy is isolated from the
other five of its kind. The large outer components (Figure 56) are each a connected sum of
an 81g knot and two copies of a knot we identify as a 12a690 using the Hoste—Thistlethwaite
enumeration. Fach component has a Zs three dimensional rotational symmetry. The smaller
outer components (Figure 57) are copies of this same twelve crossing alternating knot, and
have the same Z; symmetry. The main body component (Figure 59) is the connected sum of
six identical unknotted sub-components. The component as a whole has an evident hexagonal
structure, and is topologically unknotted. There is an interesting symmetry in this component
that does not appear in the other links. The entire component exhibits 6-fold symmetry, as
evidenced by the hexagonal structure and the Dg symmetry of the entire medallion. However,
on each point of the hexagon there is 3-fold symmetry in the local triangular structure that
consists of twisted quatrefoils that introduce an appearance of an intrinsic 4-fold symmetry.
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The 24 copies of the fundamental component (Figure 60) are each topologically unknotted.
There are 12 around the outer ring of the design—six components with the concave side facing
the center of the circle (Figure 61), and six with the concave side facing away from the center
(Figure 62). The remaining 12 copies are arranged around the center of the medallion in a
pinwheel formation—six with the concave side directed clockwise (Figure 63), and six with the
concave side directed counter clockwise (Figure 64). The inner ring is topologically unknotted
and consists of six removable curls, preserving the Dg symmetry (Figure 58).

Recall that Link 4 was classified as exhibiting the circular structure. When viewing the emblem,
there are seven circles that dominate the impression of the design—one in the center and six
around the outside. While the center circle and outer circles are locally identical, they connect
to the rest of the medallion differently and are constructed in different manners. The six outer
circles (Figure 65) are each comprised of 9 individual components: one 124690 component from
the outer edge, two connected sum components from the outer edge, two pinwheel components
(one in each direction), and four of the horizontal components (two in each direction). While the
outer circle design itself is symmetric, the way in which it is constructed is not symmetric. In
contrast, the center circle (Figure 66) is symmetric and exhibits Dg symmetry. It is constructed
with 12 individual pinwheel components (6 in each direction).

4.5 Analysis of Link 5

Link 5 (Figure 67) is similar to Link 4 in that it has a large number of components (22 in total
as seen in Figure 68), but it differs from all the other links in that it is the only one to have Dg
symimetry.
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Figure 66. The inner circle in Link 4 with Dg symme-
Figure 65. One of the six outer circles Link 4 try
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Figure 67. Link 5 (With permission of the British Mu-
seum)

Figure 69. The corner of Link 5

4.5.1 The corner configurations

The Link 5 corner knot (Figure 69) has 39 crossings, 13 of which are nuga-
tory. Their removal gives a prime alternating 26 crossing knot. Its DT code is
412 14 32 28 16 2 6 22 50 46 36 40 10 34 8 30 42 24 26 38 48 20 52 18 44 and its Jones
polynomial is —6 20: —1 8 —38 133 —372 872 — 1767 3163 — 5076 7389 — 9829 12020
— 13562 14149 — 13663 12205 — 10068 7644 — 5315 3360 — 1911 963 —420 153 —44 9 —1.
The core 26 crossing prime alternating knot is distinct from the 26 crossing prime alternating
knot found in the corner of Link 3 as shown by the difference in their Jones polynomials.
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4.5.2  The central link

Exhibiting the Dg symmetry group, Link 5 contains 22 components. There are eight inter-
linked copies of an outer component that form the perimeter (Figures 70 and 71). Each of these
components has Zs symmetry and each copy differs from the previous one by a 7 rotation that
results in the global Dg symmetry.

We refer to the three components that make up the core of the medallion as the outer ring,
the ring of connected quatrefoils, and the main body component. The outer ring (Figure 72) is
a topologically unknotted connected sum of eight copies of an unknot that we identify as the
mirror image of the upper portion of the Link 3 corner pieces (Figure 43). Alternating with these
knots are eight removable curls, ensuring the Dg symmetry. The connected sum of quatrefoils
(Figure 73) is also topologically unknotted and consists of eight removable curls that alternate
with the twisted quatrefoils. The main body component (Figure 74) traverses the entire link,
linking with every other component of the medallion. After removing the eight nugatory crossings
we discover that this component is the connected sum of eight figure eight knots (Figure 17).
However, even after removing the topologically irrelevant curls and the connected summands,
what remains is a complex knot with an underlying structure unlike the previous knots. It is a
128 crossing, non-alternating knot.

The small component repeated eight times around the outer portion of the link is a quatrefoil
embellished with nugatory curls (Figure 75). Unlike the twisted quatrefoils (Figure 15) ubiquitous
throughout the six links, this component resembles the traditional quatrefoil prevalent in Gothic
architecture and Christian symbolism (Figure 14). Eight copies of this quatrefoil component,
isolated from one another, form a ring around the medallion (Figures 76). Each individual
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Figure 79. Linking of the two in-

Figure 78. An inner component ner components

quatrefoil exhibits D4 symmetry, and the eight copies of the component are arranged in a ring
so as to preserve the global Dg symmetry.

