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Abstract

Momentary configurations of long polymers at thermal equilibrium
usually deviate from spherical symmetry and can be better described, on
average, by a prolate ellipsoid. The asphericity and nature of aspheric-
ity (or prolateness) that describe these momentary ellipsoidal shapes of a
polymer are determined by specific expressions involving the three princi-
pal moments of inertia calculated for configurations of the polymer. Ear-
lier theoretical studies and numerical simulations have established that as
the length of the polymer increases, the average shape for the statistical
ensemble of random configurations asymptotically approaches a charac-
teristic universal shape that depends on the solvent quality. It has been
established, however, that these universal shapes differ for linear, circular,
and branched chains. We investigate here the effect of knotting on the
shape of cyclic polymers modeled as random isosegmental polygons. We
observe that random polygons forming different knot types reach asymp-
totic shapes that are distinct from the ensemble average shape. For the
same chain length, more complex knots are, on average, more spherical
than less complex knots.

1 Introduction

Ring polymer chains can be modeled as freely jointed random polygons. This
simple representation of polymeric chains reflects their statistical properties
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under the so-called θ-conditions, where independent segments of the polymer
chains neither attract nor repel each other.1 Under θ−conditions, linear poly-
mers behave like ideal random walks and show scaling exponent ν = 0.5. If
polymer chains are circular the situation gets more complex as the scaling be-
havior depends on whether one studies all possible configurations or just those
that represent a given topological type like unknotted circles.2–11

It is an accepted convention in studies of shape and size of polymer chains
to characterize actual configurations adopted by the polymers by calculating
their inertial properties. Radius of gyration, i.e. the root mean square distance
from the center of mass, is a standard measure of polymer size. In simulation
studies, the mass of the polymer is assumed to be equally distributed among
the vertex points of the simulated chains. Studies of overall polymer size reveal
that the radius of gyration of circular polymers for a fixed knot type scales
like that of self-avoiding walks2–4,12,13 with an estimated scaling exponent ν =
0.5874±0.000214 while phantom polymers behave like neutral ideal chains with
the scaling exponent ν = 0.5.

Studies of shapes of polymer chains use the three principal moments of inertia
calculated for given configuration of the chain to build an ellipsoid with the
same ratio of its principal moments of inertia as those of the given polymer
configuration. Kuhn15 was first to propose that the overall shape of random coils
formed by polymer chains at thermodynamic equilibrium should, for entropic
reasons, have the shape of a prolate ellipsoid. His proposal has been confirmed
in numerical simulation studies (see e.g. Refs.9,16,17) and also in experimental
measurements.18,19 In the present study, we address how the shape and overall
size of polymer chains are influenced by the presence of knots in these polymers.

The ellipsoid of inertia is defined using the moment of inertia tensor,

Tij =
1

2N2

N∑

n=1

N∑

m=1

(Xi
n − Xi

m) · (Xj
n − Xj

m) (i = 1, 2, 3; j = 1, 2, 3), (1)

where Xi
n denotes the ith coordinate of the nth vertex and N is the number

of vertices in the polygon on which one has equally distributed the mass of
the polymer. As Tij is a real symmetric tensor, it has three real eigenvalues
λ1, λ2, λ3 giving the three principal moments of inertia and determining the
corresponding eigenvectors providing the principal axes of inertia. The square
roots of λ1, λ2, λ3 define the semi-axis lengths of the associated ellipsoid of
inertia.

A critical question is how to best measure the spatial extent of this ellip-
soid. To accomplish this objective, in 1986 Aronovitz and Nelson20 proposed a
three dimensional system, later modified by Cannon, Aronovitz and Goldbart,21

which separates the size calculation (measured by the squared radius of gyration,
see Eqn. (4), which we will denote by R) from two shape descriptors: aspheric-
ity, A, see Eqn. (2), and nature of asphericity, see Eqn. (3). In this definition,
the asphericity and nature of asphericity are calculated using the three princi-
pal moments of inertia, i.e. the eigenvalues λ1, λ2, λ3 of Tij . The asphericity
was defined at the same time by Rudnick and Gaspari22 and has since become
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Figure 1: Above we see examples of prolate (left) and oblate (right) ellipsoids.
In a prolate ellipsoid, the most round equatorial ellipse is perpendicular to
the longest axis, e.g. a rugby ball. In an oblate ellipsoid, the shortest axis is
perpendicular to the most round equatorial ellipse. e.g. M&M candy. The semi-
axis lengths for the ellipsoids shown are (1, 0.5, 0.5) and (1, 1, 0.4) respectively.
The asphericity of both ellipsoids above is 0.0625 and the prolateness values are
1 and −1, respectively.

