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Abstract

Using the Gauss linking number, we define a new measure of entanglement, the linking
matrix, for a collection of closed or open chains in 3-space. Periodic Boundary Conditions
(PBC) are often used in the simulation of physical systems of filaments. Using the periodic
linking number, defined in [24], we define the periodic linking matrix to study entanglement of
closed or open chains in systems employing PBC. We study the properties of the periodic linking
matrix as a function of cell size. We provide analytical results concerning the eigenvalues of the
periodic linking matrix and show that some of them are invariant of cell-size.
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1 Introduction
1

The entanglement of open or closed filaments arises in many physical systems, such as polymers,
biopolymers, fluid flows, textile weaves etc. Often, these systems consist of a large collection of
filaments which interlace and cannot cross each other without breaking their constituent bonds. For
the study of the conformational properties of these systems, computer simulations are necessary.
The computer simulations require the use of Periodic Boundary Conditions (PBC) to avoid having
boundary effects.

The uncrossability of the chains gives rise to entanglement. The degree of complexity of the
entanglement of the chains dramatically affects their mechanical and dynamical properties. In
determining the degree of entanglement in physical systems is therefore very important to understand
their properties [11, 12, 10, 7, 32, 36, 34].

Edwards first pointed out that in the case of ring polymers, the global entanglement of the chains
can be studied by using tools from mathematical topology, such as the Gauss linking number [11, 12].
Since Edwards, many studies have been devoted to the topology of polymer rings and its relation
to physical properties [14, 30, 20, 33, 13]. However, in the case of linear polymers, the notion of
topological invariant does not apply since topological open curves can be continuously deformed to
attain any configuration [14, 21, 35]. A measure of global entanglement, that is meaningful both
for closed or open chains, is the Gauss linking integral. For two closed chains (ring polymers) the
Gauss linking integral is a topological invariant that measures the algebraic number of times one
chain turns around the other. For two open chains (linear polymers), it is a real number that is
a continuous function of the chain coordinates. The Gauss linking integral can be also applied to
one chain in order to provide measures of global self-entanglement of a chain, called the writhe

1Preliminary results on the periodic linking matrix can be found in [27]
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and the self-linking number [1, 18, 4]. Computer experiments indicate that the linking number and
the writhe are effective indirect measures of global entanglement in systems of random filaments
[3, 16, 20, 22, 23]. Analytical and numerical results have shown that the writhe of random walks
and polygons depends on their length and that it follows a different scaling for random walks in
a lattice, or under confinement [20, 8, 26]. In [28, 27, 25, 24] the linking integral was applied to
polymer melts to study their entanglement and it was shown that it can give physically relevant
information about polymer properties. In this work, we provide a more refined tool for measuring
entanglement in polymers or collections of filaments, by taking into consideration all the pairwise
linking in the system.

The PBC impose further complexity in measuring the entanglement both for open and closed
chains. In order to study entanglement in systems with PBC, in [24] we defined the periodic linking
number and showed that it is well defined both for open and closed chains. In a periodic system,
the periodic linking number measures the degree of entanglement of one filament in the periodic
system with an entire collection of filaments in the periodic system. For closed chains the periodic
linking number is a finite sum and it is an integer topological invariant. For open chains, the periodic
linking number is an infinite summation, which we proved converges and is a continuous function
of the chains’ coordinates. In this work, we provide a measure of all the pairwise entanglement in a
system with PBC.

More precisely, we propose that one may strengthen the measures of entanglement used so far
by using a matrix containing all the pairwise entanglement information of the many components of
the system. The eigenvalues of this matrix are indicative of the pairwise entanglement information
in the system and provide more information than the average (absolute) linking of the chains in
the system. An important advantage of using the linking matrix of a collection of chains is that its
eigenvalues can detect inhomogeneities in the entanglement of the system. The material properties
of polymeric systems, textiles, or wire weaves, all rely on homogeneous structures. The existence
of inhomogeneities therein can result in undesired properties such as breakage of the corresponding
material under deformation or, on the other hand, provide advantageous features of the system that
can be exploited in novel applications.

In this work we study the linking matrix of chains in 3-space and in systems employing one
Periodic Boundary Condition. One reason to study systems in one PBC is that the results presented
therein will be used as a basis to extend to the case of two and three PBC. More importantly, systems
employing one PBC occur very often in applications, usually to simulate physical filaments confined
to a tubular structure. Systems which employ PBC generate infinite systems of chains. To study
entanglement in those systems we define the periodic linking matrix. We also examine how the
periodic linking matrix changes with respect to the size of the simulation cell. There are several
reasons to study this:

(1) The properties of the linking matrix that are invariant of cell-size characterize the infinite
periodic system and, therefore, are of particular importance.

(2) Topologically, the larger cell-sizes correspond to different topological objects in the cor-
responding identification space, the space that results from gluing the opposite faces of the cell
according to the PBC. In the case of a systems with 1,2 or 3 PBC the identification space is the
solid torus, ST , the thickened torus. T × I or the 3-torus, T 3, respectively. In our study we analyze
how these are related.

This manuscript is organized as follows: In Section 2 we define the linking matrix and in section
3 we give the definitions necessary to study entanglement in systems employing PBC (as they were
initially defined in [24]). In Section 4 we define the periodic linking matrix of filaments in PBC and
discuss its properties. In Section 5 we study the properties of the periodic linking matrix for chains
in one PBC as a function of cell-size.
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2 The linking matrix

In this section we define the linking matrix as a measure of entanglement that contains all the pairwise
and self-entanglement of the chains that compose a system. For its definition, the definitions of the
linking and self-linking number are necessary.

2.1 The Gauss linking number and the self-linking number

The Gauss linking number is a classical measure of the algebraic entanglement of two disjoint oriented
closed curves that extends directly to disjoint oriented open chains [9, 26, 11].

Definition 2.1. The Gauss linking number of two disjoint (closed or open) oriented curves l1 and
l2, whose arc-length parametrizations are γ1(t), γ2(s) respectively, is defined as a double integral
over l1 and l2 [15]:

L(l1, l2) =
1

4π

∫

[0,1]

∫

[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t)− γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t)− γ2(s).

In the case of closed chains the Gauss linking number is an integer and a topological invariant,
equal to zero when the two chains are algebraically unlinked. The Gauss linking number can be
computed for a fixed configuration of two open chains to give a real number that is equal to half the
average algebraic sum of crossings between the two chains over all projection directions.

For two open chains, the Gauss linking number may be non-zero, even if their convex hulls do
not intersect. But as the distance between their convex hulls increases, the Gauss linking number
tends to zero.

