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Preface

Riemannian, symplectic and complex geometry are often studied by means
of solutions to systems of nonlinear differential equations, such as the equa-
tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang-
Mills connections. For studying such equations, a new unified technology
has been developed, involving analysis on infinite-dimensional manifolds.

A striking applications of the new technology is Donaldson’s theory of
“anti-self-dual” connections on SU(2)-bundles over four-manifolds, which
applies the Yang-Mills equations from mathematical physics to shed light
on the relationship between the classification of topological and smooth
four-manifolds. This reverses the expected direction of application from
topology to differential equations to mathematical physics. Even though
the Yang-Mills equations are only mildly nonlinear, a prodigious amount
of nonlinear analysis is necessary to fully understand the properties of the
space of solutions.

At the present state of knowledge, understanding smooth structures on
topological four-manifolds seems to require nonlinear as opposed to linear
PDE’s. It is therefore quite surprising that there is a set of PDE’s which
are even less nonlinear than the Yang-Mills equation, but can yield many
of the most important results from Donaldson’s theory. These are the
Seiberg-Witten equations.

These lecture notes stem from a graduate course given at the University
of California in Santa Barbara during the spring quarter of 1995. The
objective was to make theSeiberg-Witten approach to Donaldson theory
accessible to second-year graduate students who had already taken basic
courses in differential geometry and algebraic topology.

In the meantime, more advanced expositions of Seiberg-Witten theory
have appeared (notably [11] and [31]). It is hoped these notes will prepare
the reader to understand the more advanced expositions and the excellent
recent research literature.

We wish to thank the participants in the course, as well as Vincent Bor-
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relli, Xianzhe Dai, Guofang Wei and Rick Ye for many helpful discussions
on the material presented here.

J. D. MOORE
Santa Barbara

April, 1996

In the second edition, we have corrected several minor errors, and expanded
several of the arguments to make them easier to follow. In particular, we
included a new section on the Thom form, and provided a more detailed
description of the second Stiefel-Whitney class and its relationship to the
intersection form for four-manifolds. The pace increases throughout the
text, particularly in the last chapter, and the reader is urged to have pencil
and paper handy to verify the calculations.

Our thanks go to David Bleecker for pointing out that our earlier proof of
the Proposition toward the end of §3.9 was incomplete, and to Lev Vertgeim
and an anonymous referee for spotting several misprints and minor errors
in the text.

J. D. MOORE
Santa Barbara
January, 2001

In this revision of the second edition, we made several minor corrections.

J. D. MOORE
Santa Barbara

August, 2010
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Chapter 1

Preliminaries

1.1 Introduction

During the 1980’s, Simon Donaldson used the Yang-Mills equations, which
had originated in mathematical physics, to study the differential topology
of four-manifolds. Using work of Michael Freedman, he was able to prove
theorems of the following type:

Theorem A. There exist many compact topological four-manifolds which
have no smooth structure.

Theorem B. There exist many pairs of compact simply connected smooth
four-manifolds which are homeomorphic but not diffeomorphic.

The nonlinearity of the Yang-Mills equations presented difficulties, so many
new techniques within the theory of nonlinear partial differential equations
had to be developed. Donaldson’s theory was elegant and beautiful, but
the detailed proofs were difficult for beginning students to master.

In the fall of 1994, Edward Witten proposed a set of equations (devel-
oped jointly with Nathan Seiberg) which give the main results of Donaldson
theory in a far simpler way than had been thought possible. The purpose of
these notes is to provide an elementary introduction to the equations which
Witten proposed. These equations are now known as the Seiberg-Witten
equations.

Our goal is to use the Seiberg-Witten equations to give the differential
geometric parts of the proofs of Theorems A and B. The basic idea is simple:
one constructs new invariants of smooth four-manifolds, invariants which
depend upon the differentiable structure, not just the topology.

The reader is assumed to be familiar with many topological invariants
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2 CHAPTER 1. PRELIMINARIES

of four-manifolds: the fundamental group π1(M), the cohomology groups
Hk(M), the cup product, and so forth. These topological invariants have
been around for a long time and have been intensively studied. The Seiberg-
Witten equations give rise to new invariants of four-dimensional smooth
manifolds, called the Seiberg-Witten invariants. The key point is that
homeomorphic smooth four-manifolds may have quite different Seiberg-
Witten invariants. Just as homology groups have many applications, one
might expect the Seiberg-Witten invariants to have many applications to
the geometry and differential topology of four-dimensional manifolds.

Indeed, shortly after the Seiberg-Witten invariants were discovered, sev-
eral striking applications were found.

One application concerns the geometry of embedded algebraic curves in
the complex projective plane CP 2. Any such curve has a degree, which is
simply the number of times the curve intersects a projective line in general
position.

Algebraic topologists have another way of calculating the degree. A
nonsingular algebraic curve can be regarded as the image of a holomorphic
embedding

i : Σ→ CP 2,

Σ being a compact Riemann surface. The degree of the algebraic curve is
the integer d such that

i∗(fundamental class in H2(Σ; Z)) = d · (generator of H2(CP 2; Z)). (1.1)

In many algebraic geometry texts (for example, page 220 in [18]), one
can find a formula for the genus of an embedded algebraic curve:

g =
(d− 1)(d− 2)

2
.

Thom conjectured that if Σ is a compact Riemann surface of genus g and

i : Σ→ CP 2

is any smooth embedding, not necessarily holomorphic, then

g ≥ (d− 1)(d− 2)
2

,

the degree being defined by (1.1). (One would not expect equality for
general embeddings, since one can always increase the genus in a fixed
homology class by adding small handles.)

The Thom conjecture was proven by Kronheimer and Mrowka, Mor-
gan, Szabo and Taubes, and Fintushel and Stern, using the Seiberg-Witten
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equations. These notes should give the reader adequate background to read
the proof (versions of which are presented in [22] and [32]). The proof also
gives much new information about embeddings of surfaces in four-manifolds
other than CP 2.

Another application of the Seiberg-Witten invariants comes from differ-
ential geometry. One of the most studied problems in Riemannian geometry
concerns the relationship between curvature and topology of Riemannian
manifolds. Perhaps the simplest type of curvature is the scalar curvature

s : M → R

of a Riemannian manifold M . The value of the scalar curvature at p is a
constant multiple of the average of all the sectional curvatures at p. It is
interesting to ask: which compact simply connected Riemannian manifolds
admit metrics with positive scalar curvature?

Lichnerowicz found the simplest obstruction to the existence of met-
rics of positive scalar curvature on compact simply connected manifolds.
We will describe the part of Lichnerowicz’s theorem that applies to four-
manifolds later. Building upon the work of Lichnerowicz, Gromov and
Lawson were able to obtain a relatively complete description of which com-
pact simply connected manifolds of dimension ≥ 5 admit metrics of positive
scalar curvature in terms of the standard topological invariants. (See [24],
Corollary 4.5, page 301.)

As Witten noticed, a compact four-manifold with positive scalar cur-
vature must have vanishing Seiberg-Witten invariants. Thus there is an
obstruction to the existence of metrics of positive scalar curvature which
depends on the differentiable structure of the four-manifold, not just its
topological type. The Seiberg-Witten invariants show that many compact
four-manifolds (including all compact algebraic surfaces of “general type”)
do not admit metrics of positive scalar curvature.

A third application of the Seiberg-Witten equations is to symplectic
geometry. Indeed, Taubes [37], [38] was able to identify the Seiberg-Witten
invariants of a compact symplectic four-manifold with Gromov invariants—
as a consequence he obtained an existence theorem for “pseudoholomorphic
curves” in such manifolds.

