MINIMAL EDGE PIECEWISE LINEAR KNOTS

J. A. CALVO

Department of Mathematics, University of California,
Santa Barbara, CA 93106, USA

K. C. MILLETT

Department of Mathematics, University of California,
Santa Barbara, CA 93106, USA

The space of n-sided polygons embedded in three-space consists of a smooth man-
ifold in which points correspond to piecewise linear or “geometric” knots, while
paths correspond to isotopies which preserve the geometric structure of these knots.
Two cases are considered: (i) the space of polygons with varying edge length, and
(ii) the space of equilateral polygons with unit-length edges. In each case, the
spaces are explored via a Monte Carlo search to estimate the distinct knot types
represented. Preliminary results of these searches are presented. Additionally, this
data is analyzed to determine the smallest number of edges necessary to realize
each knot type with nine or fewer crossings as a polygon, i.e. its “minimal stick
number.”

1. Introduction, vocabulary, and history of geometric knots.

The topological and geometric knotting of circles occurs in many contexts in
the natural sciences!”»2° By geometric knotting we mean the imposition of geo-
metric constraints on allowed configurations and their transformations. These
constraints can arise by taking into consideration local “stiffness” of molecular
structures such as DNA or other polymers. An attractive structure providing
a useful model is that of the spatial polygon. These polygonal configurations
are determined by a list of n points in three-space, which we call the vertices of
the polygon. Straight line segments, or edges, connect each successive pairs of
vertices, including the first and last one, producing a closed loop. When this
configuration is embedded, so that there are no intersections of edges except at
common vertices, one has a polygonal knot. The entire collection of such knots
determines an open subset of euclidean space whose dimension is three times
the number of vertices. Requiring that all vertices lie within the unit cube,
that each edge have unit length, or that the angle between adjacent edges be
constrained will determine other knot spaces and knot theories of interest.
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Figure 1: A hexagonal trefoil knot and a heptagonal figure eight knot.

1.1. Minimal stick number

An n-sided spatial polygon P in R3 is a closed, piecewise linear loop with
no self-intersections consisting of n points of R3, called wertices, joined by n
straight line segments, called edges. We think of an n-gon as the result of
glueing n sticks end to end to end. Define the minimal stick number s(K) of
a topological knot type K as the smallest number of edges required to realize
K as a knotted polygon.:23 Tt takes at least six sticks to construct a knotted
polygon. A trefoil can be built with six sticks, while at least seven are required
to build a figure-eight knot.* Thus $(31) = 6 and s(4;) = 7. Figure 1 shows
projections of a hexagonal right-handed trefoil and a heptagonal figure-eight
knot. In addition, every five and six crossing prime knot (51, 53, 61, 62, 63), the
square and granny knots (3; + 3;), the (3, 4)-torus knot (8;9), and the knot
890 can all be built using eight sticks. Figure 2 shows octagonal realizations
of these knots. Since only the trefoil and the figure eight can be constructed
with fewer edges, all of these knots have stick number s(-) = 8. However, it
remains an open question whether this is a complete list of the eight-stick
knots. Towards this goal, Calvo® rules out every possibility other than 8:g,
which has a minimal stick number of either 8 or 9. In addition to those knots
in Figures 1 and 2, all of the seven crossing prime knots (71,...,77), as well
as knots 816, 817, 821, 940, and 941 are known to have nine-stick realizations,
showing that these knots have minimal stick number s(-) = 9°

Formulae for stick number are known only for a couple of families of knots.

@ For instance, see Proposition 1.3 in Millett1® In pp.266—268, this proposition is followed
not only by pictures, but also by coordinates of the vertices of equilateral realizations of these
knots.

15,16

b The construction of these nine-stick realizations are due to Monica Meissen and

Robert Scharein?4.