The Gauss linking integral can be applied to one chain to measure its entanglement with itself.
The self-linking number is defined as the linking number between a curve l and a translated image
of that curve lϵ at a small distance ϵ, called the normal variation curve of l, that is, Sl (l) = L (l, lϵ)
[5]. This can be expressed by the Gauss integral over [0, 1]∗ × [0, 1]∗ = {(x, y) ∈ [0, 1]× [0, 1] |x ̸= y}
by adding to it a correction term, so that it is a topological invariant of closed curves [2] under
regular isotopy,

Sl (l) = 1
4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇(t),γ̇(s),γ(t)−γ(s))
||γ(t)−γ(s)||3 dtds

+ 1
2π

∫
[0,1]

(γ′(t)×γ′′(t))·γ′′′(t)
||γ′(t)×γ′′(t)||2 dt. (2)

2.2 The Linking Matrix

We use the linking and self-linking number to define a measure of entanglement of an entire col-
lection of closed or open chains. We define the Linking Matrix, LM , of a collection of chains, say
H1, H2, . . . , Hn, to be the n × n matrix with elements aij = L(Hi,Hj) if i ̸= j and aii = Sl(Hi),
etc. The linking matrix collects together all the linking information of the system.

The following properties derive from the properties of the Gauss linking number and the self-
linking number:
(i) Since the linking number is symmetric, this is a real symmetric matrix and therefore has n real
eigenvalues, representantive of the pairwise entanglement of the system.
(ii) For closed chains, the eigenvalues are link-homotopy invariants, i.e. does not change under
continuous deformations of the system that allows intersections of a chain with itself but not between
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distinct chains, and they change when torsion of the chains changes. Notice that if the diagonal
elements were 0 (so, suppressing the self-linking of the chains), the eigenvalues are invariants under
link-homotopy).
(iii) For open chains, the eigenvalues are real numbers that change continuously with the motion of
the chains.

The largest eigenvalue increases with increasing entanglement complexity and, indeed, is a prin-
cipal measure of this. We apply the methods of graph theory to derive pairwise entanglement prop-
erties relevant to physical properties. A physical system of filaments is represented by a weighted
graph as follows: We represent each chain in the melt by a vertex, i = 1, . . . , n. Then two vertices
are connected with an edge if their absolute linking number is greater than zero. Also, there is an
edge of a vertex to itself if the chain has absolute self-linking number greater than zero. Thus we
have related the polymeric system to a graph. Each edge of this graph has an associated weight
function, w, that is defined as w(i, j) = |L(Hi,Hj)| and w(i, i) = |Sl(Hi)|.

The homogeneity of the entanglement in a polymer melt is related to the connectivity of the
corresponding weighted graph. For example, let us consider the extreme case where all the chains
are self-entangled but not at all entangled with each other. The linking matrix will be a diagonal
matrix, and the melt consists of n isolated chains. Also, the corresponding weighted graph will be
disconnected and the number of its components is the number of polymers. In general if the linking
matrix has the form of a block diagonal matrix, then there exist collections of chains that are linked
with each other and not at all linked with the chains that belong to the other collections. That
is, there exist isolated collections of chains, and the corresponding graph is disconnected and the
number of its components is equal to the number of collections. The linking matrix allows one to
detect such situations. Moreover, the graph theoretic approach can be useful to determine which
collections of chains are important in maintaining the homogeneity of the system, or, in other words,
whether or not there are chains whose removal would result in a drastic change of the entanglement
of the chains and therefore change the properties of the material. In a graph, a subset of edges
that disconnects a graph is called a cut set. Cut sets arise naturally in the study of connectivity
of graphs and the sizes of the connected components are an important consideration. Isoperimetric
problems examine optimal relations between the size of the cut set and the sizes of the separated
parts. Roughly speaking, isoperimetric problems involving edge-cuts correspond in a natural way
to Cheeger constants in spectral geometry. If the gap between the first and second eigenvalue of a
regular graph is large then the graph has good connectivity, expansion and randomness properties.
Therefore, when none of the entries of the periodic linking matrix are zero, then the gap between
the two eigenvalues is a measure of the homogeneity of their entanglement. Notice that for open
chains, none of the entries is exactly zero with probability one, therefore, the gap between its first
two eigenvalues is also a measure of its homogeneity. One can use thresholds to the entries of the
linking matrix of open chains to relate the strength of linking to the structure of the material as
expressed in the quantities derived via the graph. More precisely, one can set to zero all entries less
than a given thresshold value which represents low linking. Then some entries of the matrix may
become zero and reveal interesting properties of the system.

3 Entanglement in systems with PBC

3.1 Systems in PBC

In this section we give some definitions that form the basis for our study of entanglement in PBC.
They were originally defined and discussed in [24].

We study a system consisting of a collection of polygonal chains of length n (ie. of n edges), by
dividing the space into a family of cubic boxes of volume l3, where l is the edge length of the cube,
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Figure 1: The central cell C and the periodic system it generates in the case of closed free chains.
The generating chain i (resp. j) is composed by the blue (resp. red) arcs in C. The free chain I
(resp. J) is the set of blue (resp. red) chains in the periodic system. Highlighted are the minimal
unfoldings of the images I1 and J1.

so that the structure of the filaments in each cube is identical, i.e. we impose PBC on the system
[32]. Specifically, we make the following definition:

Definition 3.1. A cell consists of a cube with embedded arcs (ie. parts of curves) whose endpoints
lie only in the interior of the cube or on the interior of one of its faces, but not on an edge or
corner, and those arcs which meet a face satisfy the PBC requirement. That is, to each ending
point corresponds a starting point at exactly the same position on the opposite face of the cube.
See Figure 1 for an illustrative example.

A cell generates a periodic system in 3-space by tiling 3-space with the cubes so that they fill
space and only intersect on their faces. This allows an arc in one cube to be continued across a face
into an adjacent cube and so on. Notice that the resulting chains may be closed, open or infinite.

Without loss of generality, we choose a cell of the periodic system that we call generating cell.
A generating chain is the union of all the arcs inside the cell the translations of which define a
connected component in the periodic system. For each arc of a generating chain we choose an
orientation such that the translations of all the arcs would define an oriented curve in the periodic
system. For each generating chain we choose without loss of generality an arc and a point on it to
be its base point in the generating cell. For generating chains we shall use the symbols i, j, . . . . For
the arcs of a generating chain, say i, we use the symbols i1, . . . , ik. An unfolding of a generating
chain is a connected arc in the periodic system composed by exactly one translation of each arc of
the generating chain. Then an unfolding contains exactly one translation of the base point of the
generating chain. Without loss of generality, let us make the convention that the base point of each
image lies in the leftmost cell of its minimal unfolding. A generating chain is said to be closed (resp.
open) when its unfolding is a closed (resp. open) chain. The smallest union of the copies of the cell
needed for one unfolding of a generating chain shall be called the minimal unfolding. The smaller
number of copies of the cell whose union contains the convex hull of the complete unfolding of a
generating chain shall be called the minimal topological cell.