The rapidity with which these new results were obtained suggested that
the Seiberg-Witten equations might have yet further applications to the
geometry of four-manifolds. The Seiberg-Witten invariants have become
one of the standard tools in studying the differential topology of four-
dimensional manifolds.

The differential geometry needed to study the Seiberg-Witten equations
is the geometry of spin and spinc structures. To the novice, these topics may
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appear unfamiliar and strange, although spinors have long been regarded as
important in physics. The tools needed to study spin and spinc structures
are the same standard tools needed by all geometers and topologists: vector
bundles, connections, characteristic classes and so forth. We will begin by
reviewing some of this necessary background.

1.2 What is a vector bundle?

Roughly speaking, a vector bundle is a family of vector spaces, parametrized
by a smooth manifold M .

How does one construct such a family of vector spaces? Suppose first
that the ground field is the reals and the vector spaces are to be of dimension
m, all isomorphic to Rm. In this case, one starts with an open covering
{Uα : α ∈ A} of M and for each α, β ∈ A, smooth transition functions

gαβ : Uα ∩ Uβ → GL(m,R) = {m×m nonsingular real matrices},

which satisfy the “cocycle condition”

gαβ · gβγ = gαγ on Uα ∩ Uβ ∩ Uγ .

Note that

gαα · gαβ = gαβ ⇒ gαα = I on Uα,

and hence the cocycle condition implies that

gαβ · gβα = gαα = I on Uα ∩ Uβ .

Let Ẽ denote the set of all triples (α, p, v) ∈ A ×M × Rm such that
p ∈ Uα. Define an equivalence relation ∼ on Ẽ by

(α, p, v) ∼ (β, q, w) ⇔ p = q ∈ Uα ∩ Uβ , v = gαβ(p)w.

Denote the equivalence class of (α, p, v) by [α, p, v] and the set of equivalence
classes by E. Define a projection map

π : E →M by π([α, p, v]) = p.

Let Ũα = π−1(Uα) and define a bijection

ψα : Ũα → Uα × Rm by ψα([α, p, v]) = (p, v).
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There is a unique manifold structure on E which makes each ψα into a
diffeomorphism. With respect to this manifold structure, the projection π
is a smooth submersion.

A real vector bundle of rank m over M is a pair (E, π) constructed as
above for some choice of open cover {Uα : α ∈ A} of M and some collection
gαβ of transition functions which satisfy the cocycle condition. The fiber
of this vector bundle over p ∈ M is Ep = π−1(p), the preimage of p under
the projection. It has the structure of an m-dimensional real vector space.

When are two such vector bundles to be regarded as isomorphic? To
answer this question, we need the notion of morphism within the category
of vector bundles over M . A vector bundle morphism from (E1, π1) to
(E2, π2) over M is a smooth map f : E1 → E2 which takes the fiber (E1)p
of E1 over p to thefiber (E2)p of E2 over p and restricts to a linear mapon
fibers, fp : (E1)p → (E2)p. An invertible vector bundle morphism is called
a vector bundle isomorphismover M . Let VectR

m(M) denote the space of
isomorphism classes of real vector bundles of rank m over M .

The reader has no doubt encountered many examples of vector bundles
in courses on differential geometry: the tangent bundle TM , the cotangent
bundle T ∗M , the k-th exterior power ΛkT ∗M of the cotangent bundle, and
other tensor bundles. Given two vector bundles E1 and E2 over M , one can
form their direct sum E1 ⊕ E2, their tensor product E1 ⊗ E2, the bundle
Hom(E1, E2), and so forth. One can also construct the dual bundle E∗1
whose fibers are the dual spaces to the fibers of E1. The construction of
such vector bundles is described in detail in §3 of [29].

Complex vector bundles are defined in a similar way. The only difference
is that in the complex case the transition functions take their values in the
group GL(m,C) of m ×m complex matrices instead of GL(m,R), and Ẽ
is replaced by the set of triples (α, p, v) ∈ A ×M × Cm such that p ∈ Uα.
The construction described above then gives a pair (E, π) in which the
fiber π−1(p) has the structure of a complex vector space of dimension m.
Let VectC

m(M) denote the space of isomorphism classes of complex vector
bundles of rank m over M .

A complex vector bundle of rank one is also called a complex line bundle.
The space of complex line bundles forms an abelian group under the tensor
product operation ⊗. We will sometimes write

Lm = L⊗ L⊗ · · · ⊗ L (m times).

Note that if
gαβ : Uα ∩ Uβ → GL(1,C)

are the transition functions for L, then the transition functions for Lm are
simply gmαβ .
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In addition to real and complex vector bundles, one can define quater-
nionic vector bundles, vector bundles over the quaternions. Quaternions
were first described by William R. Hamilton in 1853. In modern notation,
a quaternion is simply a 2× 2 matrix of the form

Q = a1 + bi + cj + dk,

where a, b, c and d are real numbers, and

1 =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
, j =

(
0 i
i 0

)
, k =

(
i 0
0 −i

)
.

It is readily checked that the sum of two quaternions or the product of two
quarternions is again a quaternion. Quaternion multiplication is bilinear
over the reals; thus it is determined by the multiplication table for its basis
{1, i, j,k}:

1 i j k

1 1 i j k
i i −1 −k j
j j k −1 −i
k k −j i −1

Thus of two possible conventions, we choose the one which induces the
negative of the cross product on the three-plane of “imaginary quaternions”
spanned by i, j and k.

Alternatively, we can think of quaternions as 2× 2 complex matrices of
the form (

w −z̄
z w̄

)
,

where z and w are complex numbers. Note that since

detQ = |z|2 + |w|2,

a nonzero quaternion Q possesses a multiplicative inverse.
We let H denote the space of quaternions. It is a skew field, satisfying

all the axioms of a field except for commutativity of multiplication. Let
GL(m,H) denote the group of nonsingular m×m matrices with quaternion
entries.

To define a quaternionic vector bundle of rank m, one simply requires
that the transition functions gαβ take their values in GL(m,H), and we let
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VectH
m(M) denote the space of isomorphism classes of quaternionic vector

bundles of rank m over M .
Note that GL(m,H) is a subgroup of GL(2m,C), which in turn is a sub-

group of GL(4m,R). A quaternionic vector bundle of rank m can thought
of as a real vector bundle of rank 4m whose transition functions gαβ take
their values in GL(m,H) ⊂ GL(4m,R). More generally, if G is any Lie
subgroup of GL(m,R), a G-vector bundle is a rank m vector bundle whose
transition functions take their values in G.

Let us suppose, for example, that G is the orthogonal group O(m) ⊂
GL(m,R). In this case the transition functions of a G-vector bundle pre-
serve the usual dot product on Rm. Thus the bundle E inherits a fiber
metric, a smooth function which assigns to each p ∈M an inner product

〈 , 〉p : Ep × Ep → R.

If G is the special orthogonal group SO(n), a G-vector bundle possesses
not only a fiber metric, but also an orientation.

Similarly, if G is the unitary group U(m) ⊂ GL(m,C) ⊂ GL(2m,R),
a G-vector bundle is a complex vector bundle of rank m together with a
Hermitian metric, a smooth function which assigns to each p ∈M a map

〈 , 〉p : Ep × Ep → C

which satisfies the axioms

1. 〈v, w〉p is complex linear in v and conjugate linear in w,

2. 〈v, w〉p = 〈w, v〉p

3. 〈v, v〉p ≥ 0, with equality holding only if v = 0.

For example, Cn is an inner product space with the inner product given by〈 z1

·
zn

 ,

w1

·
wn

〉 = (w1 · · · wn )

 z1

·
zn

 ,

where we have changed the order in the matrix product so as to agree with
the standard conventions of matrix algebra.

A section of a vector bundle (E, π) is a smooth map

σ : M → E such that π ◦ σ = identity.