Firstly, if p and ¢ are coprime integers with 2 < p < ¢ < 2p, the stick number
of the (p, g)-torus knot T, , is

5(Tp.q) = 2¢ (1)

(Theorem 7 in Jin'!). Note that this shows that s(3;) = s(12,3) = 6 and that
5(819) = s(T3.4) = 8. Secondly, the connected sum of any combination of n
right- and left-handed trefoils has stick number

s(31+£3 % £3;) =2n+14 (2)

(Theorem 7.1 in Adams et al?). Thus the square and granny knots have
$(31 +31) = (31 — 31) = 8. This is an improvement on the general case of a
connected sum, in which

8(K1 + Kz) < S(Kl) + S(KQ) ) (3)

(Theorem 3.1 in Adams et al ).
Relatively little more is known about stick number. Negami'® shows that
given a nontrivial knot K with crossing number ¢(K),

5+V9;8dK)§dKjgsz) (4)

Here, the upper bound is obtained using results in graph theory, while the lower
bound is found by projecting an n-sided polygon onto a plane perpendicular
to one of the edges. The result is an (n — 1)-sided polygonal knot diagram
having at most ¢ = 2n(n—3) crossings. Completing the square and solving for
n then gives the inequality in (4). Note that the trefoil knot is the only known
example for which the upper bound is tight. In fact, Furstenberg et al ® show
that if K is a knot with a one-, two-, or three-integer Conway notation and

¢(K) > 5, then this bound can be improved to

5+V9;8dK)§dK)<dK)+2 (5)

On the other side of the spectrum, Jin!! uses Kuiper’s superbridge index
sb(K) to obtain the lower bound

2sb(K) < s(K). (6)

The superbridge index sb(K) is the minimum over all embeddings of K of
the largest number of local maxima obtained when projecting the knot in any
direction in R3 (see Kuiper!2). Furstenberg et al ¥ point out that no bound on
stick number s(K) gotten from the superbridge index sb(K) can ever be very
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efficient. A case in point is the family of two-bridge knots which, by (4), have
arbitrarily large stick number but whose superbridge index is bounded above
by seven: sb(K) < 7. Nonetheless, (6) can lead to some interesting bounds.
For instance, if 2 < p < ¢ then the (p, ¢)-torus knot has sb(T} 4) = min{2p, ¢}
(Theorem B in Kuiper!2). A systematic construction of polygonal realizations
of torus knots then shows that, if 2 < p < ¢, then

2min{2p, q} < 5(1},q) < pﬁﬂ, (7)

where the “ceiling brackets” denote rounding up, so [z] =min{n € Z : n > z}
(Corollary 5 and Theorem 8 in Jin and Kim'?). Notice that in the special case
when p = 2r +1 and ¢ = 3r + 1, we have 2min{2(2r + 1),3r + 1} = 6r + 2

while (2r + 1) [2(23:—_;1)] = 6r + 3. Therefore,

6r +2 < 5(Tory1,3r41) < 6r+3 (8)

for any positive integer r (Corollary 9 in Jin and Kim 0).

Although here s(-) is defined in the general setting of polygons with ar-
bitrary edge lengths, similar notions of minimal stick number exist for more
special sorts of “geometric knots.” For instance, one might restrict attention
to polygons with unit-length edges, with vertices on the integral lattice Z32,
with restricted vertex angles, or with vertices on the unit-radius sphere about
the origin¢ In this way, stick number might well depend upon the specific type
of geometric knot under consideration. For example, Diao” has shown that
the trefoil knot requires 24 edges for its vertices to lie on the lattice Z3 and
its edges to have unit length. Later, we shall give special attention to equi-
lateral polygons and consider the minimal equilateral stick number s'(K) of a
topological knot type K. At this time, however, there are no knot types known
to have equilateral stick numbers which are different from their standard stick
number.

Question 1. How many sticks are required to construct a knot K7 In par-
ticular, what are the stick numbers for all knots with, say, nine crossings or
fewer? Does this depend on whether we use unit-length edges or not?

¢ See Adams et al.?



1.2. The space of geometric knots

The general framework for the space of geometric knots was introduced by
Randell.?'~22 Consider an n-sided polygon P in R?, together with a distin-
guished vertex, or root, v; and a choice of orientation. We can view P as
a point of R3” by listing the triple of coordinates for each of its n vertices,
starting with v; and proceeding in sequence as determined by the orientation.

In the spirit of Vassiliev,326 define the discriminant (™) to be the collec-
tion of points in IR3" which correspond in this way to non-embedded polygons.
A polygon fails to be embedded in R? when two or more of its edges inter-
sect, so ¥(") is the union of the closure of % n (n — 3) real semi-algebraic cubic
varieties, each consisting of polygons with a given pair of intersecting edges?
For example, the collection of polygons (v1,va, ...,y _1,0,) for which vjvy
intersects v3vy is the closure of the locus of the system

(v —v1) X (v3 —v1) - (vg —v1) =0
(1)2—’[)1) X (1}3—’01)-(’02—’[}1) X (1)4—’01) <0

(1}4 — ’()3) X (’Ul — 1)3) . (’U4 — ’U3) X (’Ug — ’()3) < 0.