As classified in section 3, Link 5 exhibits both the radial and circular structures found among
the cartelle designs. The three core components, outer ring, and eight isolated copies of the
quatrefoil component form eight outer circles that together make a ring concentric with the
central circle. The perimeter of the central circle is defined by the middle ring component—a
topologically unknotted ring that consists of 16 nugatory curls (Figure 77). The final two inner
ring components are identical copies of one another, differing only by a {i rotation (Figure 78).
Each one is unknotted and contains no twists or curls. When both inner ring components are
linked together the D¢ symmetry is preserved with a subgroup with a subgroup corresponding
to the global Dg symmetry (Figure 79).

4.6 Analysis of Link 6

Link 6, Figures 80 and 81, is comprised of 18 components and, like Link 4, has a Dg symmetry
group.
4.6.1

The Link 6 corner (Figure 82) is a 32 crossing alternating knot which, when the 14 visible
nugatory crossings are removed, gives a prime alternating 18 crossing knot. Its DT code is
4102218 2303226824620 28 16 36 34 12 14 and its Jones polynomial is =17 1: 1
—6 20 —50 100 —168 248 —324 376 —395 373 —316 241 — 161 94 —46 18 —5 1.

The corner configurations
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Figure 80. Link 6 (With permission of the British Mu-
seum) Figure 81. Link 6 has 18 components and Dg symmetry

Figure 82. The corner of Link 6

4.6.2  The central link

An outer component of Link 6 has D3 symmetry (Figure 83). There are two copies of this com-
ponent differing from one another by a § rotation. When linked together, these outer components
preserve the global Dg symmetry (Figure 84). Each of these outer components are connected
sums of three identical pretzel knots that we identify as p(3,3,3,3,3) (Figure 92). A pretzel
knot is ‘a knot obtained from a tangle represented by a finite number of integers separated by
commas” [6], where a tangle is a region in the projection plane surrounded by a circle such that
the knot or link crosses the circle exactly four times. In each pretzel knot, there appears to be
three twisted quatrefoils and two pieces that resemble the twisted quatrefoils but are skewed
and have a somewhat different structure. These pseudo quatrefoils (Figure 93) are anomalous
cases in contrast to the regularity and symmetry of the knots and links seen thus far.

Three identical unknotted middle components, shaped like dog bones, each possess Dy sym-
metry (Figure 85). Each one differs from its adjacent copy by a 7§ rotation, and the collection
of the three copies maintains the aggregate symmetry (Figure 86). The linking of two adjacent
middle components is 4, and the linking of all three is 12.

The core of the medallion is composed of six copies of the knot 941, each containing an
embedded trefoil. The 941 (Figure 87) and trefoil (Figure 88) have D3 symmetry and fit together
to form a unit (Figure 89). The combination of the six copies creates an aggregate design with
Dg symmetry (Figure 90). The linking of each 94;-trefoil pairs is 6, related perhaps to the Dg
symmetry of the design.

The final component is an inner unknotted ring that exhibits the global Dg symmetry group
(Figure 91).
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5. Summary discussion of the six links and corners

The symmetry groups observed in the structure of the links are, fundamentally, of two basic
types: those naturally constructed from the square (reflected in the powers of two: 2, 4, 8, 16)
and those naturally constructed from the triangle (three times the powers of two: 3, 6, 12). The
straight edge and compass construction of both of these basic regular polygons was known in
antiquity. The constructible regular polygons are the skeleton from which geometric symmetry
is often based. The number of sides for which one can do this is any power of 2 , e.g. 4, 8, 16,
32 (all observed in Leonardo’s cartelle), or a product of a power of two (including one) with
a Fermat Prime. The known Fermat Primes are 3, 5, 17, 257, and 65537. Thus, the hexagonal
symmetry is also one of the classically known natural symmetries. Contemporaries of Leonardo
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and, one presumes, Leonardo knew how to closely approximate the regular polygons for which
an exact construction is now known to be impossible (7, 9, 11, 13, etc). Leonardo’s symmetries,
however, were constrained to the powers of two and three times a power of two. Given the
degree of complexity of the cartelle and the proposition that they were to represent puzzles,
one must wonder why more complex symmetries were not employed in this task. For example,
does one encounter any instances of pentagonal, D5, symmetry in Leonardo’s other work? Some
suggest that it is present in Le Vitruvian Man (Figure 94), but this contention seems only weakly
supported by the actual drawing. One must wonder why Ds is absent. Were there religious or
contemporary cultural matters that caused this symmetry to be avoided?

When analyzing these entangled designs, one cannot help but wonder about the objectives
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of each, and the methods employed in their construction. The apparent overall regularity and
consistency might suggest the possibility that they were not hand drawn, but created using
a template. To test this hypothesis we employed geometry to measure the length scales and
curvature of the seemingly identical core components, for example in Link 4 (Figures 61—64),
and discovered significant variation. This suggests that the designs were indeed created by hand
rather than a pattern. The intertwining components themselves could have been drawn using a
method similar to that of the Pictish form of Celtic art. Another possibility is that a symmetric
projection was first designed, and then later made to be alternating in the realization of the
etching.