If σ ∈ Γ(E), the restriction of σ to Uα can be written in the form

σ(p) = [α, p, σα(p)], where σα : Uα →

{Rm
Cm
Hm
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is a smooth map. The vector-valued functions σα are called the local rep-
resentatives of σ and they are related to each other by the formula

σα = gαβσβ on Uα ∩ Uβ . (1.2)

In the real or complex case, the set Γ(E) of sections of E is a real
or complex vector space respectively, and also a module over the space of
smooth functions on M . In the quaternionic case, we need to be careful
since quaternionic multiplication is not commutative. In this case, (1.2)
shows that sections of E can be multiplied on the right by quaternions.

Example. We consider complex line bundles over the Riemann sphere S2,
regarded as the one-point compactification of the complex numbers, S2 =
C∪{∞}. Give C the standard complex coordinate z and let U0 = S2−{∞},
U∞ = S2 − {0}. For each integer n, define

g∞0 : U∞ ∩ U0 → GL(1,C) by g∞0(z) =
1
zn
.

This choice of transition function defines a complex line bundle over S2

which we denote by Hn. A section of Hn is represented by maps

σ0 : U0 → C, σ∞ : U∞ → C

such that
σ∞ =

1
zn
σ0, on U∞ ∩ U0.

It can be proven that any complex line bundle over S2 is isomorphic to Hn

for some n ∈ Z.
In particular, the cotangent bundle to S2 must be isomorphic to Hn for

some choice of n. A section σ of the cotangent bundle restricts to σ0dz on
U0 for some choice of complex valued function σ0. Over U∞, we can use
the coordinate w = 1/z, and write σ = −σ∞dw. Since dw = −(1/z)2dz,

σ0dz = −σ∞dw ⇒ σ∞ = z2σ0,

and hence n = −2. In other words, T ∗S2 = H−2. Similarly, TS2 = H2.
In a similar way, we can construct all quaternionic line bundles over S4.

In this case, we regard S4 as the one-point compactification of the space of
quaternions, S4 = H ∪ {∞}. Let U0 = H, U∞ = S4 − {0}, and define

g∞0 : U∞ ∩ U0 → GL(1,H) by g∞0(Q) =
1
Qn

.

As n ranges over the integers, we obtain all quaternionic line bundles over
S4.
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How can we prove the claims made in the preceding paragraphs? Proofs
can be based upon theorems from differential topology which classify vector
bundles over manifolds. Here are two of the key results:

Classification Theorem for Complex Line Bundles. If M is a smooth
manifold, there is a bijection

VectC
1 (M) ∼= H2(M ; Z).

This theorem will be proven in §1.6. The theorem implies that

VectC
1 (S2) ∼= H2(S2; Z) ∼= Z,

and we will see that Hm corresponds to m ∈ Z under the isomorphism. A
argument similar to that for complex line bundles could be used to prove:

Classification Theorem for Quaternionic Line Bundles. If M is a
smooth manifold of dimension ≤ 4, there is a bijection

VectH
1 (M) ∼= H4(M ; Z).

1.3 What is a connection?

In contrast to differential topology, differential geometry is concerned with
“geometric structures” on manifolds and vector bundles. One such struc-
ture is a connection. Evidence of the importance of connections is provided
by the numerous definitions of connection which have been proposed.

A definition frequently used by differential geometers goes like this. Let

χ(M) = {vector fields on M}, Γ(E) = {smooth sections of E}.

Definition 1. A connection on a vector bundle E is a map

∇A : χ(M)× Γ(E)→ Γ(E)

which satisfies the following axioms (where ∇AXσ = ∇A(X,σ)):

∇AX(fσ + τ) = (Xf)σ + f∇AXσ +∇AXτ, (1.3)

∇AfX+Y σ = f∇AXσ +∇AY σ. (1.4)

Here f is a real-valued function if E is a real vector bundle, a complex-
valued function if E is a complex vector bundle.
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It is customary to regard ∇AXσ as the covariant derivative of σ in the
direction of X.

Given a connection ∇A in the sense of Definition 1, we can define a map

dA : Γ(E)→ Γ(T ∗M ⊗ E) = Γ(Hom(TM,E))

by
dA(σ)(X) = ∇AXσ.

Then dA satisfies a second definition:

Definition 2. A connection on a vector bundle E is a map

dA : Γ(E)→ Γ(T ∗M ⊗ E)

which satisfies the following axiom:

dA(fσ + τ) = (df)⊗ σ + fdAσ + dAτ. (1.5)

Definition 2 is more frequently used in gauge theory, but in our presentation
both definitions will be important. Note that Definition 2 is a little more
economical in that one need only remember one axiom instead of two.
Moreover, Definition 2 makes clear the analogy between a connection and
the exterior derivative.

The simplest example of a connection occurs on the bundle E = M×Rm,
the trivial real vector bundle of rank m over M . A section of this bundle
can be identified with a vector-valued map

σ =


σ1

σ2

·
σm

 : M → Rm.

We can use the exterior derivative to define the “trivial” flat connection dA
on E:

dA

 σ1

·
σm

 =

 dσ1

·
dσm

 .

More generally, given an m×m matrix

ω =

 ω1
1 · ω1

m

· · · · ·
ωm1 · ωmm
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of real-valued one-forms, we can define a connection dA by

dA

 σ1

·
σm

 =

 dσ1

·
dσm

+

 ω1
1 · ω1

m

· · · · ·
ωm1 · ωmm

 σ1

·
σm

 . (1.6)

We can write this last equation in a more abbreviated fashion:

dAσ = dσ + ωσ,

matrix multiplication being understood in the last term. Indeed, the axiom
(1.5) can be verified directly, using the familiar properties of the exterior
derivative:

dA(fσ + τ) = d(fσ + τ) + ω(fσ + τ)

= df ⊗ σ + fdσ + fωσ + dτ + ωτ = (df)⊗ σ + fdAσ + dAτ.

We can construct a connection in the trivial complex vector bundle
E = M × Cm or the trivial quaternionic bundle M × Hm in exactly the
same way, by choosing ω to be an m×m matrix of complex- or quaternionic-
valued one-forms.

Any connection dA on a trivial bundle is of the form (1.6). To see this,
we apply dA to the constant sections

e1 =


1
0
·
0

 , e2 =


0
1
·
0

 , . . . em =


0
0
·
1

 .

obtaining

dAej =


ω1
j

ω2
j

·
ωmj

 =
m∑
i=1

eiω
i
j .

It then follows directly from the axiom for connections that

dA

(
m∑
i=1

eiσ
i

)
=

m∑
i=1

eidσ
i +

m∑
i,j=1

eiω
i
jσ
j ,

which is just another way of writing (1.6).
Any vector bundle is “locally trivial.” Suppose, for example, that E is

a real vector of rank m over M defined by the open covering {Uα : α ∈ A}
and the transition functions gαβ . In the notation of the preceding section

ψα : π−1(Uα)→ Uα × Rm



12 CHAPTER 1. PRELIMINARIES

is a vector bundle isomorphism from the restriction of E to Uα onto the
trivial bundle over Uα. A section σ ∈ Γ(E) possesses a local representative
σα, which is an m-tuple of ordinary functions on Uα. If dA is a connection
on E, then dAσ possesses a local representative (dAσ)α, which is an m-tuple
of ordinary one-forms on Uα. Just as in the preceding paragraph, we can
write

(dAσ)α = dσα + ωασα, (1.7)

where ωα is an m×m matrix of one-forms on Uα. This matrix ωα is called
the local representative of the connection dA.

To see how the local representatives corresponding to two elements of
our distinguished covering are related, we note that since the connection is
well-defined on overlaps, we must have

dσα + ωασα = gαβ(dσβ + ωβσβ) on Uα ∩ Uβ .