The collection of all translations of the same generating chain i shall be called a free chain,
denoted I. A free chain is a union of connected components, each of which is equivalent to any other
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under translation. For free chains we will use the symbols I, J, . . . . An image of a free chain is any
arc of a free chain that is the unfolding of a generating chain. The minimal unfolding of I containing
an image Iu of I, will be denoted mu(Iu). For example, in Figure 1, the blue closed curves are some
of the images of the free chain I and the highlighted blue cells compose mu(I0). In the particular
case where the images of a free chain form infinite components in the periodic system, this free chain
shall be called infinite free chain. We call an infinite connected component of an infinite free chain
I an infinite image of I. Note that an image of an infinite free chain is still a finite arc, an unfolding
of a generating chain, lying on an infinite image of I. For example in Fig. 1 the infinite curve on
which the image I0 lies is an infinite image of I, called I0. The image of I whose base point lies
in the generating cell shall be called the parent image and it shall be denoted I0. Then any other
image of I can be defined as a translation of I0 by a vector v⃗ based on the base point of the parent
image. That is:

Iv = I0 + v⃗. (3)

Also, we denote i(0) the generating chain whose base pont is that of I(0) and any translation of
it is denoted i(m) = i(0) + m⃗. Similarly, we define a base point for every cell in the periodic system
(say to be its central point). Let us denote by C0 the simulation cell. Then any cell, Cu, in the
periodic system is a translation of it, Cu = C0 + u⃗.

3.2 The periodic linking number

In a periodic system we must define linking at the level of free chains (see [24] for an analysis of the
motivation for this definition). Given that two free chains are two infinite collections of chains, how
can we measure the linking of only the different pairs of chains? Looking at the periodic system we
notice that, due to the periodicity, the linking imposed by all the images of one free chain, say J , to
one image of another free chain, say I, are the same for any image of I. Based on this observation
in [24] we gave the following definition of a measure of entanglement between two free chains:

Definition 3.2 (Periodic linking number). Let I and J denote two (closed, open or infinite) free
chains in a periodic system. Suppose that I0 is the parent image of the free chain I in the periodic
system. The periodic linking number, LKP , between two free chains I and J is defined as:

LKP (I, J) =
∑

v

L(I0, J0 + v⃗), (4)

where the sum is taken over all the images Jv = J0 + v⃗ of the free chain J in the periodic system.

The periodic linking number has the following properties with respect to the structure of the
cell, which follow directly by its definition:
(i) LKP captures all the linking that all the images of a free chain impose to an image of the other.
(ii) LKP is independent of the choice of the image I0 of the free chain I in the periodic system.
(iii) LKP is independent of the choice, the size and the shape of the generating cell.
(iv) LKP is symmetric.

We notice that the periodic linking number is an infinite summation of Gauss linking numbers
(see Fig. 1 for an illustrative example). In the case of closed chains, LKP is reduced to a finite
summation and in [24] we show that it is equal to the linking number of two chains in a manifold.
However, the periodic linking number of open or infinite chains is an infinite summation since the
Gauss linking number is in general non-zero even if the chains are far from each other. In [24]
we show that LKP indeed converges and that it is a continuous function of the chain coordinates.
Also in [24] we defined the local and cell periodic linking number as cut-offs of the periodic linking
number.
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3.2.1 The periodic self-linking number

Inspired by the definition of the periodic linking number at the level of free chains in [24] we defined
a measure of self-linking number at the level of free chains. We notice that an image of a free
chain may be entangled with other images of itself (see Fig. 1 for an illustrative example). Thus a
measure of self-entanglement of a free chain must capture this information. In [24] we introduced
the following definition of self-linking for chains in PBC:

Definition 3.3 (Periodic self-linking number). Let I denote a free chain in a periodic system and
let I0 be the parent image of I, then the periodic self-linking number of I is defined as:

SLP (I) = Sl(I0) +
∑

v⃗

L(I0, I0 + v⃗), (5)

where the index v runs over all the images of I, except Iv = I0 + v⃗, in the periodic system.

The periodic self-linking number has the following properties with respect to the structure of the
cell, which follow directly by its definition:
(i) SLP captures the linking that all the images of a free chain impose to one image of it.
(ii) SLP is independent of the choice of the image Iu of the free chain I in the periodic system.
(iii) SLP is independent of the choice, the size and the shape of the generating cell.
(iv) SLP is invariant under regular isotopy of the corresponding diagrams (If we ignore the self-
linking number in SLP , we obtain the periodic linking number with self-images, which is invariant
under link homotopy).

4 Periodic Linking Matrix

In order to capture all the pairwise and self-entanglement in a periodic system generated by a cell
C with free chains H1, H2, . . . , Hn, we define the periodic linking matrix, LMC , as the matrix with
elements aij = LKP (Hi,Hj) if i ̸= j and aii = SLP (Hi). Therefore, LMC has size n×n. Thus the
periodic linking number enables us to reduce the study of the entanglement of an infinite collection
of chains that compose the periodic system to the study of a finite dimensional matrix.

The periodic linking matrix has the following properties deriving from its definition:
(i) LMC is a real symmetric n× n, thus has n real eigenvalues.
(ii) For closed chains, the eigenvalues are a finite summation and are topological invariants up
to regular isotopy of the corresponding diagram. If we suppress the self-linking number from the
periodic self-linking number in the diagonal entries, the eigenvalues are topological invariants under
link-homotopy.
(iii) For open chains, the eigenvalues are infinite summations which converge and are continuous
functions of the chains coordinates.

Our next goal is the extraction of quantities characterizing a polymer system from the associated
periodic linking matrix.

We also expect the largest eigenvalue of the periodic linking matrix to increase for increasing
entanglement complexity. Similarly with the case of chains in 3-space, we can use tools from graph
theory to derive pairwise entanglement properties relevant to physical properties. In [27] our nu-
merical results showed that the asphericity of the eigenvalues of the periodic linking matrix, the
Cheeger constant and the Laplacian matrix of the corresponding graphs can provide measures of the
homogeneity of the entanglement of a collection of chains. Our numerical results also suggest that
the homogeneity of the entanglement depends on chain length.
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5 The Periodic Linking Matrix as a function of the cell size

In this section we will consider systems employing one PBC. This situation is often encountered
in applications in the simulation of polymers in confinement, as for example tubular geometries, or
grafted polymers.