a principal target of study21,23–27 of those interested in assessing the spatial
shape of polymers. For the sake of explicitness, we will refer to the nature of
asphericity as the prolateness and denote it by P . Roughly speaking, the as-
phericity measures the degree to which the three axis lengths of the ellipsoid of
inertia are equal. The prolateness indicates whether the largest or smallest axis
length is “closer” to the middle axis length and takes values between −1 and 1,
thereby quantifying the transition from oblate to prolate shapes.

Together, the squared radius of gyration, asphericity, and prolateness form
an independent set of parameters describing an ellipsoid. In Section 2, we discuss
relationships between R, A, and P and explain why we have chosen to replace
the eigenvalues employed in their definition by the square root of three times the
eigenvalues, i.e. the semi-axis lengths of the characteristic inertial ellipsoid, in
our study of the shape of polymers. We report these new measures of asphericity
and prolateness as well as those used previously.

Several studies have addressed the question of how the asymptotic value for
the asphericity depends on the solvent quality. In contrast to linear chains that
show large differences in asphericity depending on whether the chains are self-
avoiding (good solvent) or not (θ-solvent), the circular chains show quite similar
asymptotic values of asphericity under these two different conditions.25 Diehl
and Eisenriegler26 determined theoretically (using the eigenvalues, or, equiva-
lently, squared axis lengths) that the asymptotic value of asphericity for non self-
avoiding random polygons is 0.2464. Simulation studies by Bishop and Saltiel
indicated that for self-avoiding polygons the asphericity reaches an asymptotic
value of 0.255 ± 0.010.25 More recently, Zifferer and Preusser have simulated
self-avoiding ring polymers with up to 8192 segments and, upon extrapolation to
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(a) R ≈ 7.08
A ≈ 0.35
P ≈ 0.99

(b) R ≈ 4.03
A ≈ 0.068
P ≈ 0.67

(c) R ≈ 1.73
A ≈ 0.0012
P ≈ −0.52

Figure 2: Examples of 50 edge polygonal trefoil knots with high, medium, and
low asphericity shown with their characteristic inertial ellipsoids.

infinite chain length, concluded that the asymptotic value of asphericity for this
system is 0.2551 ± 0.0005.16 One of the goals of this manuscript is to estimate
numerically this asymptotic value for polygons with a fixed knot type.

When a polygon has between three and five vertices, the only knot possible
is the unknot, i.e. a polygon that is topologically equivalent to a circle. At
six edges, the first nontrivial knot appears, the trefoil knot, known as 31. For
increasing numbers of edges, more and more different (and more complicated)
types of knots become possible (see e.g. Refs.28–30 for a discussion of the minimal
number of edges in an equilateral polygon required to realize each knot type and
the growth of the number of knot types possible as a function of the number
of edges). In addition, the probability of obtaining a knotted polymer tends to
one as the length goes to infinity.31–34

Here we investigate the shape of circular polymers with fixed knot type, as
measured by their asphericity and prolateness, and determine the dependence
of shape on the length and knotting of the polymer. We find that for “small”
numbers of edges, polymers of a fixed nontrivial knot type tend to be more
spherical (lower asphericity) than phantom polygons with the same number of
edges. However the opposite is true for very long knotted chains that, at least in
case of the knot types we analyzed, become less spherical than phantom polygons
(see Figs. 6 and 8). Prolateness shows a more complex behavior: short knotted
chains of a given nontrivial knot type are initially less prolate than phantom
polygons of the same size. Then, in the intermediate size range, the knotted
chains become more prolate than the corresponding phantom chains. Finally, in
the long chain regime, we again observe that knotted chains become less prolate
than phantom chains (see Figs. 7 and 8).