In particular, the closure of each of these semi-algebraic varieties forms a
codimension-1 submanifold (with boundary) of R3". Hence the subspace

Geol™) = 3" — x(™

corresponding to embedded polygons is an open 3n-manifold which we will call
the embedding space of rooted oriented n-sided geometric knots.

A path h : [0,1] — ®eo(™ corresponds to an isotopy of polygonal sim-
ple closed curves, so each path-component of Gea(™ contains polygons of the
same topological knot type. If two polygons lie in the same path-component
of Beo™, we will say they are geometrically equivalent. Also, a polygon is
geometrically unknotted if it is geometrically equivalent to a standard planar
polygon; since all planar n-sided polygons are geometrically equivalent, the
component of geometric unknots is well-defined.

The geometric equivalence of two knots implies their topological equiv-
alence. However, not much is known about the converse. For instance, it
is unknown whether there exist topological unknots which are geometrically
knotted. In fact, until recently there were no known examples of any topolog-
ical knot type corresponding to two distinct geometric knot types?

@ 1f n = 3, ©3) is the collection of triangles (v, v2, v3) for which (va —vy) X (v3—v1) = 0.
€ See Millett'® p.265, and compare with Theorem 1 in #
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(a) (b)

Figure 3: All pentagons are geometric unknots.

Question 2. How many distinct geometric (or topological) knot types are
there in Geo(™ as a function of n?

Question 3. What can be said about the topology of the components of these
knot spaces?

A classical theorem of Whitney?” guarantees that, for each n, there are
only finitely many geometric knot types. Furthermore, it is a “folk theorem”
that eo(™ consists of a single path-component when n < 5. Since triangles
are planar, the embedding space eo(®) of rooted oriented triangles is con-
nected. A quadrilateral (tetragon) consists of two triangles hinged along a
common edge; since we can change the dihedral angle at the hinge to flatten
the quadrilateral out, we find that Geo®) is also connected. Finally, suppose
that P = (v1,va,v3,v4,v5) is some pentagon. If the edge vyvs intersects the
triangular disc determined by vertices v, vs, and vs, then P can be deformed
by an isotopy of the linkage v4vsvg across the disc determined by vy, vs, and
ve until it coincides with the quadrilateral (vq,v2,v3,v4) (see Figure 3a). On
the other hand, if the edge does not intersect that triangle, then P can be de-
formed by an isotopy of vivsv3 across the triangular disc determined by vy, v,
and vz until it coincides with the quadrilateral (vy,v3, vy, v5) (see Figure 3b).
In either case, P can then be pushed into a plane just like a quadrilateral.
Therefore the space eo® of pentagons is connected, as well.

The situation when n = 6 is described in Calvo.*~® In this case, we have
to contend with the hexagonal realizations of the trefoil knot. Recall that
trefoils are chiral, i.e. topologically different than their mirror image. This
means that every hexagonal trefoil will lie in a different component of &eo(©)
than its mirror image. Therefore, there must be at least three distinct path-
components in Geol®, corresponding to the unknot, the right-handed trefoil,
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and the left-handed trefoil. The embedding space &eo(®) contains, in fact, five
path-components. These consist of a single component of unknots, two compo-
nents of right-handed trefoil knots, and two components of left-handed trefoil
knots. Thus there two distinct geometric realizations of each type of topologi-
cal trefoil. In particular, hexagonal trefoil knots are not reversible: In contrast
with trefoils in the topological setting, reversing the orientation on a hexag-
onal trefoil yields a different geometric knot. Hence geometric knottedness is
actually stronger than topological knottedness.

It turns out that the distinction between the two geometric types of right-
handed trefoils is a consequence of our original choice of root and orientation.
If we eliminate this choice by taking the quotient of Geo®) modulo the action
of the dihedral group of order 12, we find that the spaces of non-rooted ori-
ented hexagonal knots and of non-rooted non-oriented hexagonal knots each
consist of three components (Corollary 7 in Calvo*). Randell has reported an-
other approach, using a spectral sequence analysis, confirming these results./
Nevertheless, the fact that &eo(® consists of five components may prove to be
relevant to questions about the topology of DNA, in which there are intrinsic
base points and orientations due to the sequences of base pairs.