By concatenating m cells we obtain a larger cell that we denote mC, which applies PBC to the
chains that touch its faces in the x−direction. We can concatenate cells of the type mC by gluing
their x−faces with respect to the PBC, in order to create the same periodic system that is generated
by the cell C. In this section we study the periodic linking matrix of a periodic system as the
size of the cell used for its simulation, characterized by m, increases. We will see that the linking
matrix depends on the size of the cell used for the simulation of a system. Since the periodic system
simulated is the same, one would expect the periodic linking matrix to retain certain entanglement
information. However, we will see that in a topological sense, these systems are different. With our
study we extract entanglement information that is invariant of the cell size as well as information
that depends on it.

Let C denote a cell composed by n generating chains, and let LMC denote the corresponding
periodic linking matrix of size n × n. Without loss of generality we will concatenate cells always
to the positive direction of the x−axis. Let mC denote the cell that results by gluing m copies of
C respecting the PBC. Let us denote the cells that compose mC as follows: Cj = C0 + v⃗j , where
C0 = C, v⃗j = (lj, 0, 0), j = 1, . . . ,m − 1 and l is the length of the edge of the simulation cell in
the x-direction. By Lemma 5.1 in [24] there are m generating chains in the cell mC. Then mC has
more chains. More precisely:

Lemma 5.1. Let C be a cell with n generating chains. Then the cell mC that results by gluing m
copies of C respecting the PBC, has mn generating chains.

Proof. Let C0 denote the simulation cell. Let i1, i2, . . . , iw denote the arcs of the generating chain i
in C0. Let ir + v⃗j , ir + v⃗h, where j > h, be two translations of the arc ir in mC. Then v⃗j − v⃗h =
(l(j − h), 0, 0), where j − h ∈ Z, 0 < j − h < m. In the periodic system generated by mC, these two
arcs generate the translations ir + v⃗j + u⃗ and ir + v⃗h + u⃗′, where u⃗ = (mlu, 0, 0), u⃗′ = (mlu′, 0, 0),
u, u′ ∈ Z. Since jl + mlu mod ml = jl ̸= hl = hl + mlu′ mod ml, any two translations of these
arcs are different arcs in the periodic system generated by mC. Thus, ir + v⃗j , ir + v⃗h belong to
different generating chains in mC. Therefore, the generating chains i(j) = i(0) + v⃗j , i(h) = i(0) + v⃗h
are different for all 0 < j ̸= h < m, j, h ∈ Z.

Remark 5.2. The different generating chains in mC generate different free chains in the periodic
system. We denote the free chains in mC generated by i(j), j = 0, . . . ,m− 1, as I(j) = I(0) + v⃗j .

Thus the corresponding periodic linking matrix, LMmC has size mn ×mn. Indeed, the cells C
and mC describe different topological objects. If we identify the faces of the cell, then we will get an
n−component link in the solid torus in the first case and a mn−component link in the second case.
The 3-manifolds are the same in both cases even though the links that they contain are different,
related by an m−fold covering space of the second manifold over the first. So, we notice that the
linking matrices LMC and LMmC are different, but the periodic system that the cells generate and
whose entanglement we wish to measure, is the same. For this purpose, we will study the dependence
of the periodic linking matrix on the cell size and we will look for quantities that remain invariant
of cell size.

In the next sections, we will prove that some of the eigenvalues of the periodic linking matrix
are independent of cell size. First we will study the simplest case of the periodic linking matrix of
a single chain in a cell with one PBC. Next, we will generalize this to the case of n chains in a cell
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with one PBC. This case will facilitate the understanding of the general case of systems employing
one PBC. The methods presented here can also be used to obtain similar results in 2 and 3 PBC.

The following result will be helpful in our analysis:

Lemma 5.3. If an image of a free chain I intersects k cells C, then there are k images of I that
intersect a cell C.

Proof. Let C0, C1, . . . , Ck−1 denote the cells that belong to mu(I0). Let iw denote an arc of I0
that lies in the cell Cw = C0 + (w, 0, 0). Then the arc iw − (w, 0, 0) lies in C0 and belongs to
I−w = I0 + (−w, 0, 0). Thus I−w intersects C0. Any other arc of I0 in Cw gets translated by
(−w, 0, 0) to C0 and belongs to I−w. On the other hand, if I−n = I0 − v⃗n intersects C0 and i−n is
an arc of I−n in C0, then the arc i−n + v⃗n belongs to I0 and lies in the cell Cn = C0 + v⃗n. Similarly,
all the arcs of I−n in C0 correspond to arcs of I0 in the cell Cn. Thus, the number of images of I
intersecting C is equal to the number of cells in the minimal unfolding of I0.

Corollary 5.4. Let I denote a free chain in a system with one PBC generated by the cell C. Suppose
that the minimal unfolding of an image of I is formed by k cells. Let mC denote the new cell that
is created by gluing m copies of C, where m = ak + b, a, b ∈ N and b < k. Then there are m free
chains in mC; for ((a−1)k+ b+1) = c of those free chains, their images do not touch the boundary
of mC, and for the rest k − 1 free chains there are exactly two images of each intersecting mC.

Proof. All the images Iw = I0 + (w, 0, 0) with m− w ≥ k − 1 unfold in mC and belong to different
free chains in mC by Lemma 5.1. There are c = (a− 1)k+ b+1 such chains. The rest m− c = k− 1
free chains intersect mC and unfold in two copies of mC (since mC contains m cells and mu(I0)
contains k < m cells), thus have two images intersecting mC by Lemma 5.3.

5.1 One chain in a cell with one PBC

We will next study the case of a cell with one PBC that contains one generating chain that unfolds
in k cells. The periodic linking matrix of that system has size 1 × 1, LMC = SLP (I) = Sl(I0) +∑

i L(I0, Ii).
If we concatenate m cells to create a larger cell mC, then by Lemma 5.1 there are m generating

chains in k1C, we denote I(0), I(1) = I(0) + (1, 0, 0), . . . , I(m) = I(0) + (m, 0, 0). The linking matrix
for this cell has size m × m and is defined as (LMmC)(i,j) = LKP (I(i), I(j)), when i ̸= j and

(LMmC)(i,i) = SLP (I(i)).

Lemma 5.5. Let C denote a cell with one PBC that consists of only one chain, I. Let mC denote
the cell that results after gluing m copies of C, then LMmC is a symmetric centrosymmetric matrix.

