A. Definition of double and triple integrals

Suppose that \(D \) is a bounded region in the \((x, y)\)-plane. We say that \(D \) is of type I if it can be described in the form

\[
D = \{(x, y) \in \mathbb{R}^2 : a \leq x \leq b, \phi(x) \leq y \leq \psi(x)\},
\]

and of type II if it is of the form

\[
D = \{(x, y) \in \mathbb{R}^2 : c \leq y \leq d, \phi(y) \leq x \leq \psi(y)\}.
\]

We say that \(D \) is elementary if it is one of these two types.

Suppose, in addition, that \(f : D \to \mathbb{R} \) is a continuous function. If \(D \) is an elementary region of type I, we set

\[
\int \int_D f(x, y) \, dx \, dy = \int_a^b \left[\int_{\phi(x)}^{\psi(x)} f(x, y) \, dy \right] \, dx,
\]

while if \(D \) is of type II, we set

\[
\int \int_D f(x, y) \, dx \, dy = \int_c^d \left[\int_{\phi(y)}^{\psi(y)} f(x, y) \, dx \right] \, dy.
\]

It can be shown that if a region \(D \) is of both type I and type II, the two expressions for the double integral (1) and (2) agree. If \(D \) can be divided up into a finite union of elementary regions \(D_1, \ldots, D_k \) such that each intersection \(D_i \cap D_j \) consists of finitely many curves, then

\[
\int \int_D f(x, y) \, dx \, dy = \int \int_{D_1} f(x, y) \, dx \, dy + \cdots + \int \int_{D_k} f(x, y) \, dx \, dy.
\]

It can be shown that the result obtained is independent of the way in which \(D \) is divided up into a finite disjoint union of elementary regions.

The double integral has many possible interpretations. Some of the most important are these:
First, if \(f(x, y) \equiv 1 \), then
\[
\int \int_D 1 \, dx \, dy = \text{(area of } D)\).
\]
If \(f(x, y) \geq 0 \), then
\[
\int \int_D f(x, y) \, dx \, dy
\]
is the volume of the region
\[
E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, 0 \leq z \leq f(x, y)\}.
\]
If \(f(x, y) \) represents mass density at \((x, y) \), then the double integral
\[
\int \int_D f(x, y) \, dx \, dy
\]
is the total mass of \(D \). Finally, we can use the double integral to compute the average value of \(f \) on \(D \), by means of the formula,
\[
\text{(Average value of } f \text{ on } D) = \frac{\int \int_D f(x, y) \, dx \, dy}{\int \int_D 1 \, dx \, dy}.
\]

Problem 7.1. Let \(D = \{(x, y) \in \mathbb{R}^2 : x^2 \leq y \leq 2 - x^2\} \).

a. Find the area of \(D \).

b. Find the center of mass of \(D \).

c. Find the average value of the function \(f(x, y) = x^2 + y^2 \) on \(D \).

d. Find the volume of the part of the paraboloid \(z = x^2 + y^2 \) which lies over \(D \).

If \(E \) is a bounded region in \((x, y, z)\)-space say that \(E \) is of type I if it can be described in the form
\[
E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, \phi(x, y) \leq z \leq \psi(x, y)\},
\]
for some elementary region \(D \) in the \((x, y)\)-plane. In this case
\[
\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int \int_D \left[\int_{\phi(x, y)}^{\psi(x, y)} f(x, y, z) \, dz \right] \, dx \, dy. \tag{3}
\]
Similarly, \(E \) is of type II if it can be described in the form
\[
E = \{(x, y, z) \in \mathbb{R}^3 : (x, z) \in D, \phi(x, z) \leq y \leq \psi(x, z)\},
\]
for some elementary region \(D \) in the \((x, z)\)-plane, in which case we set
\[
\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int \int_D \left[\int_{\phi(x, z)}^{\psi(x, z)} f(x, y, z) \, dy \right] \, dx \, dz. \tag{4}
\]
and E is of type III if it can be described in the form

$$E = \{(x, y, z) \in \mathbb{R}^3 : (y, z) \in D, \phi(y, z) \leq x \leq \psi(y, z)\},$$

for some elementary region D in the (y, z)-plane, in which case we set

$$\int \int \int_E f(x, y, z)\,dx\,dy\,dz = \int \int_D \left[\int_{\phi(y, z)}^{\psi(y, z)} f(x, y, z)\,dx \right]\,dy\,dz. \quad (5)$$

If the three-dimensional region E can be divided up into a finite union of elementary regions E_1, \ldots, E_k such that each intersection $E_i \cap E_j$ consists of finitely many surfaces, then we can define the integral of f over E by the formula

$$\int \int \int_E f(x, y, z)\,dx\,dy\,dz = \int \int \int_{E_1} f(x, y, z)\,dx\,dy\,dz + \ldots + \int \int \int_{E_k} f(x, y, z)\,dx\,dy\,dz.$$

Like the double integral, the triple integral has many possible interpretations, depending on the context: volume, mass, average value,

Problem 7.2. Let $E = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \leq 1, x \geq 0, y \geq 0, z \geq 0\}$.

a. Find the volume of E.

b. Find the center of mass of E.

c. Find the average value of the function $f(x, y, z) = x^2 + y^2 + z^2$ on E.