Since σβ = g−1
αβσα,

dσα + ωασα = gαβ [d(g−1
αβσα) + ωβg

−1
αβσα]

= dσα + gαβ [dg−1
αβ + gαβωβg

−1
αβ ]σα.

Thus we conclude that

ωα = gαβdg
−1
αβ + gαβωβg

−1
αβ on Uα ∩ Uβ . (1.8)

This yields

Definition 3. A connection on a real vector bundle E defined by a covering
{Uα : α ∈ A} and transition functions {gαβ : α, β ∈ A} is a collection of
differential operators

{d+ ωα : α ∈ A},

where d is the exterior derivative on Rm-valued functions, and ωα is an
m×m matrix of one-forms on Uα, which transform according to (1.8).

There is, of course, a similar definition for connections in complex or quater-
nionic vector bundles.

If E is an O(m)-bundle, an orthogonal connection in E is a connection
whose local representatives d+ωα have the property that ωα takes its values
in O(m), where O(m) is the space of m×m skew-symmetric matrices, the
Lie algebra of the orthogonal group O(n). Note that this condition is
preserved under the transformation (1.8) because

gαβ ∈ O(m), ωβ ∈ O(m) ⇒ gαβdg
−1
αβ , gαβωβg

−1
αβ ∈ O(m).



1.3. WHAT IS A CONNECTION? 13

Similarly, if E is a U(m)-bundle, a unitary connection in E is a connection
such that ωα takes its values in U(m), where U(m) is the space of m ×m
skew-Hermitian matrices, the Lie algebra of the unitary group U(m). The
general rule is that if E is a G-bundle, a G-connection is a connection whose
local representatives ωα take values in the Lie algebra of G.

Here are some examples of connections:

Example 1. Suppose that E = TM , the tangent bundle of a smooth
manifold M which is embedded in RN . The trivial bundle M ×RN is then
a direct sum,

M × RN = TM ⊕NM,

where NM is the normal bundle of M in RN , whose fiber at p ∈M is the
set of all vectors in RN perpendicular to M . On the trivial bundle M×RN ,
we can take the trivial flat connection defined by the vector-valued exterior
derivative d. If σ ∈ Γ(E) ⊂ Γ(M × RN ), then dσ ∈ Γ(T ∗M ⊗ (M × RN )).
We define a connection

dA : Γ(TM)→ Γ(T ∗M ⊗ TM)

by setting
dA(σ) = (dσ)>,

where (·)> denotes projection into the tangent space. It is an enlightening
exercise to check that this is just the Levi-Civita connection studied in
Riemannian geometry.

Example 2. Over the Grassmann manifold

Gm(CN ) = { m-dimensional subspaces of CN }

the trivial bundle divides into a direct sum,

Gm(CN )× CN = E ⊕ E⊥,

where
E = {(V, v) ∈ Gm(CN )× CN : v ∈ V },

E⊥ = {(V, v) ∈ Gm(CN )× CN : v⊥V }.

As in the preceding example, we can use the trivial flat connection d on the
trivial bundle Gm(CN )× CN to define a connection dA on E by setting

dA(σ) = (dσ)>,

where (·)> denotes the orthogonal projection into E. This connection is
called the universal connection in the universal bundle E.
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Example 3: the pullback connection. If (E, π) is a vector bundle
over M defined by the open covering {Uα : α ∈ A} and the transition
functions {gαβ : α, β ∈ A}, and F : N →M is a smooth map, the pullback
bundle (F ∗E, π∗) is the vector bundle over N defined by the open covering
{F−1(Uα) : α ∈ A} and the transition functions {gαβ ◦ F : α, β ∈ A}. An
alternate description is often useful:

F ∗E = {(p, v) ∈ N × E : F (p) = π(v)}, π∗((p, v)) = p.

If σ ∈ Γ(E) has local representatives σα, we can define F ∗σ ∈ Γ(F ∗E) to
be the section with local representatives σα ◦ F . Equivalently, in terms of
the alternate description,

F ∗σ : N → F ∗E by F ∗σ(p) = (p, σ ◦ F (p)).

More generally, if ω⊗σ is a differential form with values in E, we can define
its pullback by

F ∗(ω ⊗ σ) = F ∗ω ⊗ F ∗σ.

Proposition 1. If dA is a connection on the vector bundle (E, π) over M
and F : N →M is a smooth map, there is a unique connection dF∗A on the
pullback bundle (F ∗E, π∗) which makes the following diagram commute:

Γ(E) → Γ(T ∗M ⊗ E)

↓ ↓

Γ(F ∗E) → Γ(T ∗N ⊗ F ∗E)

In this diagram, the horizontal arrows are given by the connections and the
vertical arrows are the pullback maps F ∗.

Proof: The commutative diagram implies that if ωα is the local represen-
tative of dA corresponding to Uα, then the local representative of dF∗A
corresponding to F−1(Uα) is F ∗ωα. This establishes uniqueness. For exis-
tence, simply define the local representatives of dF∗A to be F ∗ωα and check
that they satisfy the correct transformation formulae.

An important application of the pullback construction is to the existence
of parallel transport along curves. If (E, π) is a smooth real vector bundle
ov rank m over M and γ : [a, b] → M is a smooth curve, we can form
the pullback bundle (γ∗E, π∗) over the interval [a, b]. It is an easy exercise
to show that any vector bundle over an interval [a, b] is trivial, so we can
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consider γ∗E to be the trivial bundle [a, b]×Rm. The pullback connection
can be written as

dγ∗A = d+ ω

where ω is a matrix of one-forms on [a, b]. If t is the standard coordinate
on [a, b],

ω =

 f1
1 dt · f1

mdt
· ·

fm1 dt · fmm dt

 ,

where f ij : [a, b]→ R. We now consider the equation

dγ∗Aσ = dσ + ωσ = 0,

which can be written in terms of components as

dσi

dt
+

m∑
j=1

f ijσ
j = 0, (1.9)

a linear system of ordinary differential equations. It follows from the theory
of differential equations that given an element σ0 ∈ (γ∗E)a, there is a
unique solution to (1.9) which satisfies the initial condition σ(a) = σ0.
Thus we can define an isomorphism

τ : (γ∗E)a → (γ∗E)b

by setting τ(σ0) = σ(b), where σ is the unique solution to (1.9) which
satisfies σ(a) = σ0. But

(γ∗E)a ∼= Eγ(a) and (γ∗E)b ∼= Eγ(b).

Thus τ defines an isomorphism

τ : Eγ(a) → Eγ(b)

which we call parallel transport along γ.
It is not difficult to show that in the case of an O(m)-bundle with

orthogonal connection, or a U(m)-bundle with unitary connection, parallel
transport is an isometry.

Parallel transport has the following simple application:

Proposition 2. If F0, F1 : N → M are smoothly homotopic maps and
E is a vector bundle over M , then F ∗0E and F ∗1E are isomorphic vector
bundles over N .
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Sketch of proof: Let J0, J1 : N → N × [0, 1] be the smooth maps defined by

J0(p) = (p, 0), J1(p) = (p, 1).

If F0 is smoothly homotopic to F1, there exists a smooth map H : N ×
[0, 1]→M such that

H ◦ J0 = F0, H ◦ J1 = F1.

Thus it suffices to show that if E is a vector bundle over N × [0, 1], then
J∗0E is isomorphic to J∗1E.

Give E a connection and let τp : E(p,0) → E(p,1) denote parallel trans-
port along the curve t 7→ (p, t). We can then define a vector bundle isomor-
phism τ : J∗0E → J∗1E by

τ(p, v) = (p, τp(v)), for v ∈ E(p,0) = J∗0Ep.