Proof. We notice that Sl(I0) = Sl(Iu) for all u. Also, we notice that the images Ii + (mrl, 0, 0))
and Ii are in the same relative positions as I0 + (mrl, 0, 0) and I0, so L(I0, I0 + (mrl, 0, 0)) =
L(Ii, Ii + (mrl, 0, 0)), i = 1, . . . , k − 1. Thus, L(Ih, Il) = L(Iu, Iv) when |h− l| = |u− v|. Therefore,

SLP (I
(i)) = Sl(Ii) +

∑

r∈Z
L(Ii, Ii + (mrl, 0, 0))

= Sl(I0) +
∑

r∈Z
L(I0, I0 + l(r, 0, 0)) = SLP (I

(0))
(6)

for i = 1, . . . ,m− 1.
Similarly, we notice that |(m− i)− (m− (j + j1)| = |i− (j + j1)|, so

9



LKP (I
(i), I(j)) =

∑

j1

L(I0 + (i, 0, 0), I0 + (j + j1, 0, 0))

=
∑

j1

L(I0 + (m− i, 0, 0), I0 + (m− j + j1, 0, 0)) = LKP (I
(m−i), I(m−j))

(7)

Thus, the entries of the periodic linking matrix, LM = (li,j), satisfy the relations li,j = lm−i,m−j

for 0 ≤ i, j ≤ m − 1. Thus, the periodic linking matrix is a symmetric centrosymmetric matrix
[6, 31].

Remark 5.6. For closed chains and for m > 2|mu(I0)|, the linking matrix obtains a simpler
expression. When m > 2|mu(I0)|, any image of I(u) will link with at most one image of any
I(v), since any two images of I(u) are further that 2|mu(I0)| cells apart, and any image of I(v)

occupies |mu(I0)| cells. Therefore, SLP (I(j)) = Sl(I0) for all j, LKP (I(j), I(k)) = L(Ij , Ik), for
|j − k| ≤ 2|mu(I0)|, and LKP (I(j), I(k)) = 0, for |j − k| > 2|mu(I0)|. Thus, as m → ∞, LMmC

becomes an m×m sparse matrix, where each row has at most 2|mu(I0)| non-zero entries.

Proposition 5.7. Let I denote a chain in a cell C with one PBC. Let mC denote the cell that
results after gluing m copies of C. Then the j-th eigenvalue of LMmC is given by:

λj = SLP (I
(0)) + 2

m−1
2∑

k=1

LKP (I
(0), I(k)) cos

(2π
m

k(j − 1)
)

(8)

for m odd and

λj =SLP (I
(0)) + (−1)(j−1)LKP (I

(0), I(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (I
(0), I(k)) cos

(2π
m

k(j − 1)
) (9)

for m even.

Proof. By Lemma 5.5, LMmC is a real symmetric circulant matrix. Its j-th eigenvalue is [31]:

λj = SLP (I
(0)) + LKP (I

(0), I(1))ωj−1 + LKP (I
(0), I(2))ω2(j−1) + . . .

+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄j−1
(10)

where ω = exp
(

2πi
m

)
, j = 1, . . . ,m.

Since LKP (I(0), I(k)) = LKP (I(0), I(m−k)) and ωk = ω̄k, the eigenvalues can be expressed as:

λj = SLP (I
(0)) + LKP (I

(0), I(1))ω(j−1) + LKP (I
(0), I(2))ω2(j−1)

+ . . .+ LKP (I
(0), I(m−1)/2)ω

m−1
2 (j−1) + LKP (I

(0), I(m+1)/2)ω̄
m−1

2 (j−1)

+ . . .+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄(j−1)

= SLP (I
(0)) + 2LKP (I

(0), I(1)) cos
(2π
m

(j − 1)
)

+ 2LKP (I
(0), I(2)) cos

(2π
m

2(j − 1)
)

+ . . .+ 2LKP (I
(0), I(m−1)/2) cos

(2π
m

m− 1

2
(j − 1)

)

(11)
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for m odd, and as:

λj = SLP (I
(0)) + LKP (I

(0), I(1))ωj−1 + LKP (I
(0), I(2))ω2(j−1) + . . .

+ LKP (I
(0), I(⌊

m−1
2 ⌋))ω⌊m−1

2 ⌋(j−1)

+ LKP (I
(0), I(⌊

m−1
2 ⌋+1))ω(⌊m−1

2 ⌋+1)(j−1) + LKP (I
(0), I(⌊

m−1
2 ⌋+2))ω̄⌊m−1

2 ⌋j+

. . .+ LKP (I
(0), I(m−2))ω̄2(j−1) + LKP (I

(0), I(m−1))ω̄j−1

= SLP (I
(0)) + 2LKP (I

(0), I(1)) cos
(2π
m

(j − 1)
)

+ 2LKP (I
(0), I(2)) cos

(2π
m

2(j − 1)
)

+ . . .+ 2LKP (I
(0), I⌊

m−1
2 ⌋) cos

(2π
m

⌊m− 1

2
⌋(j − 1)

)

+ (−1)(j−1)LKP (I
(0), I(⌊

m−1
2 ⌋+1))

(12)

for m even. In the last equality we noticed that ω(⌊m−1
2 ⌋+1) = −1 for m even.

Remark 5.8. . (i) λ1 is independent of cell-size, m and λ1 = SLP (I) for all m.
(ii) There are at most 1+⌊m−1

2 ⌋ distinct eigenvalues, as expected for real circulant matrices [31].
Therefore, λj = λm−j+2 for all j > 1.

(iii) For closed chains and for m > 2|mu(I0)|, the j-th eigenvalue of the linking matrix has a
simpler formula which can be obtained by Eq. 8,9 by replacing the periodic linking and self-linking
numbers by the classical linking and self-linking numbers.

Remark 5.9. The difference between the first two eigenvalues of LMmC is:

λ1 − λ2 = 2

m−1
2∑

k=1

LKP (I
(0), I(k))(1− cos

(2π
m

k
)
) (13)

for m odd and

λ1 − λ2 = 2

⌊m−1
2 ⌋∑

k=1

LKP (I
(0), I(k))(1− cos

(2π
m

k
)
) (14)

for m even.
The above formula shows that the difference between the first eigenvalues does not depend on

the self-linking number of the chain. The formula indicates that the difference, which is a measure
of the homogeneity of the entanglement, is a weighted function of the linking numbers of the chain
with its images. Interestingly, for large m, the linking with the nearest images contributes less than
the linking with further images.

Remark 5.10. Often in applications one is interested in the average properties of filaments. Can-
cellations may occur when using the Gauss and periodic linking number. For this reason, one may
want to use the absolute values of all the entries of the periodic linking matrix, we call the resulting
matrix the absolute periodic linking matrix. The absolute periodic linking matrix is also symmet-
ric centrosymmetric. Lower bounds on the maximum eigenvalue of nonnegative real symmetric
centrosymmetric matrices can be found in [31].
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Lemma 5.11. Let C denote a cell with one PBC that consists of only one chain. Let mC denote
the cell that results after gluing m copies of C, then the sum of all the entries of a row of LMmC is
equal to SLP (I), for any m.

