A vector \mathbf{v} is a **linear combination** of the vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ if there are scalars c_1, \ldots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k.$$

A collection of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ in a vector space V is **linearly dependent** if one of the vectors can be written as a linear combination of the others. The collection $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is **linearly independent** if not linearly dependent.
Suppose

\[\mathbf{v}_1 = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} 8 \\ 4 \\ 6 \end{pmatrix}, \]

both elements lying in \(\mathbb{R}^3 \). Is the collection \(\{ \mathbf{v}_1, \mathbf{v}_2 \} \) linearly dependent or independent?

\[
\begin{pmatrix} 8 \\ 4 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix},
\]

so these vectors are linearly dependent.
Suppose
\[\mathbf{v}_1 = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}. \]

Is the collection \(\{ \mathbf{v}_1, \mathbf{v}_2 \} \) linearly dependent or independent?

If they are linearly dependent,
\[\mathbf{v}_1 = a\mathbf{v}_2 \quad \text{or} \quad \mathbf{v}_2 = b\mathbf{v}_1. \]
in either case there is a nontrivial solution \((c_1, c_2) \) to the equation
\[c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}. \]

\[4c_1 + c_2 = 0, \]
\[2c_1 = 0, \]
\[3c_1 + 5c_2 = 0. \]

Only solution is \(c_1 = c_2 = 0 \), so the vectors are linearly independent.
It is helpful to have criteria for determining when a collection \(\{v_1, \ldots, v_k\} \) of vectors in a vector space \(V \) is linearly dependent or independent.

One such criterion is: \(\{v_1, \ldots, v_k\} \) are linearly dependent if and only if there is a nontrivial solution \((c_1, \ldots, c_k)\) to the equation

\[
c_1v_1 + \cdots + c_kv_k = 0.
\]

Are the vectors

\[
v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}
\]

linearly dependent or independent?
Does the system
\[\begin{align*}
c_1 + 3c_2 + c_3 &= 0, \\
c_2 + c_3 &= 0, \\
3c_3 &= 0
\end{align*}\]
have a nontrivial solution? The last equation implies \(c_3 = 0\), then the second equation implies \(c_2 = 0\) and finally the first equation implies that \(c_1 = 0\). Therefore the three vectors
\[
v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}
\]
are linearly independent.
Are the vectors
\[\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 4 \\ 5 \\ 9 \end{pmatrix} \]
linearly dependent or independent?

Does the system
\[
\begin{align*}
 c_1 + 3c_2 + 4c_3 &= 0, \\
 c_1 + 4c_2 + 5c_3 &= 0, \\
 2c_1 + 7c_2 + 9c_3 &= 0
\end{align*}
\]
have a nontrivial solution? We can use the elementary row operations to find out.
The **span** of a collection of vectors \(\{v_1, \ldots, v_k\} \) in a vector space \(V \) is the set

\[
\text{Span}\{v_1, \ldots, v_k\}
\]

of all linear combinations of the vectors. The set

\[
W = \text{Span}\{v_1, \ldots, v_k\}
\]

is a subspace of \(V \).
Let V be a vector space.

A **basis** for V is a collection of vectors $\{v_1, \ldots, v_k\}$ such that

1. $V = \text{Span}\{v_1, \ldots, v_k\}$, and
2. $\{v_1, \ldots, v_k\}$ are linearly independent.

In simple terms, this means that any element of $x \in V$ can be written as

$$x = c_1v_1 + \cdots + c_kv_k.$$

and the representation is unique. We can think of c_1, \ldots, c_k as the **coordinates** of x with respect to the basis.
The **dimension** of a vector space V is the number of elements in any basis. (It is a theorem that the number of elements in any basis is always the same.)

The standard basis for \mathbb{R}^n is

$$
e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ldots, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Since this is a basis, the dimension of \mathbb{R}^n is n.

Any vector $x \in \mathbb{R}^n$ can be written uniquely as a linear combination of e_1, \ldots, e_n:

$$
\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} + \cdots + x_n \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}
= x_1 e_1 + \cdots + x_n e_n.
$$
Suppose that
\[\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}. \]

Is \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} a basis for \(\mathbb{R}^3 \)?

No, this collection is not linearly independent because
\[2\mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}. \]

Every basis for \(\mathbb{R}^3 \) must be linearly independent and must span \(\mathbb{R}^3 \).
Theorem. A collection of n vectors

$$
\mathbf{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \\
\cdots, \quad \mathbf{a}_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}
$$

is a basis for \mathbb{R}^n if and only if the matrix

$$
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
$$

is invertible.
Suppose that
\[\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}. \]

Is \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) a basis for \(\mathbb{R}^3 \)?
Suppose that
\[W = \text{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} \subseteq \mathbb{R}^5 \]
where
\[\mathbf{a}_1 = (1, 1, 0, 2, 3), \]
\[\mathbf{a}_2 = (0, 0, 1, 1, 2), \]
\[\mathbf{a}_3 = (1, 1, 1, 3, 5). \]
Can we find a basis for \(W \)? What is the dimension of \(W \)?

\(W \) is the **row space** of the matrix
\[
A = \begin{pmatrix}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 1 & 2 \\
1 & 1 & 1 & 3 & 5
\end{pmatrix}.
\]
Elementary row operations do not change the row space of the matrix.

Method for finding a basis for the row space W of a matrix:

Perform elementary row operations to put the matrix in row-reduced echelon form. Then the **nonzero rows** of the row-reduced echelon form make up a basis for W. The number of elements in the resulting basis is the dimension of W.
One of the major applications of linear algebra consists of understanding the space of solutions to a homogeneous linear system

\[
\begin{align*}
 a_{11}x_1 &+ a_{12}x_2 + \cdots + a_{1n}x_n = 0, \\
 a_{21}x_1 &+ a_{22}x_2 + \cdots + a_{2n}x_n = 0, \\
 &\vdots \quad \vdots \quad \cdots \quad \cdots \quad \vdots \\
 a_{m1}x_1 &+ a_{m2}x_2 + \cdots + a_{mn}x_n = 0
\end{align*}
\]

If we set

\[
\begin{align*}
 \mathbf{a}_1 &= (a_{11}, a_{12}, \cdots, a_{1n}), \\
 \mathbf{a}_2 &= (a_{21}, a_{22}, \cdots, a_{2n}), \\
 &\quad \vdots \\
 \mathbf{a}_m &= (a_{m1}, a_{m2}, \cdots, a_{mn}),
\end{align*}
\]

we can rewrite this system as

\[
\begin{align*}
 \mathbf{a}_1 \cdot \mathbf{x} &= 0, \\
 \mathbf{a}_2 \cdot \mathbf{x} &= 0, \\
 &\quad \vdots \\
 \mathbf{a}_m \cdot \mathbf{x} &= 0.
\end{align*}
\]
Let \(W = \text{Span}\{ \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \} \). Then

the space of solutions to

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 & \cdots + a_{1n}x_n = 0, \\
 a_{21}x_1 + a_{22}x_2 & \cdots + a_{2n}x_n = 0, \\
 \quad \vdots \quad & \vdots \quad \quad \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 & \cdots + a_{mn}x_n = 0
\end{align*}
\]

is the collection of vectors which are perpendicular to

\(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \).

We denote this space by \(W^\perp \) and call it the **orthogonal complement** to \(W \). We can find bases for \(W \) and \(W^\perp \) by using the elementary row operations on the matrix

\[
egin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]