Corollary. Every vector bundle over a contractible manifold is trivial.

Proof: If M is a contractible manifold, the identity map on M is homotopic
to the constant map, and hence any vector bundle over M is isomorphic to
the pullback of a bundle over a point via the constant map.

1.4 The curvature of a connection

Let’s review some familiar facts regarding the exterior derivative. Let

Ωp(M) = Γ(Λp(T ∗M)) = {differential p-forms on M},

so that Ω0(M) is just the space of smooth real-valued functions on M . The
exterior derivative d : Ω0(M) → Ω1(M) is just the usual differential of a
function

df = differential of f =
n∑
i=1

∂f

∂xi
dxi.

We extend this operator to Ωp(M) for all p by requiring that d(dxi) = 0
and that the Leibniz rule hold:

d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ, for ω ∈ Ωp(M).

Equality of mixed partial derivatives implies that d◦d = 0. Thus we obtain
a cochain complex

· · · → Ωp−1(M)→ Ωp(M)→ Ωp+1(M)→ · · · ,
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and we can define the p-th de Rham cohomology group

Hp(M ; R) =
kernel of d : Ωp(M)→ Ωp+1(M)
image of d : Ωp−1(M)→ Ωp(M)

.

It is well-known that these groups are isomorphic to the usual singular
cohomology groups with real coefficients, and are therefore topological in-
variants. (Further discussion of de Rham theory can be found in [7].)

Now let E be a vector bundle over M and let

Ωp(E) = Γ(Λp(T ∗M)⊗ E) = {p-forms on M with values in E}.

A connection on E can be regarded as a linear map from zero-forms with
values in E to one-forms with values in E,

dA : Ω0(E)→ Ω1(E).

As in the case of the usual exterior derivative, we can extend dA to all of
the Ωp(E)’s by requiring Leibniz’s rule to hold,

dA(ωσ) = dω σ + (−1)pω ∧ dAσ, for ω ∈ Ωp(M), σ ∈ Γ(E).

It is not usually true that dA ◦ dA = 0. However,

dA ◦ dA(fσ + τ) = dA[df ⊗ σ + fdAσ + dAτ ]

= d(df)σ − df ⊗ dAσ + df ⊗ dAσ + f(dA ◦ dA)σ + dA ◦ dAτ

= f(dA ◦ dAσ) + dA ◦ dAτ,

so dA ◦ dA is linear over functions. This implies that dA ◦ dA is actually a
tensor field, called the curvature of the connection.

In the case of the trivial vector bundle E = M × Rm, we can apply
dA ◦ dA to the standard constant sections

e1 =


1
0
·
0

 , e2 =


0
1
·
0

 , . . . , em =


0
0
·
1

 .

Then

dA ◦ dA(ei) =


Ω1
i

Ω2
i

·
Ωmi

 =
m∑
j=1

ejΩ
j
i ,
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where each Ωji is a two-form. Linearity over functions implies that

dA ◦ dA

(
m∑
i=1

eiσ
i

)
=

m∑
i,j=1

eiΩijσ
j ,

or in matrix notation
dA ◦ dA(σ) = Ωσ, (1.10)

where Ω is a matrix of two-forms.
Suppose now that E is a real vector bundle of rank m over M defined

by the open covering {Uα : α ∈ A} and the transition functions gαβ . Any
element σ ∈ Γ(E) possesses local representatives σα, and in accordance
with (1.10),

dA ◦ dA(σα) = Ωασα,

where Ωα is a matrix of two-forms. Applying the differential operator
dA = d+ ωα to (1.7) yields

dA ◦ dA(σα) = (d+ ωα)(dσα + ωασα)

= d(dσα) + (dωα)σα − ωα ∧ dσα + ωα ∧ dσα + (ωα ∧ ωα)σα

= (dωα + ωα ∧ ωα)σα,

and hence
Ωα = dωα + ωα ∧ ωα. (1.11)

Since dA ◦ dA is independent of trivialization, the matrices of two-forms
must satisfy

Ωασα = gαβΩβσβ = gαβΩβg−1
αβσα on Uα ∩ Uβ .

Thus the Ωα’s transform by the rule

Ωα = gαβΩβg−1
αβ , (1.12)

the way in which local representatives of a two-form with values in the
vector bundle End(E) should transform. In other words, the Ωα’s determine
an End(E)-valued two-form, called the curvature of the connection dA, and
sometimes denoted simply by Ω or ΩA.

Differentiation of equation (1.11) yields the Bianchi identity :

dΩα = Ωα ∧ ωα − ωα ∧ Ωα = [Ωα, ωα]. (1.13)

Of course, all of the above discussion applies to connections in complex
vector bundles or quaternionic vector bundles as well as real vector bundles.
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In the complex case, for example, the matrices Ωα have complex-valued
two-forms as entries.

In the case of an orthogonal connection in an O(m)-bundle, it follows
directly from (1.11) that the matrices Ωα are skew-symmetric. In the case of
a unitary connection in a U(m)-bundle, these matrices are skew-Hermitian.

The case of complex line bundles is particularly important. In this
case, the matrices Ωα are all 1× 1, and the transformation formula (1.12)
implies that Ωα = Ωβ on overlaps. Thus the Ωα’s fit together to make a
globally defined two-form ΩA on M , which is purely imaginary in thecase
of a unitary connection.

Since the Lie group U(1) is isomorphic to SO(2), a complex line bundle
with Hermitian metric can also be regarded as a real vector bundle of rank
two together with a fiber metric and orientation. Indeed, given an oriented
rank two real vector bundle E with fiber metric, we can define multiplication
by i to be rotation through 90 degrees in the direction determined by the
orientation. If e1 is a locally defined unit-length section of E, we can set
e2 = ie1, thereby obtaining a locally defined moving frame (e1, e2). Note
that if ω12 is the corresponding real valued connection form,

de1 = −e2ω12 = (−iω12)e1,

and −iω12 is the purely imaginary connection form for the unitary bundle.
We set

FA = Ω12 = dω12,

a globally defined curvature two-form on M . Then ΩA = −iFA = −iΩ12 =
−idω12 is the corresponding purely imaginary two-form when E is regarded
as a unitary bundle. The Bianchi identity in this case is simply

dFA = 0. (1.14)

All of this applies to the case where E = TΣ, the tangent bundle of an
oriented two-dimensional Riemannian manifold Σ. In this case, the Levi-
Civita connection on TΣ is a unitary connection and its curvature form
is

FA = KdA,

where K is the Gaussian curvature of Σ and dA is the area two-form of Σ.

1.5 Characteristic classes

In general, the curvature matrix Ω is only locally defined. However, it is
possible to construct certain polynomials in Ωα which are invariant under
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the transformation (1.12) and these give rise to geometric and topological
invariants.

Let us focus first on the case of a U(m)-vector bundle E, a complex
vector bundle of rank m with Hermitian metric. We give E a unitary
connection which has local representatives d + ωα and curvature matrices
Ωα. As we saw in the preceding section, Ωα is skew-Hermitian, so

i

2π
Ωα,

(
i

2π
Ωα

)k
are Hermitian. Hence for each choice of positive integer k, the differential
form

Trace

[(
i

2π
Ωα

)k]
is real-valued. Since trace is invariant under similarity, it follows from (1.12)
that

Trace

[(
i

2π
Ωα

)k]
= Trace

[(
i

2π
gαβΩβg−1

αβ

)k]
= Trace

[(
i

2π
Ωβ

)k]

on Uα ∩ Uβ . Hence these locally defined forms fit together into a globally
defined real-valued 2k-form τk(A). We say that τk(A) is a characteristic
form.

Lemma. Each differential form τk(A) is closed, dτk(A) = 0.