Proof. Let us compute the total sum of the elements of the first row:

SLP (I
(0)) + LKP (I

(0), I(1)) + . . .+ LKP (I
(0), I(m−1))

= Sl(I0) +
∑

r∈Z
L(I0, I0 + rml(1, 0, 0)) +

∑

r∈Z
L(I0, I0 + (1 + rm)l(1, 0, 0))+

+ . . .+
∑

r∈Z
L(I0, I0 + (m− 1 + rm)l(1, 0, 0))

= Sl(I0) +
∑

r∈Z
L(I0, I0 + rl(1, 0, 0)) = SLP (I)

(15)

By Lemma 5.5, the sum of the elements of each row is SLP (I).

Remark 5.12. Exactly the same holds for the sum of all the terms of each column, since the matrix
is symmetric.

Remark 5.13. [Consequences of Lemma 5.11]
(i) The total linking applied to a chain remains constant and is independent of the size of the cell,
as expected from the structure of the periodic system.
(ii) The total sum of the elements of the linking matrix depends linearly on the size of the cell.
Let Total(LMC) denote the total sum of the elements of the periodic linking matrix LMC . Then,
Total(LMmC) = mTotal(LMC) = mSLP (I).

In the following we will use matrices that result from products of simple matrices. We denote Q
the m × m matrix for which [Q]ij = 1 for j ≤ i and [Q]ij = 0, j > i, and Q−1 its inverse, ie. the
matrix for which [Q−1]ii = 1, [Q−1]i,i−1 = −1 and [Q−1]ij = 0 for j ̸= i, i− 1.

These matrices can be expressed as

Q =
∏

0≤l≤m−1

Q(m−l) and Q−1 =
∏

0≤l≤m−1

(Q(m−l))−1, (16)

where Q(k) is the matrix whose elements are [Q(k)]ii = 1 and [Q(k)]ij = 0 for all j ̸= i except for the
element [Q(k)]k,k−1 = 1.

Accordingly, (Q(k))−1 is the matrix whose elements are [(Q(k))−1]ii = 1 and [(Q(k))−1]ij = 0 for
all j ̸= i except for the element [(Q(k))−1]−1

k,k−1 = −1.

Proposition 5.14. Consider one free chain I in the periodic system formed by a cell with one PBC.
Then the periodic linking matrix LMmC of the periodic system generated by a larger cell made from
m concatenated cells, mC, is similar to the matrix:

LM ′
mC =

[
SLP (I) C

0 D

]
(17)

where C and D are real matrices of size 1× (m− 1) and (m− 1)× (m− 1) respectively.
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Proof. We will show that

LM ′
mC = Q−1LMmCQ =

[
SLP (I) C

0 D

]
(18)

where Q and Q−1 are products of simple matrices.
The multiplication LMmCQ(k) performs the addition of all the elements of the k-th column of

LMmC to the elements of the (k − 1)-th column. The multiplication (Q(k))−1LMmC performs the
subtraction of all the elements of the (k − 1)-th row of LMmC from the elements of the k-th row.

The element [LM ′
mC ]ij can be expressed as:

[LM ′
mC ]ij =

∑

1≤r≤m

[Q−1]ir
[ ∑

1≤v≤m

[LMmC ]rv[Q]vj
]

=
∑

j≤v≤m

([LMmC ]iv − [LMmC ]i+1,v)
(19)

where we noticed that [Q]vj = 0 for v < j, and [Q]vj = 1 for v ≥ j. Also, [Q−1]ir = 0 for all
r ̸= i− 1, i and [Q]i,i−1 = −1, [Q]ii = 1.
Thus, by Lemma 5.11 for i > 1, j = 1:

[LM ′
mC ]i1 =

∑

1≤v≤m

[LMmC ]iv −
∑

1≤v≤m

[LMmC ]i+1,v = SLP (I)− SLP (I) = 0 (20)

Remark 5.15. [Consequences of Proposition 5.14] (i) From this result, follows that the eigenvalue
of LMC , SLP (I), is among the eigenvalues of LMmC for all m, as we also derived from Proposition
5.7.
(ii) By the Proof of Lemma 5.14 we can construct the ij-th element of D as

[D]ij =
∑

j≤v≤m

LKP (I
(i−1), I(v−1))− LKP (I

(i), I(v−1)) (21)

5.1.1 n Chains in one PBC

In this subsection we will extend our previous results to the case of n chains in a system with one
PBC.

Let us consider n chains, say H1, H2, . . . , Hn in a system with one PBC that unfold in ki, i =
1, . . . , n cells each. The periodic linking matrix of that system has size n × n abd is defined as
(LMC)(i,j) = LKP (Hi,Hj), when i ̸= j and (LMC)(i,i) = SLP (Hi).

Then the matrix LMmC has size mn×mn, since to each free chain, Hj, of the cell C, correspond
m free chains, Hj(i), i = 0, . . . ,m−1, in the cell mC (see Lemma 5.1). We make the convention that
the u-th row of LMmC , where u = rm+ l corresponds to the free chain H(r+1)(l−1). Therefore, the
(q, w)-th element of LMmC , where q = q1m+ q2, w = w1m+ w2, is: LKP (H(q1 + 1)(q2−1), H(w1 +
1)(w2−1)).

Lemma 5.16. Let C denote a cell with one PBC that consists of n chains. Let mC denote the cell
that results after gluing m copies of C, then the sum of all the elements of the (u− 1)m+ v-th row
of LMmC is equal to to the sum of all the elements of the u−th row of LMC , for v = 1, . . . ,m.
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Proof. Let us consider the q-th row of LMmC , where q = q1m+ q2.
The sum of the elements q1m+ 1 to q1m+m in that row is equal to

m∑

i=1

LKP (H(q1 + 1)(q2−1), H(q1 + 1)(i−1))

= SLP (H(q1 + 1)(q2−1)) + LKP (H(q1 + 1)(q2−1), H(q1 + 1)(0)) + . . .