2 Exploration of Shape Measures

As discussed in the previous section, we use a slight variation on asphericity
and prolateness to measure the shape of individual ellipsoids describing circular

4



polymers as we replace the principal moments of inertia, i.e. eigenvalues of the
moment of inertia tensor, by the square root of three times the eigenvalues. To
explain why this is helpful we first review the principal concepts: the asphericity
is a number between 0 (implying a spherical shape when a = b = c) and 1
(implying a rod-like shape when b = c = 0) and is defined by

A(a, b, c) =
(a − b)2 + (a − c)2 + (b − c)2

2(a + b + c)2
(2)

where a, b, and c are measurements of the size of the ellipsoid of inertia. The
prolateness has values between −1 (oblate, e.g. when a = b > c) and 1 (prolate,
e.g. when a > b = c) and is defined by

P (a, b, c) =
(2a − b − c)(2b − a − c)(2c − a − b)

2(a2 + b2 + c2 − ab − ac − bc)3/2
. (3)

To get a sense for the values of prolateness, assume that a ≥ b ≥ c ≥ 0.
Then P (a, b, c) = 0 when b = a+c

2 . When b < a+c
2 , the prolateness is positive

(i.e. the ellipsoid is prolate) and when b > a+c
2 , the prolateness is negative

(i.e. the ellipsoid is oblate). Note that both A and P are invariant of scale and
symmetric in a, b, and c.

As discussed earlier, traditionally the principal moments of inertia λ1, λ2,
and λ3 have been used as the arguments a, b, and c.20–27 The scaling arguments
used to predict asymptotic values for random walks, random polygons, star
shapes, etc., use these eigenvalues as well. Cannon et al.21 observed that the
asphericity is “biased towards larger configurations”. However, with additional
care in the definitions, one can eliminate the bias of R in A while preserving the
unbiased nature of P .

One of the goals in defining the asphericity and, subsequently, the nature of
asphericity or prolateness, is to have true measures of shape that are unbiased
by the size of the polygon. A standard measure of the size of a polymer, the
squared radius of gyration, is determined from its moment of inertia tensor as
the sum of its three eigenvalues:

R = λ1 + λ2 + λ3 . (4)

With the objective of eliminating the scale bias, we first define an ellipsoid
whose principal moments of inertia and principal axes coincide with those of the
polygon. This ellipsoid has semi-axis lengths of αi =

√
3λi, i = 1, 2, 3. We refer

to this ellipsoid as the characteristic inertial ellipsoid (see Fig. 2 where one can
observe the relationship between polygons and their associated characteristic
inertial ellipsoids).

The characteristic inertial ellipsoid has the attractive property that the char-
acteristic inertial ellipsoid of an ellipsoid is itself. This is consistent with the
definition of the radius of gyration, for example, where a sphere of radius r has
radius of gyration equal to r. In contrast, the ellipsoid of inertia of an ellipsoid
has the same principal axes of inertia but the semi-axis lengths are scaled by
the factor 1

√

3
, i.e. the ellipsoid of inertia is a shrunken version of the original.
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Figure 3: When using the semi-axis lengths for the parameters of R, A, and P ,
a Mathematica

35 plot of the contour surfaces shows that they intersect perpen-
dicularly (due to the fact that ∇R ·∇A = ∇R ·∇P = ∇A ·∇P = 0). The x,
y, and z axes shown are the semi-axis lengths of ellipsoids and, for the sake of
this figure, range from 0 to 2. The contour surfaces are the semi-axis lengths
corresponding to some fixed R, A, or P values.

For the characteristic inertial ellipsoid, the squared radius of gyration is

R(a, b, c) =
a2 + b2 + c2

3
(5)

where we use the arguments α1, α2, and α3, i.e. the semi-axis lengths of the
characteristic inertial ellipsoid.