The classification of hexagonal knots is completed by means of the joint
chirality-curl J, a combinatorial invariant which distinguishes between all five
components of Geo®). In particular, J takes values as follows:

(0,0) iff H is an unknot,
J(H) =< (+1,+1) iff His a right-handed trefoil,
(—1,£1) iff His a left-handed trefoil.

Reversing orientation on a hexagon will change the sign of the second coordi-
nate of J, while taking mirror its image will change the sign of both coordi-
nates.

The minimal stick number for the figure-eight knot is s(4;) = 7. Thus,
the space ®eo”) contains at least four path-components containing to the
unknot, the right- and left-handed trefoil knots, and the figure eight knot.
Topologically, these are the only four knots that can occur with seven edges.
Geometrically, there are five heptagonal knot types, two of which correspond
to the figure-eight knot (Theorem 4.1 in Calvo®). In fact, heptagonal trefoil
knots are achiral but not reversible. This is another example demonstrating
the difference between topological and geometric knottedness.

Unlike the hexagonal trefoils, though, the irreversibility of heptagonal
figure-eights does not depend on our choice of root. In fact, whereas the

f Personal communication, AMS meeting, Towa (March 1996).
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space of non-rooted non-oriented embedded heptagons consists of four path-
components, the space quotient of of non-rooted oriented embedded heptagons
consists of five path-components (Corollary 4.7 in Calvo®).

Of the nine knot types known to have stick number s(-) = 8 (see Figure 2),
only two are achiral. Together with the four topological knot types which
already occur in eo(")| this gives at least 20 path-components in &eo(®). The
exact number of geometric — or, for that matter, topological — knot types that
can occur when n = 8 remains unknown.

1.3. Equilateral polygons

A path in the embedding space eo™ corresponds to a deformation which can
stretch or shrink the edges of a polygon. This type of deformation might be
unrealistic when one uses geometric knot theory to model phenomena like DNA
molecules. In such cases, we may want a stronger notion of “geometric knot
theory” in which the length of the edges remain invariant under deformation.
Depending on the relative size of the edges, this new notion of knottedness may
actually be different than the more general geometric knottedness described in
Section 1.2 above. For instance, Cantarella and Johnston® show that for certain
choices of edge length, there are “stuck” hexagonal unknots, i.e. polygons
which are topologically unknotted but cannot be made planar via geometric
deformations that preserve edge lengths.

Let us restrict our attention to the class of equilateral polygons and to
deformations which preserve the lengths of their edges. Define the embed-
ding space &qu(™ of n-sided equilateral knots as the collection of polygons
(v1,V9,... ,Un_1,0,) in Geo™ with unit-length edges. Therefore Equ(™ is a
codimension-n quadric subvariety of &eo(™ defined by the equations

o1 = w2l = flva —vs|| = -+ = [lon—1 = val| = [l — w1 ] = 1.
Consider the map f : eo(™ — R™ given by the n-tuple

F((v1,v2, 0 vn1,00)) = (lor = val|, [lva = vall, - - s lon—1 — vnls [lon — 1)) -

The point p = (1,1,...,1) € R™ is a regular value for f (Corollary 1 in
Randell 22), so that Equ(™ = f~1(p) is a 2n-dimensional smooth submanifold
which intersects a number of the components of &eo(™, some perhaps more
than once.

Another helpful way in which to think of the space &qu(™ is to use a vector
description. An n-sided polygon can be entirely described by its root vertex
v1 and a list of n displacement vectors from one vertex to the next:

Vi=vy—wv, Va=w3—1v2, -+ Vp1=vp—vp1, Vp=v1—0p



Each of these is a unit vector and is, therefore, enumerated by a point of the
unit-radius 2-sphere S? in R3. A list of n such vectors is subject to the require-
ment that their sum is the zero vector in order to ensure a closed polygon. This
shows that the collection of n-sided equilateral polygons can be considered to
be the codimension-3 subset S of the product R x §2 x -.- x §2 determined
by the condition that the sum of the n vectors is zero. Note that S is a real
algebraic variety of dimension 2n. Then the space (Equ(") of equilateral knots
is the open subset of S consisting of the points (vy, ViVa, -+ Vo1, V,, ) which
correspond to embedded polygons.