+ LKP (H(q1 + 1)(q2−1), H(q1 + 1)(m−1)) = SLP (H(q1 + 1))

(22)

The sum of the elements h to h + (m − 1) of the same row, for h ∈ {1,m + 1, . . . , (q1 − 1)m +
1} ∪ {(q1 + 1)m+ 1, . . . , (n− 1)m+ 1} corresponds to the linking of the free chain H(q1 + 1)(q2−1)

with the free chains generated by Hj, where j = h−1
m + 1:

m∑

i=1

LKP (H(q1 + 1)(q2−1), Hj(i−1)) = LKP (H(q1 + 1)(q2−1), Hj(0))

+ . . .+ LKP (H(q1 + 1)(q2−1), Hj(m−1))

=
∑

u∈Z
L(H(q1 + 1)(q2−1)

0 , Hj(0)0 + uml(1, 0, 0))

+
∑

u∈Z
L(H(q1 + 1)(q2−1)

0 , Hj(0) + (um+ 1)l(1, 0, 0))

+ . . .+
∑

u∈Z
L(H(q1 + 1)(q2−1)

0 , Hj(0)0 + (um+m− 1)l(1, 0, 0))

=
∑

u∈Z
L(H(q1 + 1)(q2−1)

0 , Hj(0)0 + ul(1, 0, 0)) = LKP (H(q1 + 1), Hj)

(23)

where in the last equality we noticed that, by definition, the periodic linking number does not depend
on the image of H(q1 + 1) used for its computation.

Thus, the total sum of the elements of the q-th row, where q = q1m+ q2, is

LKP (H(q1 + 1), H(1)) + . . .+ LKP (H(q1 + 1), H(q1))

+ SLP (H(q1 + 1)) + LKP (H(q1 + 1), H(q1 + 2)) + . . .+ LKP (H(q1 + 1), H(n))
(24)

Exactly the same considerations apply for the sum of the rows q1m to (q1 + 1)m− 1.

Remark 5.17. [Consequences of Lemma 5.16] (i) The total sum of the elements of a row measures
the total linking applied to a free chain in the system. This suggests that the total linking applied to
a chain remains constant, and is independent of the size of the cell, as expected due to the structure
of the periodic system.
(ii) The total sum of the elements of the linking matrix depends linearly on the size of the cell.

Remark 5.18. For closed chains and for m > 2maxi{|mu(Hi)|}, the linking matrix obtains a
simpler expression. Then any image of Hj(u) will link with at most one image of any Hj(v) or
Hk(d). Therefore, SLP (Hj(u)) = Sl(Hj0) for all j. Also, LKP (Hj(u), Hj(v)) = L(Hju, Hkv), for
|u− v| ≤ 2maxi{|mu(Hi)|}, and LKP (Hj(u), Hk(v)) = 0, for |u− v| > 2maxi{|mu(Hi)|}. Thus, as
m → ∞, LMmC becomes anmn×mn sparse matrix, where each row has at most 2nmaxi{|mu(Hi)|}
non-zero entries.
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Proposition 5.19. Let C denote a cell with one PBC that consists of n chains. Let mC denote
the cell that results after gluing m copies of C, then LMmC can be expressed as an n × n block
matrix of m×m symmetric circulant matrices. Moreover, the diagonal block matrices are symmetric
centrosymmetric matrices. The eigenvalues of the (i, i)-th block of LMmC , i = 1, . . . , n, are:

λs = SLP (Hi(0)) + 2

m−1
2∑

k=1

LKP (Hi(0), Hi(k)) cos
(2π
m

k(s− 1)
)

(25)

for m odd and

λs = SLP (Hi(0)) + (−1)(s−1)LKP (Hi(0), Hi(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (Hi(0), Hi(k)) cos
(2π
m

k(s− 1)
) (26)

for m even, s = 1, . . . ,m.
The eigenvalues of the (i, j)-th block of LMmC , 1 ≤ i < j ≤ n, are:

λs = LKP (Hi(0), Hj(0)) + 2

m−1
2∑

k=1

LKP (Hi(0), Hj(k)) cos
(2π
m

k(s− 1)
)
, (27)

for m odd and

λs = LKP (Hi(0), Hj(0)) + (−1)(s−1)LKP (Hi(0), Hj(⌊
m−1

2 ⌋+1))

+ 2

⌊m−1
2 ⌋∑

k=1

LKP (Hi(0), Hj(k)) cos
(2π
m

k(s− 1)
) (28)

for m even, s = 1, . . . ,m.

Proof. By its definition, LMmC can be expressed as a block matrix of m ×m symmetric matrices,
(LMmC)i,j , where (k, l)-th element of (LMmC)i,j is equal to LKP (Hi(k−1), Hj(l−1)).

We notice that, when |k1 − l1| = |k2 − l2| mod m,

LKP (Hi(k1), Hj(l1)) = LKP (Hi+ (k1, 0, 0), Hj + (l1, 0, 0))

=
∑

r∈Z
L(Hi0 + (k1, 0, 0), Hj0 + (l1 +mrl, 0, 0))

=
∑

r∈Z
L(Hi0 + (k2, 0, 0), Hj0 + (l2 +mL, 0, 0))

= LKP (Hi+ (k2, 0, 0), Hj + (l2, 0, 0)) = LKP (Hi(k2), Hj(l2))

(29)

Thus, each matrix (LMmC)i,j is symmetric circulant.
A matrix, (LMmC)i,i, on the diagonal of LMmC corresponds to the self-image linking of the

chain Hi, which by Proposition 5.5, it is a symmetric centrosymmetric matrix.
The eigenvalues of the block matrices are obtained by Proposition 5.7.
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Remark 5.20. When m > 2maxj{|mu(Hj)|}, the eigenvalues of the (i, i)-th and (i, j)-th block,
i = 1, . . . , n, obtain a simpler expression, which can be obtained by Eq. 25,26,27,28, by replacing
the periodic linking and self-linking numbers by the classical linking and self-linking numbers.

Remark 5.21. From Proposition 5.19 follows that SLP (Hi) is an eigenvalue of the (i, i)-th block
of LMmC and LKP (Hi,Hj) is an eigenvalue of the (i, j)-th block

Notice that in the case of n chains in a system with 1 PBC the periodic linking matrix is no
longer a circulant matrix and its eigenvalues are not known. However, the eigenvalues of its block
matrices are known. More precisely, LMmC can be expressed as

LMmC = ΣM + ΛM (30)

where ΣM,ΛM are m×m block matrices. ΣM is a diagonal block matrix, whose blocks represent
the linking of a chain Hi with its own images and are symmetric centrosymmetric. ΛM is a block
matrix whose diagonal matrices are zero and its off-diagonal matrices represent the linking between
different generating chains, and are symmetric circulant matrices

One could use methods such as the ones in [29] to find the determinant of LMmC in terms of the
determinants of the block matrices. However, its computation is cumbersome and the eigenvalues
of LMmC remain unknown. The following Proposition shows that some of the eigenvalues of the
periodic linking matrix are invariant of cell-size, m.