While this might appear to be a more complex way to compute R, it is really
A and P that have been changed to insure that the triple, R, A, and P , are
independent and unbiased as demonstrated by their gradients which are now
orthogonal:

∇R ·∇A = ∇R ·∇P = ∇A ·∇P = 0 (6)

where · is the standard dot product in R3. Equivalently, one observes that
their contour surfaces now provide an orthogonal system (see Fig. 3). One
way of viewing this distinction is via an analogy with bases for vector spaces
and the special properties enjoyed by orthogonal bases or sets of functions
such as Legendre polynomials, Bessel functions of the first kind, or the fam-
ily {sin(nx), cos(nx)} leading to Fourier series. The latter are not only bases
but provide orthogonal independent measures expressing the structure of the
vector space.

In constrast, if one were to use the eigenvalues instead of the axis lengths,
this results in redefining R to be R(x, y, z) = x+ y + z where the arguments are
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now λ1, λ2, λ3. The definitions of A and P remain the same. In such a case, we

still obtain ∇R·∇P = ∇A·∇P = 0. However, ∇R·∇A = 6(xy+xz+yz−x2
−y2

−z2)
(x+y+z)3

thereby showing the inherent bias in the system.
In order to employ unbiased measures of shape, we will use R, A, and P

with the semi-axis lengths of the characteristic inertial ellipsoid α1, α2, and
α3 as arguments. As a consequence, the specific numerical results differ from
previous theoretical and numerical studies. However, we present both values in
Table 1 and observe that our data provides estimates using the eigenvalues which
are consistent with those found in earlier studies. Note that due to the scale
invariance of A and P (using either the eigenvalues or the semi-axis lengths)
and the fact that the semi-axis lengths of ellipsoid of inertia and characteristic
inertial ellipsoid differ by a common factor of 1/

√
3, the ellipsoid of inertia and

characteristic inertial ellipsoid share the same A and P values.
The asphericity and prolateness, together, give a quantification of the shape

of the polymer (see Figs. 6, 7, and 8). The dominant factor is the asphericity
which measures the degree to which the three eigenvalues of the inertial tensor
are equal. For example, an ellipsoid with semi-axis lengths 1, 1, and 0.4 has
asphericity equal to 0.0625 and prolateness equal to −1. In contrast, with the
same asphericity of 0.0625, one has the other extreme, a prolate ellipsoid with
one axis of length 1 and two axes of length 1/2, giving a prolateness equal to +1
(see Fig. 1). When the asphericity is very close to zero, i.e. the semi-axis lengths
are almost equal, the variation between the most and least prolate shapes is
extremely small as the shape is constrained by the asphericity. For example, an
ellipsoid with semi-axis lengths 1, 1, and 0.99 has A ≈ 1.13× 10−5 and P = −1
while an ellipsoid with semi-axis lengths 1, 0.99, 0.99 has A ≈ 1.12 × 10−5 and
P = 1.

Therefore, the asphericity provides a first-order measurement of the shape of
the polymer, and prolateness is a second-order descriptor of how the asphericity
value is attained. Note that for a given asphericity value, not all prolateness
values are possible. For example, a rod-like shape has asphericity close to 1
thereby forcing the prolateness to take values close to 1 as well. In fact, a
prolateness of −1 is possible only with shapes where A ≤ 1/4.

3 Computations

We have analyzed equilateral random polygons from 6 to 48 edges with a step
size of 2 and from 50 edges to 500 edges by a step size of 10 edges. For each num-
ber of edges, we generated 400,000 random knots using the hedgehog method.36

To identify the knot type of each of the polygons, we calculated the HOMFLY
polynomial37 using the program of Ewing and Millett.38 As the HOMFLY poly-
nomial is not faithful to the knot type (i.e. there exist knots which are distinct
but which have the same HOMFLY polynomial), we actually determine the dis-
tribution of HOMFLY polynomials of the random polygons and employ this as
a surrogate for the knot type. However, the probability of finding other knots
with the same HOMFLY polynomials as the simple knot types analyzed here
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is orders of magnitude lower than the probability of these simple knot types.
Therefore, Fig. 5 gives a faithful presentation of the probabilities of knots stud-
ied here. This set of random knots was also used in10,11 and a more detailed
description of the generation method can be found there.