We will say two polygons are equilaterally equivalent if they lie in the
same component of Equ(™ | and that a polygon is an equilateral unknot if it is
equilaterally equivalent to a standard planar polygon. Millett has shown that
all planar polygons are equilaterally equivalent, so the component of equilateral
unknots is well-defined ¥

As in the geometric case, the space &qu(®) of triangles is connected; in
fact, €qu(® consists of rotations and translations of a rigid equilateral triangle
and is thus homeomorphic to B3 x SO(3). All thombi (equilateral quadrilat-
erals) are equilaterally unknotted, since we can view a rhombus as the sum
of two isosceles triangles “hinged” along one of the rhombus’s diagonals. For
instance, a rhombus Q = (v, v2,v3,v4) corresponds to the sum of the triangles
(v1,v2,v3) and (v3,v4,v1). We can move vy and keep [jvg —vz2|| = [Jvz —w3]| =1
by rotating the triangular linkage vivsvz about the axis through vy and wvs
until Q lies completely in a plane. Hence Equ® is connected.

Randell 2 showed that any equilateral pentagon can be deformed to a
planar one without changing the length of any of its edges. For suppose P =
(v1,v2,v3,v4,v5) is an equilateral pentagon. Let P be the plane determined
by vertices v1,vs, and vs. If P separates vy from vs, then either

(i) both vz and vy lie on one side of the plane containing vy, v, and vs,
or
(ii) both vy and vs lie on one side of the plane containing vs, v3, and vy.

Thus, after relabeling, we can assume that both v, and vs lie to one side of
P. In this case, rotate the triangular linkage vivavs about the axis through
v1 and vz until it lies coplanar with v4. We can then deform the quadrilateral
linkage v1vov3v4 in its plane until it misses the line through v; and wvg4; this
is easy to achieve since the set of quadrilateral linkages v1v2v3v4 embedded in
the plane forms a connected one-parameter family described entirely by the
angle Zv4v1v5. We can then rotate the linkage vyvsv; about the axis through

9 For example, see steps 2 and 3 in the proof of Proposition 2.1 in Millett.'8
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v1 and vy until the entire pentagon lies in a single plane. Since any equilateral
pentagon can be flattened out, Equ(®) must also be connected.

Consider the case when n = 6. We have equilateral examples of each of
the five types of hexagons in eo(®). For example, the regular hexagon

Hy = ((1,0,0), (.5,.866025,0), (—.5, .866025, 0),
(—1,0,0), (—.5, —.866025,0), (.5, —.866025, 0))

is an equilateral unknot, while the hexagon

Hy = ((0,0,0), (.886375, .276357, .371441),
(.125043, —.363873, .473812), (.549367, .461959, .845227),
(.818041,0,0), (.4090205, —.343939, .845227))

is an equilateral trefoil with J(Hy) = (+1,+1). Let pH and rH denote the
mirror image (or obverse) and the reverse of a hexagon H; then p,r, and pr are
involutions of Geo(® taking H to equilateral trefoils of the other three types.
Therefore Equ(® intersects each of the five components of Geo(®) at least once.

The first in-depth analysis of &qu(®) was done by Millett and Rosa Orel-
lana. They show that any topologically unknotted equilateral hexagon can be
deformed to a planar one without changing the length of any of its edges.”
Thus Equ(® contains a single component of unknots. Calvo 5 completes
the study of equilateral hexagons, showing that any two equilateral hexagons
are equilaterally equivalent exactly when they are geometrically equivalent.
Therefore, €qu(® contains exactly five path-components, consisting of a sin-
gle component of unknots, two components of right-handed trefoil knots, and
two components of left-handed trefoil knots (Theorem 2 in Calvo?). As with
®e0®), the joint chirality-curl 7 distinguishes among these components. Nev-
ertheless, each component of trefoils in €qu(® contains essential loops which
are null-homotopic in &eo®, so that the inclusion i : qu(® — Geo(®) has a
nontrivial kernel at the level of fundamental group. Thus, the trefoil compo-
nents of qu(® are not homotopy equivalent to those in Geo(® (Theorem 15
in Calvo*). In particular, this shows that, despite the fact that equilateral and
geometric knot types coincide in the case n = 6, the two notions of knottedness
are quite different in nature.