Proof: It follows from the Bianchi identity that

dτk(A) =
(
i

2π

)k
d[Trace(Ωkα)] =

(
i

2π

)k
Trace[d(Ωkα)]

=
(
i

2π

)k
Trace[(dΩα)Ωk−1

α + · · ·+ Ωk−1
α (dΩα)]

=
(
i

2π

)k
Trace{[Ωα, ωα]Ωk−1

α + · · ·+ Ωk−1
α [Ωα, ωα]} = 0,

the last equality coming from the fact that Trace(A1 · · ·Ak) is invariant
under cyclic permutation of A1, . . . , Ak.

This Lemma implies that τk(A) represents a de Rham cohomology class

[τk(A)] ∈ H2k(M ; R).
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Proposition 1. If E is a U(m)-bundle over M with unitary connection
dA and F : N → M is a smooth map, then the characteristic forms of the
pullback connection dF∗A on the pullback bundle F ∗E are pullbacks of the
characteristic forms of dA:

τk(F ∗A) = F ∗τk(A).

Proof: The local representative of dF∗A on F−1(Uα) is ω∗α = F ∗ωα, and
the curvature of dF∗A is

Ω∗α = dω∗α + ω∗α ∧ ω∗α = F ∗dωα + F ∗ωα ∧ F ∗ωα = F ∗Ωα.

Thus
Trace((Ω∗α)k) = Trace(F ∗(Ωkα)) = F ∗Trace(Ωkα),

or equivalently,
τk(F ∗A) = F ∗τk(A).

Proposition 2. The de Rham cohomology class [τk(A)] is independent
of the choice of unitary connection dA as well as the choice of Hermitian
metric on E.

Proof: We use the cylinder construction from topology. From the bundle
(E, π) over M we construct the cylinder bundle (E × [0, 1], π × id) over
M × [0, 1]. Note that if E possesses the trivializing covering {Uα : α ∈ A},
then E × [0, 1] possesses the trivializing covering {Uα × [0, 1] : α ∈ A}.

We can pull two connections dA and dB on E back to M × [0, 1] via the
projection on the first factor π1 : M × [0, 1] → M . If dA and dB are given
over Uα by

d+ ωα, d+ φα,

then the pullback connections are given over Uα × [0, 1] by

d+ π∗1ωα, d+ π∗1φα.

We define a new connection dC on E × [0, 1], given over Uα × [0, 1] by

d+ (1− t)π∗1ωα + tπ∗1φα.

If J0, J1 : M → M × [0, 1] are the maps defined by J0(p) = (p, 0), J1(p) =
(p, 1), then

dA = dJ∗0C , dB = dJ∗1C .

Hence by Proposition 1,

[τk(A)] = J∗0 [τk(C)] = J∗1 [τk(C)] = [τk(B)] ∈ H2k(M ;R).
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This shows that [τk(A)] is independent of the choice of unitary connection.
The proof that it is independent of the choice of Hermitian metric is

similar and is left to the reader. Use the fact that any two Hermitian
metrics 〈, 〉0 and 〈, 〉1 can be connected by aone-parameter family

(1− t)〈 , 〉0 + t〈 , 〉1.

According to Proposition 2, to each complex vector bundle E over M we
can associate a collection of cohomology classes

τk(E) = [τk(A)].

These are called characteristic classes of E. Clearly, if two complex vector
bundles are isomorphic over M , they must have the same characteristic
classes. Characteristic classes are natural under mappings as the following
proposition shows:

Proposition 3. If F : N →M is a smooth map and E is a complex vector
bundle over M , then

τk(F ∗E) = F ∗τk(E).

Proof: This is now an immediate consequence of Proposition 1.

We can put the characteristic classes together into a power series called the
Chern character:

ch(E) = [Trace (exp ((i/2π)Ωα))]

= rank(E) + τ1(E) +
1
2!
τ2(E) + · · ·+ 1

k!
τk(E) + · · · .

This is an element of the cohomology ring

H∗(M ; R) = H0(M ; R)⊕H1(M ; R)⊕ · · · ⊕Hk(M ; R)⊕ · · · .

Note that the Chern character collapses to a polynomial since all terms of
degree > dim(M) must vanish.

Proposition 4. The Chern character satisfies the identities:

ch(E1 ⊕ E2) = ch(E1) + ch(E2), ch(E1 ⊗ E2) = ch(E1)ch(E2).
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Proof: Suppose that E1 and E2 have Hermitian metrics and unitary con-
nections dA1 and dA2 , resprectively. Then E1 ⊕ E2 inherits a Hermitian
metric and a unitary connection dA1⊕A2 , defined by

dA1⊕A2(σ1 ⊕ σ2) = (dA1σ1)⊕ (dA2σ2).

It follows that

(dA1⊗A2)2(σ1 ⊗ σ2) = (d2
A1
σ1)⊕ (d2

A2
σ2),

and hence(
(i/2π)ΩA1⊕A2

)k
=
(

((i/2π)ΩA1)k 0
0 ((i/2π)ΩA2)k

)
.

Thus
τk(E1 ⊕ E2) = τk(E1) + τk(E2),

which implies the first of the two identities.
Similarly, E1⊗E2 inherits a Hermitian metric and a unitary connection

dA1⊗A2 , defined by the Leibniz rule

dA1⊗A2(σ1 ⊗ σ2) = (dA1σ1)⊗ σ2 + σ1 ⊗ (dA2σ2).

Since dA1⊗A2 is a skew-derivation,

(dA1⊗A2)2(σ1 ⊗ σ2) = (d2
A1
σ1)⊗ σ2 + σ1 ⊗ (d2

A2
σ2),

from which it follows that

(dA1⊗A2)2k(σ1 ⊗ σ2) =
k∑
j=0

(
k

j

)
(d2j
A1
σ1)⊗ (d2k−2j

A2
σ2),

or

1
k!

(dA1⊗A2)2k(σ1 ⊗ σ2) =
k∑
j=0

1
j!

(d2j
A1
σ1)⊗ 1

(k − j)!
(d2k−2j
A2

σ2).

We conclude that

exp((dA1⊗A2)2) = exp((dA1)2)exp((dA2)2),

which yields the second of the two identities.
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In the topology of four-manifolds, certain polynomials in the τk(E)’s play a
key role. If E is a U(m)-vector bundle over M , the first and second Chern
classes of E are defined by the formulae

c1(E) = τ1(E), c2(E) =
1
2

[τ1(E)2 − τ2(E)]. (1.15)

To motivate the second of these, we can check that if E has rank two, so
that (i/2π)Ωα is a (2× 2)-Hermitian matrix,

1
2

[(
Trace

i

2π
Ωα

)2

− Trace
(
i

2π
Ωα

)2
]

= Determinant
(
i

2π
Ωα

)
,

so the second Chern class is also given by the formula

c2(E) = the de Rham cohomology class of Determinant
(
i

2π
Ωα

)
.

Higher Chern classes could also be defined by similar formulae, but they
automatically vanish on manifolds of dimension ≤ 4. Note that it follows
from (1.15) that

τ2(E) = c1(E)2 − 2c2(E). (1.16)

Use of a Hermitian metric shows that the dual E∗ to a U(m)-vector
bundle E over M is obtained from E by conjugating transition functions,

gαβ 7→ ḡαβ .

Thus we can also think of E∗ as the conjugate of E. A connection on E
defines a connection on E∗ by conjugating local representatives,

ωα 7→ ω̄α, Ωα 7→ Ω̄α.

Since conjugation changes the sign of the trace of a skew-Hermitian matrix,
we see that c1(E∗) = −c1(E); similarly, c2(E∗) = c2(E).