We calculate the asphericity and prolateness for each of the random knots
and keep a running list of the asphericity and prolateness values for the given
HOMFLY polynomial with the given number of edges. Average asphericity and
prolateness values are then computed for the knots 01, 31, 41, 51, 52, 61, 62, and
63 and for the entire knot population (i.e. phantom polygons) at each number
of edges. Because the average asphericity and prolateness for the two versions
of chiral knots will be the same, we combine those data sets. For example, +31

and −31, the right and left handed versions of the trefoil knot, are combined
into a common 31 file to provide more robust data. The other chiral knots in
this study are 51, 52, 61, and 62.

One of the goals of this research is to describe the asymptotic shape of knot-
ted and phantom polygons. To this end, we have estimated the asymptotic
values of the asphericity, for both the axis length and the eigenvalue definitions,
for the different classes of polygons. We used a Monte Carlo Markov Chain
analysis, described in more detail in Ref.11 and its Supporting Information, to
compute 95% confidence intervals for the asymptotic value. The fitting func-
tion27 A + B/

√
x + C/x is used and applied to the data for 100 edges and

larger, wishing to minimize small edge effects. For a fixed number of edges, the
asphericity values are not normally distributed for a given knot type nor for
the phantom polygons, so the grouping procedure described in Ref.11 was used.
Gibbs Sampling39 was utilized to minimize computation time. In the end, we
computed approximately 3500 likely fitting functions for the phantom polygons
and each of the knot types. The values shown in Table 1 correspond to the mean
and 95% confidence ranges for the value of A in the likely fitting functions.

4 Asphericity and prolateness of knotted poly-

mers

The random polygons were divided into the individual knot types and their
shapes were analyzed in terms of asphericity and prolateness. Figures 6, 7, and
8 show how the average asphericity and prolateness depend on the knot type
and the size of the polygon. It is interesting to analyze some of these profiles in
order to understand better their meaning. The asphericity profile for unknots
(see Fig. 6) shows that for small number of segments (say 6 and 8 segments),
the unknotted polygons deviate strongly from spherical symmetry. However,
the asphericity values in this range do not tell us whether the polygons are
aspherical due to adopting discoidal planar configurations or due to forming
very elongated shapes. Inspection of Fig. 7 reveals, however, that unknotted
polygons with 6 or 8 segments have on average positive prolateness. Therefore,
we can conclude that the dominant deviation from spherical symmetry for un-
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Figure 4: A hexagonal equilateral 31 is shown with A ≈ 0.05 and P ≈ −0.3, the
mean values for 6-edge trefoils. Because the minimum number of edges required
to construct a trefoil is 6, the configurations tend to be nearly planar, forcing
the characteristic inertial ellipsoid to be oblate. The thickened polygon and
ellipsoid are shown from a position slightly off the longest principal axis.

knotted polygons with small number of segments is towards forming elongated
configurations. This contrasts with the negative prolateness of polygons with
6 segments that form trefoil knots (see Fig. 7) and have on average an oblate
shape (negative prolateness). In fact, isosegmental hexagons forming trefoil
knots are quite restricted in their freedom to change shapes and adopt rather
regular planar configurations. Figure 4 shows a hexagonal trefoil with a typical
shape (A ≈ 0.05, P ≈ −0.3) together with its characteristic inertial ellipsoid.
However, polygons forming trefoil knots with increasing number of segments
quickly become prolate on average (see Fig. 7) and their asphericity increases
(see Fig. 6).

A more general comparison of the asphericity of polygons forming different
knot types reveals that for a given number of segments, the polygons forming
more complex knots are on average more spherical, i.e. have lower asphericity,
than polygons forming less complex knots (see Fig. 6). We expect however
that for very long polymers the asphericity values of various simple knots will
approach the same universal value. A general comparison of prolateness of
polygons forming various knot types (see Fig. 7) reveals that for a given number
of segments, the prolateness of less complex knots is lower than that of more
complex knots. It is interesting to note that for the individual knot types
analyzed here, the prolateness reaches its maximal value for relatively short
polygons (n < 70) and then shows a decrease. It may seem contradictory that
the decrease in prolateness with the increasing chain length is associated with
increasing asphericity (compare Figs. 6, 7, and 8). However, there is no real
contradiction as the flattening of a rugby ball shape from its sides decreases its
prolateness and increases its asphericity.