Question 4. Are there values of n for which the number of path-components
in Geo(™ and Equ” differ? This can occur if there exist either topological knot

k' This result is mentioned, for example, in Proposition 1.2 of Millett.!® An alternate

proof is presented in Calvo?—?
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types which are realizable only by “scalene” n-sided polygons, or equilateral
isotopes of the same geometric knot type.

2. Monte Carlo search methods.
2.1. Random knot generation

The complexity of the knot spaces Geo™ and Equ(™ has proven to be very
difficult to penetrate analytically. Instead, we shall explore these spaces prob-
abilistically, by selecting a large number of “random” configurations in these
spaces. As the size of the sample of this Monte Carlo search increases, one ob-
tains a better understanding of the spaces, the topological knot types realized,
and the minimal stick numbers of those knots.

Consider generating a random geometric knot in eo™. By a homothety,
any knot type which occurs in &eo(™ will be realizable by a polygon in the cube
[0, 1]%. This allows us to restrict our attention to the subspace Gea™ N[0, 1]°".
In this case, one Monte Carlo approach is quite straight forward. With respect
to the uniform distribution on the interval [0, 1], one selects a list of 3n numbers
to represent the coordinates of the n vertices of the polygon. Geometric knots
are obtained by connecting these vertices by linear segments cyclically.

A helpful tool in the study of the spaces Equ(™ of equilateral knots is the
pivot transformation. A pivot is determined by a pair of non-adjacent vertices
of a polygon, which separate the regular n-gon into two pieces, together with
a pivot angle ¢ € [—m,w|. The pivot transforms the polygon by holding the
image on one of these pieces fixed and rotating the image of the other piece
about the axis through the two designated vertices by the given angle. Up to
a rotation of euclidean 3-space about the same axis, the result of the pivot
will be equivalent to the one given by reversing the roles of the two pieces.
Furthermore, if ¢ is sufficiently small, the new polygon will have the same
equilateral knot type as the one with which we started. The following two
theorems assist in the study of equilateral knot spaces.

Theorem 1. (Proposition 2.1 in Millett!®) For any two equilateral polygons
in (Equ("), there is a finite sequence of translations, rotations, and pivots taking
one polygon to the other.

This theorem is helpful in the study of Question 2, as it provides a method
to construct any possible knot type. If the knots are based at (0,0,0) and
the second vertex is (1,0,0), then translations and rotations are not required.
Since all knot types have a representative of this sort, pivots are the only
transformations required. Similar methods show that any path connecting two
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equilateral polygons in Equ(™ can be approximated as closely as desired by a
sequence of pivots. This implies that the pivots generate all possible paths, a
fact of relevance in the study of a geometric knot type.

2.2. Recognition of knot type

One important tool in the study of knot spaces has been the calculation of
knot invariants that can be used to identify knot types in the standard classifi-
cation of knots. Historically, the Alexander polynomial has been the principal
example, and it continues to be a popular one due to the relative ease of its cal-
culation. Since 1984, however, this has changed with the creation of the Jones
polynomial and its successors, the HOMFLY polynomial, the Kauffman poly-
nomial and, more recently, the “quantum” and Vassiliev finite-type invariants.
While, in theory, these are impractical due to the complexity of their compu-
tation, they actually are remarkably effective in practice. In addition, certain
simplifications have proved to be helpful2® Based upon the observed computa-
tional complexity of, for example, the HOMFLY polynomial, one might make
the conjecture: “The invariant of the generic knot is easy to compute.”

The HOMFLY polynomial is a finite Laurent polynomial in two vari-
ables, [ and m, with integer coefficients associated with each topological knot
type®13=14 For the 2977 prime knots represented with fewer than 13 crossings
there are only 76 cases that have the same first term as the trivial knot. By con-
sidering the entire invariant, these are easily eliminated. Furthermore, most —
though not all — chiral knots are distinguished by their HOMFLY polynomial?
Thus, although there are small families of knots having the same invariant, the
HOMFLY polynomial is a good assay for determining topological knot type
when dealing with small crossing and stick numbers. For a first estimate, we
use distinct HOMFLY polynomials as a surrogate for distinct topological knot
type; note that we do not identify chiral presentations.