B. Differentials and Green’s Theorem

If $\mathbf{F}(x, y) = M(x, y)i + N(x, y)j$ is a vector field on a region D in the plane, where $M(x, y)$ and $N(x, y)$ are smooth functions on D, and $d\mathbf{x} = dx\mathbf{i} + dy\mathbf{j}$, then

$$\mathbf{F}(x, y) \cdot d\mathbf{x} = M(x, y)\,dx + N(x, y)\,dy$$

is called a differential.

In particular if $\mathbf{F} = \nabla f$, where $f(x, y)$ is a smooth scalar-valued function on D then

$$\mathbf{F}(x, y) \cdot d\mathbf{x} = \frac{\partial f}{\partial x}(x, y)\,dx + \frac{\partial f}{\partial y}(x, y)\,dy.$$

We write

$$df = \frac{\partial f}{\partial x}\,dx + \frac{\partial f}{\partial y}\,dy.$$

We say that a differential $M\,dx + N\,dy$ is **exact** if $M\,dx + N\,dy = df$ for some smooth function f. Note that if $M\,dx + N\,dy$ is exact, then

$$M = \frac{\partial f}{\partial x}, \quad N = \frac{\partial f}{\partial y} \quad \Rightarrow \quad \frac{\partial N}{\partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial M}{\partial y}.$$
Idea for solving differential equations via differentials: If we can write a differential equation in the form

\[M \, dx + N \, dy = 0 \]

where \(M \, dx + N \, dy = df \), then the curves \(f(x, y) = c \) should be solutions to the differential equation.

Problem 7.3. Determine which of the following differentials are exact:

\[x \, dy - y \, dx, \quad y \, dx + x \, dy, \quad e^y \, dx + x e^y \, dy. \]

Problem 7.4.

a. Write the differential equation

\[\frac{dy}{dx} = -\frac{2xy + e^y}{x^2 + xe^y} \]

in the form \(M \, dx + N \, dy = 0 \). \(\text{(6)} \)

b. Is it true that

\[\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y} ? \]

c. find a function \(f(x, y) \) such that \(df = M \, dx + N \, dy \). Then \(f(x, y) = c \), where \(c \) is an arbitrary constant, should be the general solution to the differential equation \((6) \).

Remark. This method of solving ordinary differential equations is called the method of exact differentials.

A differential \(M \, dx + N \, dy \) on a region \(D \) in the plane is said to be closed if

\[\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}. \]

Note that every exact differential on a region \(D \) in the plane is closed, but we will see that there are closed differentials on some regions \(D \) which are closed but not exact!

Green’s Theorem relates double integrals to line integrals:

Green’s Theorem. Let \(D \) be a bounded region in the \((x, y)\)-plane, bounded by a piecewise smooth curve \(\partial D \), directed so that as it is traversed in the positive direction, the region \(D \) lies on the left. Let \(M(x, y) \, dx + N(x, y) \, dy \) be a differential on \(D \cup \partial D \) whose component functions \(M \) and \(N \) are smooth on \(D \cup \partial D \). Then

\[\int_{\partial D} M \, dx + N \, dy = \int \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dxdy. \]

Problem 7.5. Use Green’s Theorem to evaluate the line integral

\[\int_C (e^{-x^2} \, dx + x \, dy), \]
where \(C \) is the unit circle \(x^2 + y^2 = 1 \) traversed once in the counterclockwise direction. Hint: First reduce the line integral to a double integral and then evaluate the double integral.

Conversely, Green’s theorem is often useful in evaluating double integrals. For example, suppose we want a formula for the area of a region \(D \) bounded by a smooth closed curve \(C \). We need only find functions \(M(x, y) \) and \(N(x, y) \) so that

\[
\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1.
\]

Then

\[
\text{Area of } D = \int \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy = \int_C M \, dx + N \, dy.
\]

For example, we can set \(M = -y \) and \(N = 0 \), to obtain the formula

\[
\text{Area of } D = \int_C -y \, dx,
\]

or \(M = -(1/2)y \) and \(N = (1/2)x \) to obtain the formula

\[
\text{Area of } D = \int_C \left[-(1/2)y \, dx + (1/2)x \, dy \right].
\]

(7)

Problem 7.6. Use Green’s Theorem to determine the area of the region in the \((x, y)\)-plane bounded by the curve \(x^{(2/3)} + y^{(2/3)} = 1 \). Hint: We can parametrize this curve by

\[
x(t) = \left(\begin{array}{c} \cos^3 t \\ \sin^3 t \end{array} \right), \quad t \in [0, 2\pi],
\]

and use formula (7). Can you sketch the curve?