After exploring the asphericity and prolateness profiles for polygons forming
individual knot types, let us analyze the corresponding profiles for the ensemble
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average of all polygons grouped together. Such a statistical set represents phan-
tom polygons that can freely undergo intersegmental passages such as those
exemplified by circular DNA molecules in the presence of type II DNA topoiso-
merase. Of course, the profile of all polygons is the weighted average of profiles
for individual knot types where the relative probability of a given knot type
is taken into account. Therefore, for very small number of segments, where
unknots dominate, the profile for phantom polygons closely follows that of the
unknots. As polygon sizes increase and nontrivial knots become frequent, the
asphericity and prolateness of phantom polygons rapidly approach their respec-
tive characteristic constant values.

As discussed earlier, our asphericity definition is different from the one used
in a number of previous studies of polymer shapes.16,25,26 However, for the
purpose of comparison, we have also used the traditional definition. Since the
number of tested configurations was highest for phantom polygons, that statis-
tical sample provides us with the highest accuracy in the asphericity asymptote
estimation. Using that sample, we have obtained the value of 0.2461 ± 0.0013
(see Table 1) as the asymptotic value of asphericity for non self-avoiding random
polygons. Our numerical estimation shows a perfect agreement with the previ-
ously reported theoretically predicted value of 0.2464 for this type of polygons26

and outperforms in this respect some earlier numerical studies.24

Our second best statistical sample consists of unknotted polygons. For the
asymptotic value of the asphericity for polygons forming unknotted rings, we
have obtained the value of 0.2550 ± 0.0023 (see Table 1). This value is es-
sentially the same as those obtained in earlier simulation studies investigat-
ing the asphericity of polygons with excluded volume (0.255 ± 0.01025 and
0.2551± 0.000516). It is important to stress here that in our study the modeled
polygons had their effective diameter set to zero. However, if one investigates
how various statistical properties depend on the polygon size while maintaining
the same knot type, this is equivalent to introducing topological excluded vol-
ume.3 The topological excluded volume has been shown to behave like the
standard excluded volume when analyzing the scaling of overall dimensions
of polygons.2,5,7 The results presented here indicate that both the standard
and topological excluded volumes affect universal shape descriptors, e.g. the
asphericity, in the same way. Our statistical samples for individual knot types
decrease with the complexity of the knot type (see Fig. 5 and this increases the
error in estimating the asymptotic value of the asphericity for modeled poly-
mers forming a given knot type (see Table 1). However our data are consistent
with the hypothesis that all individual knot types reach the same asymptotic
value, a value that is characteristic of self-avoiding polygons, although the speed
with which the asymptotic value is reached decreases with the complexity of the
knot (see Fig. 6). This hypothesis also is consistent with observations that, on
average, as the polymer length increases, the knotted portion of the chain gets
smaller in comparison to the overall length of the chain and, therefore, the large
unknotted portion of the polymer dominates the average configuration.40–42

There is numerical evidence that knotting is, on average, weakly local.43 Thus,
the influence of simple knots, such as a single trefoil, on the average shape is
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Table 1: Estimates of the asymptotic values for asphericity.

Knot Axes Eigenvalues
phantom 0.074360 ± 0.00042 0.2461 ± 0.0013

01 0.07875 ± 0.00074 0.2550 ± 0.0023
31 0.07931 ± 0.0010 0.2561 ± 0.0030
41 0.0797 ± 0.0021 0.2569 ± 0.0066
51 0.0814 ± 0.0037 0.263 ± 0.011
52 0.0819 ± 0.0029 0.2643 ± 0.0085
61 0.0853 ± 0.0055 0.275 ± 0.016
62 0.0807 ± 0.0051 0.259 ± 0.016
63 0.0782 ± 0.0063 0.254 ± 0.020

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0 100 200 300 400 500

Pr
ob

ab
ilit

y

Edges

0131415152616263

Figure 5: The relative probabilities of obtaining the knot types through 6 cross-
ings.

quite small asymptotically. From another perspective, although it has been
shown that global knotting is also present in large polymers,44 it appears that
this presence is quite rare and does not contribute substantially to the average
measures for a given knot type or for that of the phantom polygons.