3. Results of search.

In this section, we will describe a number of numerical calculations. Many
of these are in a rather preliminary and incomplete state. In particular, we
address Questions 1 and 2:

e How many distinct knot types are there in &eo™ or Equ™ as a func-
tion of the number of vertices?

* Knot 942 is an example of a chiral knot that has the same HOMFLY polynomial as its
mirror image.
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e What are the stick numbers s(K') and s'(K) of all knots K with nine
or fewer crossings?

For &eo™), partial results of research in progress are shown in Figure 4 and
Table 1. In this computation, n points are selected randomly within the unit
cube [0,1]3 and connected cyclically by linear segments. The HOMFLY poly-
nomial of the resulting knot is then calculated. The polynomials are counted
to estimate the number of distinct knot types.

Figure 4 shows a plot of the number of distinct HOMFLY polynomials
observed in ®eo(™ as a function of n. Note that growth in the number of
polynomials gives an estimate of the number of knot types represented. This
data clearly indicates the exponential growth in the topological knot types as
a function on n. Since, asymptotically, knots are chiral one should divide the
number of HOMFLY polynomials by two to estimate the number of topological
knot types up to mirror image.

Table 1 displays the observed stick number s(-) for all knots with nine
or fewer crossings. Where possible, exact results, such as those discussed in
Section 1.1, are given; these are marked by stars (x). Otherwise, the table indi-
cates the smallest n observed in the Monte Carlo search for which a realization
of a given knot type exists.

For &qu(™, partial results of research in progress are shown in Figure 5
and Table 2. In this case, the pivot transformation is successively applied,
beginning at the regular polygon, and the HOMFLY polynomial is calculated.
Then the number of distinct polynomials is counted. Figure 5 shows a plot
of the number of distinct polynomials obtained in the search of each space,
providing a rough estimate for the total number of distinct knot types in Equ™
as a function of n. In addition to exploring &qu(™ for the relatively small values
of n shown in Figure 5, the Monte Carlo search was also performed for Gqu®?,
in which case realizations of every knot listed in Table 4 were found. However,
the exploration of Equ(™ for the smaller values of n is still at an early stage.
Table 2 displays the observed equilateral stick number s'(-) for all knots with
nine or fewer crossings found thus far by these Monte Carlo searches. As in
Table 1, minimal stick numbers are marked by stars (x).

For larger n, the computational power that is required to obtain an accu-
rate approximation to the total number of knot types realizable in &eo(™ or
€qu(™ can be overwhelming. In practice, one observes only a fraction of the
total number of knot types, even after a large number of observations have
been made. For example, the case of fifty edges is shown in Figure 6a, which
plots the growth in the number of distinct knot types K observed as a function
of the number ¢ of samples taken. After a total of 13,750,000 Monte Carlo
observations in €qu®, a total of 2935 distinct HOMFLY polynomials have

14



Table 1: Observed geometric stick numbers s(-) for knots with nine or fewer crossings.
Stars () indicate cases for which the minimal stick number is actually known.

K s(K K s(K) K s(K)
0 3* 813 11 995 14
814 11 993 14
31 6* 815 12 9aq 12
816 9* 995 15
44 e 817 9* 996 12
818 9 997 12
51 8* 819 8* 9as 12
52 8* 820 8* 999 15
8o1 9* 939 13
61 8* 31+ 51 12 931 13
6o 8* 31— 51 11 939 12
63 8* 31 + 52 12 933 12
31+ 31 8* 31— 5o 12 934 12
31— 31 8* 41 + 44 11 935 13
936 14
71 9* 9, 13 937 14
T 9* 9 14 938 15
Ts 9* 93 12 939 13
T4 9* 94 14 940 9*
75 9* 95 13 941 9*
T 9* 96 13 940 9*
77 9* 97 12 943 10
31+ 44 10 9g 13 944 10
99 13 945 10

81 10 910 13 Y46 9*
8 11 911 13 947 12
83 12 912 12 948 12
84 10 913 13 949 11
85 12 914 14 31+ 61 13
8¢ 12 915 11 31 — 61 13
87 12 916 14 31+ 62 14
8g 11 917 14 31 — 62 14
89 12 918 13 31+ 63 13
819 12 919 13 47 + 51 14
811 10 999 13 44 + 59 15
812 12 991 14 31+31 37 10*

15
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Figure 4: Growth in the number of distinct HOMFLY polynomials observed in &eo(™),
plotted as a function of n.
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Figure 5: Growth in the number of distinct HOMFLY polynomials observed in Qiqu(”),
plotted as a function of n.
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Table 2: Observed equilateral stick numbers s'(-) for knots with nine or fewer crossings.
Stars (*) indicate cases for which the minimal equilateral stick number is actually known.