We can also define characteristic classes of quaternionic and real vec-
tor bundles. A quaternionic line bundle E can be regarded as a complex
vector bundle of rank two. Right multiplication by j is a conjugate-linear
isomorphism from E to itself, so the first Chern class of E must vanish, but
second Chern class is an important invariant of E.

On the other hand, a real vector bundle E of rank k can be complex-
ified, giving a complex vector bundle E ⊗ C of rank k. Once again, the
complexification is isomorphic to its conjugate so its first Chern class must
vanish, but we can define the first Pontrjagin class of E to be

p1(E) = −c2(E ⊗ C).
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1.6 The Thom form

The first Chern class of a complex line bundle over a compact oriented
surface possesses an important geometric interpretation as the algebraic
number of zeros of a generic section. We now present that interpretation
based upon the construction of a Thom form.

Suppose that L is a complex line bundle over M , regarded as an oriented
real vector bundle of rank two, as described at the end of §1.4. If U is an
open subset of M over which we have constructed a moving frame (e1, e2)
with e2 = ie1, we can define smooth functions

t1, t2 : π−1(U) −→ R by ti(a1e1(p) + a2e2(p)) = ai.

Moreover, we can pull the connection and curvature forms ω12 and Ω12

back to π−1(U).

Definition. The Thom form on L is the smooth two-form defined locally
by

Φ =
1

2π
e−(t21+t22) [Ω12 + 2(dt1 + ω12t2) ∧ (dt2 − ω12t1)] . (1.17)

(It is not difficult to verify that this expression is independent of choice of
moving frame (e1, e2), and hence Φ is indeed a globally defined differential
two-form on L.)

We can also write

Φ =
1

2π
e−(t21+t22)

[
Ω12 + 2dt1 ∧ dt2 + ω12 ∧ d(t21 + t22)

]
,

from which it is easy to check that Φ is closed. Moreover, it is clearly
rapidly decreasing in the fiber direction, and the familiar integral formula∫

R2
e−(t21+t22)dt1dt2 =

∫ ∞
0

∫ 2π

0

e−r
2
rdrdθ = π, (1.18)

shows that the integral of Φ over any fiber is one.
We reiterate the three key properties: (i.) The Thom form is closed.

(ii.) It is rapidly decreasing in the fiber direction. (iii.) Its integral over
any fiber is one. Any other two-form with with the same key properties
would be equally effective in establishing a geometric interpretation for the
first Chern class. For example, we could replace (1.17) with

Φ = η(t21 + t22)Ω12 − 2η′(t21 + t22)(dt1 + ω12t2) ∧ (dt2 − ω12t1),
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where η : [0,∞)→ R is any smooth function such that

η(0) =
1

2π
, η(u)→ 0 sufficiently rapidly as u→∞,

thereby still obtaining a smooth two-form with the same key properties.
The choice η(u) = (1/2π)e−u we made in (1.17) may simplify the calcula-
tions a little, but choosing η to vanish for r ≥ ε, where ε is a small positive
number, yields a Thom form with compact support, which vanishes outside
an ε-neighborhood of the zero section.

Choice of a section σ : M → L does not affect the de Rham cohomology
class of σ∗(Φ), since any two sections are homotopic. Thus the cohomology
class [σ∗(Φ)] equals its pullback via the zero section:

[σ∗(Φ)] =
1

2π
[Ω12] =

1
2π

[FA] = c1(L).

We now focus on the special case of a complex line bundle L with
Hermitian metric over a smooth oriented surface Σ. We say that a smooth
section σ : Σ→ L has a nondegenerate zero at p ∈ Σ if σ(p) = 0 and

σ(Σ) has transverse intersection with the zero section at p.

Such an intersection has a sign, which is positive if and only if the orien-
tations of the zero section and σ(Σ) add up to give the orientation of the
total space of L. If p is a nondegenerate zero of σ, the index of σ at p is

ω(σ, p) =
{

1, if the intersection at p is positive,
−1, if the intersection is negative.

Theorem. If L is a complex unitary line bundle with unitary connection
over a smooth compact oriented surface Σ, and σ : Σ→ L is a section with
only nondegenerate zeros, say at p1, . . . , pk, then

k∑
i=1

ω(σ, pi) =
1

2π

∫
M

FA = 〈c1(L), [Σ]〉.

Sketch of Proof: We consider the sections σs = sσ as the real number s
approaches ∞. If σi = ti ◦ σ,

σ∗sΦ =
1

2π
e−s

2(σ2
1+σ2

2)
[
Ω12 + 2s2(dσ1 + ω12σ2) ∧ (dσ2 − ω12σ1)

]
,
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an expression which goes to zero as s → ∞ except in very small neigh-
borhoods V1, . . . , Vk centered at p1, . . . , pk. We can arrange to choose the
moving frame so that ω12 vanishes at each pi. Then

lim
s→∞

∫
M

σ∗sΦ =
k∑
i=1

lim
s→∞

∫
Vi

1
π
e−(sσ1)2−(sσ2

2)d(sσ1) ∧ d(sσ2).

According to (1.18), the integral over Vi in the sum must approach ±1,
depending upon whether the intersection of σ(Σ) with the zero section at
pi is positive or negative. Thus

1
2π

∫
Σ

FA = lim
s→∞

∫
Σ

σ∗s (Φ) =
k∑
i=1

ω(σ, pi),

and our sketch of the proof is complete.

For example, suppose that L = TΣ the tangent bundle to a surface Σ
which possesses a Riemannian metric. A function f : M → R is said to be
a Morse function if the gradient ∇f of f (with respect to the Riemannian
metric) has nondegenerate zeros. It is readily checked that the index of
this gradient field is one at every local maximum and local minimum, and
minus one at every saddle point, so the sum of the indices at the critical
points p1, . . . , pk of f is

k∑
i=1

ω(∇f, pi) = (# of maxima)− (# of saddle points) + (# of minima).

According to the main theorem of Morse theory [27], the last sum on the
right is the Euler characteristic χ(Σ) of Σ. Thus the preceding theorem
specializes to yield the Gauss-Bonnet formula for a surface:

〈c1(TΣ), [Σ]〉 =
1

2π

∫
Σ

FA =
1

2π

∫
Σ

KdA = χ(Σ),

K : Σ→ R being the Gaussian curvature of the surface.
However, the theorem is far more general; when coupled with the notion

of intersection number, it also yields a geometric interpretation of the first
Chern class of a complex line bundle over a higher-dimensional smooth
manifold M . If Σ and Z are two compact submanifolds of complemen-
tary dimension in M which intersect transversely at finitely many points
p1, . . . , pk, we define the intersection number of Σ and Z at pi to be

I(Σ, Z, pi) =
{

1, if the orientations of TpiΣ⊕ TpiZ and TpiM agree,
−1, if these orientations disagree,
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and the intersection number of Σ and Z is
∑k
i=1 I(Σ, Z, pi). (The notion

of intersection number is studied in more detail in books on differential
topology, such as [20].)

Corollary. Suppose that L is a complex line bundle with Hermitian metric
over a smooth manifold M and σ : M → L is a section which has transverse
intersection with the zero section. Let

Zσ = σ−1(zero section).

If i : Σ → M is an imbedding of an oriented surface in M which has
transverse intersection with Zσ, then

〈c1(L), [Σ]〉 = Intersection number of Σ with Zσ.

Sketch of Proof: The section σ pulls back to a section i∗σ of the line bundle
i∗L over Σ. The zeros of this pullback correspond exactly to the points of
intersection of Σ with Zσ. Moreover, if p is a point in the intersection
Σ ∩ Zσ, ω(i∗σ, p) is just the intersection number of Σ with Zσ at p.

A similar interpretation is possible for the second Chern class for a quater-
nionic line bundle over a compact oriented four-manifold M . The Thom
form needed for that case is constructed in [25].