5 Size and shape of knotted polymers

We have concentrated on scale independent measures of overall shape adopted
by modeled polymers like asphericity and prolateness. However, size also mat-
ters and to completely describe inertia preserving ellipsoids that characterize
the shapes of knotted polymers with a given length, one needs to consider the
absolute sizes of these ellipsoids, where the natural size measure is the statisti-
cal segment length. Fig. 9 presents the characteristic inertial ellipsoids for the
average shapes of the knots 01, 31, and 41 and also of phantom chains formed by
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Figure 6: Scaling profiles for the average asphericity of knotted polygons and
phantom polygons. In the right panel, we restrict the vertical dimension to
show the asymptotic nature of the graphs more clearly.
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dimension to show the asymptotic nature of the graphs more clearly.

500 edge polygons. This form of presentation (nested ellipsoids) allows visual
comparison of average shapes of polygons with different topology. We can see
that the ellipsoid characterizing unknots forms the external shell and therefore
is bigger than ellipsoids characterizing nontrivial knots. As the knots get more
complicated, the ellipsoids representing them become smaller. However, they
maintain very similar aspect ratios and it is hardly visible that 41 knots are on
average more spherical than unknots (see Fig. 6). The most internal shell in
Fig. 9 represents phantom polygons as these have the smallest overall dimen-
sions from this set of knots. However, more complex knots, e.g. the 10165 knot,
would be smaller than phantom knots for polygons with 500 edges.

The situation presented in Fig. 9 illustrates the particular case of 500 edge
polygons. What would be the corresponding image for very long chains? We
conjecture that for such a situation, the nested ellipsoids would be very closely
spaced, like onion skins. The external skin would be still that of the unknot,
and the sequential skins would be ordered according to the complexity of the
knot 31, 41, five crossing knots, six crossing knots, etc. Toward the center of
the onion, one would have extremely complex knots, while the skin representing
the average size of phantom knots would be placed between the external skin
representing unknots and the internal skins representing most complex knots
possible for this size of the polygon. We also conjecture that the external skins
(i.e. ellipsoids) representing simple prime knots would all be asymptotically
close to the aspect ratio attained by the ellipsoid representing unknots, while
very complex knots would be more spherical. At this point, we are uncertain
whether the order of the skins for all knots will be the same for all chain sizes,
i.e. whether there could be an example of two knot types where one would have
its overall dimensions smaller than the other at 500 segments, for example, but
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Figure 9: Average ellipsoids for 500 edge 01 (in blue), 31 (in green), 41 (in red),
and phantom polygons (in yellow) as seen along the two shortest axes of inertia.
The black bar below the ellipsoids represents the size of 10 statistical segments.

not at 1000 segments. However, it is probably safe to conjecture that the order
of skins (ellipsoids) representing knots belonging to the same family of knots
(like simple torus knots 31, 51, 71, etc.), will always follow the order of the
minimal crossing number, provided that the number of segments in the polygon
is significantly bigger than the minimal number of segments needed to form
most complex knots under consideration.

6 Conclusions

The notion that the overall shape of randomly fluctuating polymeric molecules
can be approximated by prolate ellipsoids rather than by spheres was published
in 1934 by Kuhn.15 Over the years theoretical and numerical studies have
established that as the chain size tends to infinity, the asphericities of ellipsoids
describing the inertial properties of modeled polymers asymptotically approach
characteristic constant values.9,16,17,20–22,24–26 These values are known to be
different for linear and circular chains and are, in addition, influenced by the
solvent quality. Here we have provided unbiased measures of inertial shape and
established that the topology of the chains also affects their overall shape. We
have shown that for a fixed chain size, the modeled polymer molecules forming
less complex knots are, on average, more spherical than configurations of more
complex knotted chains. Furthermore, for each knot type, there is a chain length
starting with which polygons representing this knot type will be on average less
spherical than the average shape of phantom polygons for every number of
segments beyond this length.
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