K S(K) K 5(K)
0 3* 73 12
T4 12
31 6* 75 11
76 12
44 ™ 77 12
31+ 44 11
91 8*
52 8* 8 12
813 12
61 8* 814 12
62 8* 819 9
63 8* 820 10
31+ 31 9 891 10
31— 31 10
942 9*
71 12 Y5 14
T 12 Y46 14

been found. However the shape of the graph indicates that this number is
likely to increase significantly after more sampling.

The situation can be likened to a “fish problem,” where one wishes to
determine the number of species of fish inhabiting a lake via random sampling
of the population. The problem, in the case of knots, is complicated by the
fact that the relative proportions of species are far from being uniform. One
solution is to approximate the observed values of K with a function which can
then be used to estimate the total number of knot types possible. The data
collected during the Monte Carlo searches suggests a function of the form

K(t) =N (1— Ae *t). (9)

Here the parameter N represents the total number of knot types realizable
with n sticks. We consider the sequence of total knot types observed after,
say, every 250,000 samples and find the best fitting curve of the form in (9)
for these data points. This is done by taking some small integer 7 > 1 and
considering successive differences of the form

Kt+j)— K@) =NA(1—ek)e ™.
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Figure 6: Growth in the number K of distinct knot types observed in un(50) as a function
of the number ¢ of samples. Each unit in ¢ corresponds to 250,000 samples.
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Table 3: Approximate number of knot types N in L‘Equ(50).

N R?2
3471.6 0.997536
3701.0 0.997046
3828.0 0.996360
3826.4 0.996369

FQESCIN ORI (3

A least-squares regression fitting a line to In (K(t + j) — K(¢)) will then yield a
“good” value for the parameter k. The desired parameter N is then found by
a second least-squares regression fitting a curve of the form in (9) to the data
points of K.

Table 3 shows the approximate total number of knot types N obtained by
using j = 1,2, 3,4 for the Monte Carlo searches for €qu®®). The coefficient of
determination R? for the corresponding curve fit is also indicated in each case?
Of these, the better approximation seems to come from j = 1, in which case

K(t) = 3471.61 — 3305.46¢ 03138, (10)

Figure 6b shows a plot of this function. This predicts a total of about 3,472
distinct HOMFLY polynomials, providing a conjectured lower bound for chiral
knot types in Gqu(®9).

4. Conclusions

The Monte Carlo approach described in Section 2 seems an effective means
for producing rough estimates, both in the general case of polygons with arbi-
trary edge length and in the case of equilateral polygons, of the total number
of knot types in each knot space and of the minimal stick number for each
topological knot type. In particular, Tables 1 and 2 in Section 3 are the only
available compilation of stick number information for all knots with nine or
fewer crossings of which we are aware.

J The coefficient of determination R? is a classical statistical tool measuring how well a
curve fits a data set. The better the fit, the closer R? is to 1. Given a data set {p; }ie{l,... m}
with mean p and a curve ¢(t) approximating it, the coefficient of determination is defined as

the ratio
2imy (P =P)? = 30, (i —a@)*

R? = 7 -
Yo (i — D)2
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Although the results in Section 3 are only preliminary, one lesson is clear:
The amount of sampling required to give an accurate estimates for these quan-
tities will be staggering. For example, consider the data for the Monte Carlo
search in €qu®). After 13,750,000 observations the search has revealed 2935,
or about 85%, out of a conjectured 3,472 distinct HOMFLY polynomials. Ac-
cording to the prediction curve (10), it should take an additional 20 million
observations before finding 98% of the conjectured total.

Of course, deeper statistical analysis of the data, especially in regards to
the non-uniform distribution in the population of knot types in these spaces,
is likely to yield better information in both these areas.
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