Proof of Green’s Theorem: To prove Green’s Theorem, it suffices to prove the two simpler formulae

\[
\int_{\partial D} M \, dx = \int \int_D \left(-\frac{\partial M}{\partial y} \right) \, dx \, dy
\]

and

\[
\int_{\partial D} N \, dy = \int \int_D \left(\frac{\partial N}{\partial x} \right) \, dx \, dy.
\]

(8)

(9)

We focus on (8); the proof of (9) is similar.

To prove (8) in the case where \(D \) is of the special form

\[
D = \{ (x, y) \in \mathbb{R}^2 : a \leq x \leq b, \phi(x) \leq y \leq \psi(x) \},
\]

of type I in the terminology we used before, we note that the boundary curve \(\partial D \) divides up into four pieces:

\[
\partial D = C_1 + C_3 - C_2 - C_4,
\]
which have the following parametrizations:

- \(C_1 : x = t, y = \phi(t), a \leq x \leq b, \)
- \(C_2 : x = t, y = \psi(t), a \leq x \leq b, \)
- \(C_3 : x = a, y = t, \phi(a) \leq x \leq \psi(a), \)
- \(C_4 : x = b, y = t, \phi(b) \leq x \leq \psi(b). \)

Problem 7.7.

a. Show that \(dx = 0 \) along \(C_3 \) and \(C_4 \). Use this fact to evaluate

\[
\int_{C_3} M dx \quad \text{and} \quad \int_{C_4} M dx.
\]

b. Show that

\[
\int_{\partial D} M dx = \int_{C_1} M dx - \int_{C_2} M dx.
\]

c. Show that

\[
\int_{\partial D} M dx = \int_a^b M(t, \phi(t))dt - \int_a^b M(t, \psi(t))dt = \int_a^b [M(x, \phi(x)) - M(x, \psi(x))]dx.
\]

d. Use the fundamental theorem of calculus to show that

\[
\int_{\partial D} M dx = \int_a^b \int_{\phi(x)}^{\psi(x)} \left[-\frac{\partial M}{\partial y}(x, y)\right] dxdy = -\int \int_D \frac{\partial M}{\partial y}(x, y)dxdy.
\]

This establishes (8) in the case where \(D \) is of type I.

The general case of (8) is obtained by dividing a given region \(D \) into a disjoint union of regions \(D_i \) of type I. In this case,

\[
\int \int_D -\frac{\partial M}{\partial y}dxdy = \sum \int \int_{D_i} -\frac{\partial M}{\partial y}dxdy = \sum \int_{D_i} M dx = \int_{\partial D} M dx,
\]

because the parts of the boundaries of the \(D_i \)’s which lie inside \(D \) cancel in pairs.

A region \(D \subset \mathbb{R}^2 \) is said to be *convex* if

\[
p \in D \quad \text{and} \quad q \in D \quad \Rightarrow \quad (1-t)p + tq \in D \quad \text{for all} \ t \in [0,1].
\]

Problem 7.8. Is the region

\[
D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\} - \{(0, 0)\}
\]

convex? Why or why not?

Poincaré Lemma. If \(D \) is a convex region in \(\mathbb{R}^2 \) then every closed differential on \(D \) is exact.
Problem 7.9. a. Suppose that $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a smooth vector field on a region D in the (x,y)-plane, bounded by a piecewise smooth curve ∂D, directed so that as it is traversed in the positive direction, the region D lies on the left. Let \mathbf{T} denote the unit-length tangent vector to ∂D and let \mathbf{N} denote the outward pointing unit-length normal to ∂D. Show that

$$(P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}) \cdot \mathbf{N} = (-Q(x,y)\mathbf{i} + P(x,y)\mathbf{j}) \cdot \mathbf{T}$$

along ∂D.

b. Use Green's Theorem to prove the Divergence Theorem:

Divergence Theorem. Let D be a bounded region in the (x,y)-plane, bounded by a piecewise smooth curve ∂D. Let $\mathbf{F}(x,y) = P(x,y)dx + Q(x,y)dy$ be a differential on $D \cup \partial D$ whose component functions P and Q are smooth. Then

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{N} \, ds = \int \int_D \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dx \, dy.$$

H.7.1. a. Suppose that

$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\} - \{(0,0)\}.$$

Show that the differential

$$Mdx + Ndy = \frac{ydx - xdy}{x^2 + y^2}$$

is closed.

b. Let C be the circle $x^2 + y^2 = 1$ directed once in the counterclockwise direction. Evaluate the line integral

$$\int_C \frac{ydx - xdy}{x^2 + y^2}.$$

c. Does your calculation in part c show that the differential (10) is closed but not exact? Why or why not?

H.7.2. Use the Divergence Theorem to evaluate the line integral

$$\int_C \mathbf{F} \cdot \mathbf{N} \, ds,$$

where C is the unit circle $x^2 + y^2 = 1$ and

$$\mathbf{F} = (y \cos e^y)\mathbf{i} + (x + y)\mathbf{j}.$$