Proposition 5.22. Let LMC be the periodic linking matrix of a periodic system generated by the
cell C with one PBC, which contains n chains. Then any other periodic linking matrix LMmC of
the same periodic system generated by the cell mC is of the form

LMmC =

[
LMC E
0 F

]
(31)

where E has size 1× (m− 1) and F has size (m− 1)× (m− 1).

Proof. Let us multiply LMmC by the matrices Q′ = Q ⊕ Q ⊕ . . . ⊕ Q and (Q′)−1 = Q−1 ⊕ Q−1 ⊕
. . .⊕Q−1, (n direct sums in each term). Let i = k1m+ l1, j = k2m+ l2. The diagonal elements of
(Q′)1LMmCQ′ are

[(Q′)−1LMmCQ
′]ii =

∑

1≤u≤n

[(Q′)−1]i,u
∑

1≤v≤n

(LMmC)
u,v[Q′]v,j (32)

where [Q′]v,j = O if v ̸= j, [Q′]j,j = Q, [(Q′)−1]v,j = O if v ̸= j, and [(Q′)−1]j,j = Q−1. Thus,

[Q−1LMmCQ]ij = [(Q′)−1]i,i(LMmC)
u,j [Q′]j,j = Q−1(LMmC)

i,jQ (33)

Then for the diagonal elements, we showed in the proof of Proposition 5.14 that

Q−1(LMmC)i,iQ =

[
SLP (H(k1 + 1)) Ci

0 Di

]
(34)

for i ̸= j, then in the proof of Lemma 5.11 we proved that the sum of all the elements of a row of
(LMmC)i,j is equal to LKP (H(k1), H(k2)). Then we compute
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[Q−1(LMmC)
i,jQ]u,v =

∑

1≤s≤m

[Q−1]u,s
[ ∑

1≤t≤m

[(LMmC)
i,j ]v,t[Q]t,s

]

=
∑

v≤s≤m

([(LMmC)
i,j ]s,v − [(LMmC)

i,j ]s+1,v)
(35)

where we notice that [Q]t,s = 0 for t < s, and [Q]t,s = 1 for t ≥ s. Also, [Q]−1
t,s = 0 for all s ̸= t− 1, t

and [Q−1]t,t−1 = −1, [Q−1]t,t = 1.
Thus, by Lemma 5.16, for u > 1, v = 1, the sum of each row of (LMmC)i,j is LKP (H(k1+1), H(k2+
1)):

[Q−1(LMmC)
i,jQ]u1

=
∑

1≤s≤m

[(LMmC)
i,j ]u,s −

∑

1≤s≤m

[(LMmC)
i,j ]u+1,s

= LKP (H(k1 + 1), H(k2 + 1))− LKP (H(k1 + 1), H(k2 + 1)) = 0

(36)

Thus we have proved that each block is similar to a matrix of the form:

Q−1(LMmC)
i,jQ =

[
LKP (H(k1), H(k2)) Cij

0 Dij

]
(37)

Next, let ei denote the i-th vector of the standard basis of Rmn. Let E denote themn×mnmatrix
whose j-th column is e(j−1)m+1, for j ≤ n, ek when j = km+1, j > n and ej if j mod m ̸= 1, j > n.
Then

LMmC ∼ E−1(Q′)−1LMmCQ
′E =

[
LMC G
0 F

]
(38)

Remark 5.23. From Proposition 5.22 it follows that the eigenvalues of LMC are among the eigen-
values of LMmC , for all m.

6 Conclusion

The entanglement in polymer melts is a many body problem. Our goal is to provide a measure of
entanglement that takes into consideration the overall conformation of a melt. For this purpose we
defined the linking matrix. For systems employing PBC we defined the periodic linking matrix using
the periodic linking and self-linking measures. In the simulation of a polymer system, the size of the
cell may vary. It is necessary to know how the data obtained from different cell sizes are related. By
focusing on an arbitrary fixed periodic system simulated by a varying cell-size simulation box with
one PBC, we proved that some of the eigenvalues of the periodic linking matrix are invariant of cell
size. This information can be used to characterize a periodic system. On the other hand, the rest
of the eigenvalues change with the cell-size, as does the topology in the identification space.

More precisely, the size of the periodic linking matrix and the total sum of its entries increase
linearly with the size of the cell. Also, the number of eigenvalues increases linearly with cell size.
For systems generated by only one chain, we provided analytical formulas for the eigenvalues as a
function of cell-size. In the case of systems generated by many chains, we proved that the periodic
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linking matrix can be expressed as a sum of a block symmetric centrosymmetric matrix, whose
eigenvalues are known analytically, and a block symmetric circulant matrix, for which the eigenvalues
of each block are known analytically. We also proved that some of the eigenvalues are invariant of
cell-size, therefore, they represent properties of the periodic system. In fact, for closed chains, all
the eigenvalues are invariant under isotopy of the chains that compose the melt. But some of the
eigenvalues change with the size of the cell, which determines the number of components in the
identification space, ie. the solid torus in the case of systems with one PBC. This suggests that the
periodic linking matrix can be used to study both the periodic system and the identification space.

One could think of physical experiments that would simulate the effect of cell-size to the periodic
linking matrix. Our results could apply to experiments where the cell size increases and the number
of chains in the cell also increases with chains of the same molecular weight. This is not the same
as using copies of the same cell, but we can expect that, on average, the linking of the different
chains will be the same and, therefore, we can expect, on average, to have similar results. Another
physical experiment that would simulate the effect of cell-size would be the following: One can use
the same simulation cell, but increase the number of components. In order to keep the same density
for the systems (as is the case in our analysis), while increasing the number of components, one
should decrease their molecular weight. Chains of molecular weight may not be able to form links of
the same type as the longer chains if they are not flexible enough. Therefore, one should use more
chains that are more flexible and of smaller molecular weight. Then we expect that, on average, our
analytical results would hold among the different systems.

We have demonstrated that the Gauss linking integral, the periodic linking number and the peri-
odic linking matrix provide fundamental information concerning the structure of polymeric systems.
Moreover, they are mathematically well-defined and provide continuous measures in the space of
configurations. Thus their properties make them good candidates for the use in thermodynamic
equations. In the formulation of evolution equations for polymer melts, there is a need for variables
that capture the conformational properties of polymers that are related to entanglement [19, 17].
The radius of gyration tensor, or end-to-end distance, or the number of entanglements per chain are
used in these formulations. It would be interesting to use the linking and self-linking measures in
these formulations. Furthermore the linking matrix and the Laplacian of the corresponding graph
describe the entire melt in one measure and could also be useful in these formulations. Moreover,
our results can be extended to any other measures of pairwise interactions in systems with PBC
that depend on the relative positions of the chains.
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