5.1 Anomalies observed in the links

Although the six figures exhibit consistency and symmetry, we have identified a few irregularities.
The most striking of these concerns the corner configurations of Link 2. Here one finds a two
component link of a trefoil and an unknot embellished with twisted quatrefoils. It is in the trefoils
of these four corner knots that we find one inconsistency among the cartelle. The link in the
lower right corner has a right-handed trefoil (all crossings are positive) whereas the other three
have left-handed trefoils (all crossings are negative). One might wonder, was this difference in
structure present in the original creation or did it arise in the course of copying the design? A
similar irregularity exists in the corner knots of the Link 3 conformation. This ancillary figure is
a single component, and consists topologically of two trefoils and a core complex prime knot. The
two trefoils of the lower left corner knot are positive, whereas the trefoils of the other three are
negative. Again, it is intriguing to question, how did this structural difference arise? Yet another
irregularity exists in the corner knots of the Link 5 conformation. In this case, the ancillary figure
is a single component that consists of a trefoil embedded in a core 26 crossing prime knot. The
upper left and lower right components have positive trefoils, and the upper right and lower left
components have negative trefoils. This instance of inconsistency is more symmetric than the
other two cases given the pairing of the corner knots. Nevertheless, the question as to the origin
of these differences presents itself, and especially in this case, we must wonder if there be some as
yet not understood objective leading to their presence. Perhaps the corner conformations were
produced by another artist, one who did not appreciate the distinction between the positive and
negative trefoils. Or, perhaps, the distinction between positive and negative trefoils was one that
was not appreciated by Leonardo.

With respect to the principal links, the situation is quite different. As far as we know, there
is only one instance of an error. In Link 5, there is a point at which the curve is interrupted
and a segment is missing (Figure 95). In the center of the circular conformation lying in the
third quadrant of the medallion, the main body component (Figure 75) should cross over itself
in order to maintain the regularity of the entire link, but instead it stops. There are thus two
under crossings in a row, with a discontinuity in the curve between. This anomalous occurrence
suggests the possibility of an error on the part of an apprentice or individual replicating the
initial knotted design. One wonders whether or not all renditions or copies of this link have the
same absent crossing.

In general, we believe that it is quite remarkable that the six woodcuts of Diired are faithful to
the originals, even to the extent of accurately reproducing the trefoil anomalies. In the specific
case of the missing segment, Diirear’s woodcut has compressed the conformation at the location
in question so as to obscure the structure a bit. Nevertheless, the image suggests fidelity there
as well.

Such fidelity is not, however, the case with other instances of copies of Leonardo’s art. For
example, the detail on the Mona Lisa bodice, Figure 2 shows several irregular facets. Looking
closely at the sequence of curls and quatrefoils, one notices that there is a conspicuous irregu-
larity in the structure of the curls, changing without order between positive and negative curls.
Furthermore, the number of curls between quatrefoils changes from two to three and back. When
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Figure 95. The missing segment in Link 5

Figure 96. Prado Mona Lisa bodice [26]

compared to the bodice of a recently restored contemporary copy of the Mona Lisa found in the
Prado Museum, Figure 96, or the ‘earlier’ Mona Lisa (also known as the Ilesworth Mona Lisa),
we see instances in which Leonardo’s variation in structure is replaced by a periodic structure as
well as striking differences in the structure of the quatrefoils. Specifically, in the chain of curls,
the Mona Lisa has a sequence of three curls whereas the others are all sequences of two and
the quatrefoils are alternating. In the Prado and Ilesworth copies, this is not the case, all are
sequences of double curls. In each of the instances, the quatrefoils display different variations
in the crossing structures. The Mona Lisa Foundation’s website reports some of these elements,
but not all, in their comparison: http://monalisa.org/2012/09/08/the-embroidery/. For exam-
ple, Leonardo’s curls change sign as do those in the Ilesworth copy, while those in the Prado copy
do not. Unlike Diirer, it is curious that these ‘copies” have some striking variations in topological
character.

6. Conclusions

It is thought that the cartelle designs were created for the ‘Academia Leonardi Vinci’ as puz-
zles—that is, for pure entertainment. They are clearly quite puzzling, reflecting a substantial
variation in structure as reflected in the groups of symmetry associated with each link and its
constituent pieces, and significant variation in the number of components and in the quantitative
nature of the knotting and linking. Even the artistic general appearance of the links reflect a
variety of inspiration for the medallions. Given the historical context of their creation one can
also speculate that Leonardo made use of familiar symbols and designs that, combined with the
desire for certain symmetries, resulted in these complex knotted designs. Exactly how this was
accomplished is not clear from our analysis though we do argue that, as a consequence of the
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local geometric variation and the presence of trefoil anomalies, much of the work must have been
accomplished ‘by hand.” The absence of pentagonal symmetry raises, we believe, an interesting
question. Is this a consequence of being unaware of how to make such symmetries or are there
cultural forces that caused the artist to avoid such symmetry?
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