1.7 The universal bundle

An alternative approach to the construction of characteristic classes relies
on the universal bundle construction.

Suppose that

z = (z1, z2, . . . , zi, . . .), w = (w1, w2, . . . , wi, . . .)

are nonzero elements of infinite-dimensional complex Hilbert space C∞. We
say that z and w are equivalent, written z ∼ w, if

zi = λwi, for some λ ∈ C− {0}.

Let [z] = [z1, z2, . . . , zi, . . .] denote the resulting equvalence class of z, P∞C
the set of equivalence classes. We call P∞C infinite-dimensional complex
projective space.

It is not difficult to show that P∞C satisfies the definition of infinite-
dimensional smooth Hilbert manifold, as described for example in [23].
Indeed, one can contruct a countable atlas of smooth charts

{(U1, φ1), (U2, φ2), . . .}
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by setting
Ui = {[z1, z2, . . .] ∈ P∞C : zi 6= 0},

and defining φi : Ui → C∞ by

φi([z1, z2, . . .]) =
(
z1

zi
,
z2

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

)
.

It is quickly verified that

φj ◦ (φi)−1 : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is smooth, just as in the case of finite-dimensional projective space.
We can regard P∞C as the space of one-dimensional subspaces V ⊂ C∞.

There is a universal bundle over P∞C whose total space is

E∞ = {(V, (z1, z2, . . .)) ∈ P∞C× C∞ : (z1, z2, . . .) ∈ V }.

(Note that E∞ minus the zero section is just C∞−{0}.) The trivialization
ψi : π−1(Ui)→ Ui × C over Ui is defined by

ψi(V, (z1, z2, . . .)) = (V, zi),

and the transition functions corresponding to the covering {U1, U2, . . .} are

gij : Ui ∩ Uj → GL(1,C), gij =
zi
zj
.

We have just described a special case of a more general construction.
Just like infinite-dimensional projective space, the infinite Grassmannian

Gm(C∞) = {m-dimensional complex subspaces of C∞}

is an infinite-dimensional smooth manifold, and

E∞ = {(V, v) ∈ Gm(C∞)× C∞ : v ∈ V }

is the total space of a smooth vector bundle over Gm(C∞), called the uni-
versal bundle. Trivializations and transition functions for this bundle are
described in standard references, such as [29].

If M is a smooth manifold, we let [M,Gm(C∞)] denote the space of
homotopy classes of maps from M to Gm(C∞).

Universal Bundle Theorem. If M is a smooth manifold, there is a
bijection

Γ : [M,Gm(C∞)]→ VectC
m(M)
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defined by Γ(F ) = F ∗E∞.

Sketch of proof: First note that Proposition 2 from §1.3 shows that Γ is
well-defined.

To see that Γ is surjective, suppose that (E, π) is a smooth complex
vector bundle of rank m over M . We claim that if M has dimension n, it
can be covered by n + 1 open sets {U0, U1, . . . Un} whose components are
contractible. Indeed, let {ski : i ∈ Ik} denote the k-simplices in a simplicial
decomposition of M . Each k-simplex ski has a barycenter bki which is a
zero-simplex in the first barycentric subdivision. Let Uk be the union of
the open stars of all the barycenters bki in the first barycentric subdivision.
Then {U0, U1, . . . Un} is a covering of M and although Uk is not connected,
each component of Uk is contractible.

By the Corollary at the end of §1.3, we can use this covering as a
trivializing covering for the bundle E. Let

ψk : π−1(Uk)→ Uk × Cm

be the trivialization over Uk, and compose it with projection on the second
factor to obtain

ηk = π2 ◦ ψk : π−1(Uk)→ Cm.

Finally, let {ζ0, ζ1, . . . , ζn} be a partition of unity subordinate to the open
cover and define F̃ : E → C(n+1)m ⊂ C∞ by

F̃ (e) = (ζ0(π(e))η0(e), ζ1(π(e))η1(e), . . . , ζn(π(e))ηn(e)).

Since F̃ is injective on each fiber, it induces a continuous map F : M →
Gm(C∞) such that F (p) = F̃ (Ep). It is easily proven that F ∗E∞ = E, and
surjectivity is established.

Before proving injectivity we need some preliminaries. Let

C∞e = {(z1, z2, z3, z4, . . .) ∈ C∞ : z1 = 0, z3 = 0, . . .},

the set of elements in C∞ in which only the even components can be
nonzero,

C∞o = {(z1, z2, z3, z4, . . .) ∈ C∞ : z2 = 0, z4 = 0, . . .},

the set of elements in which only the odd components can be nonzero.
Define linear maps

T̃e : C∞ → C∞e , T̃o : C∞ → C∞o

by
T̃e(z1, z2, z3, z4, . . .) = (0, z1, 0, z2, . . .),
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T̃o(z1, z2, z3, z4, . . .) = (z1, 0, z2, 0, . . .).

These induce maps

Te : Gm(C∞)→ Gm(C∞e ) ⊂ Gm(C∞),

To : Gm(C∞)→ Gm(C∞o ) ⊂ Gm(C∞),

which we claim are homotopic to the identity. Indeed, we can define

H̃e : C∞ × [0, 1]→ C∞ by H̃e(z, t) = tz + (1− t)T̃e(z).

If z1, . . . , zk are linearly independent elements of C∞, then so are

H̃(z1, t), . . . , H̃(zk, t)

for every choice of t ∈ [0, 1]. Hence H̃e induces a homotopy

He : Gm(C∞)× [0, 1]→ Gm(C∞)

from Te to the identity. A similar construction gives a homotopy from To
to the identity.

To see that Γ is injective, we need to show that if F,G : M → Gm(C∞)
are two smooth maps such that F ∗E∞ = G∗E∞, then F and G are homo-
topic. To do this, it suffices to show that Te ◦F and To ◦G are homotopic.
But the maps Te ◦ F and To ◦G are covered by

T̃e ◦ F̃ : E → C∞e , T̃o ◦ G̃ : E → C∞o .

We can define

H̃ : E × [0, 1]→ C∞ by H̃(e, t) = t T̃e ◦ F̃ (e, t) + (1− t) T̃o ◦ G̃(e, t).

Then H̃|(Ep × {t}) is a vector space monomorphism for each (p, t) ∈M ×
[0, 1], and hence H̃ induces a continuous map

H : M × [0, 1]→ Gm(C∞), H(p, t) = H̃(Ep × {t}).

This map is the desired homotopy from F to G, and injectivity of Γ is
established.

We will use the preceding theorem in the case where m = 1 to classify com-
plex line bundles. We need a few facts about the homotopy and homology
groups of G1(C∞) = P∞C, facts that are worked out in books on algebraic
topology. We refer the reader to standard references, such as [36] or [40]
for the few topological results that we need.
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First of all, the universal bundle restricts to a fiber bundle with fiber
C− {0},

C− {0} → (C∞ − {0})→ P∞C,

which yields an exact homotopy sequence (as described in [36], §17)

→ πk(C∞ − {0})→ πk(P∞C)→ πk−1(C− {0})→ πk−1(C∞ − {0})→
(1.19)

Now C∞ − {0} is homotopy equivalent to an infinite-dimensional sphere,
and just as πk(Sn) = 0 for k < n, the k-th homotopy group of an infinite-
dimensional sphere must vanish for all k. Thus πk(C∞ − {0}) = 0 for all
k > 0 and hence

πk(P∞(C)) = πk−1(C− {0}) =
{Z if k = 2,

0 otherwise.

In other words, P∞(C) is a K(Z, 2), an Eilenberg-MacLane space (as de-
scribed on pages 244-250 of [40]).

On the other hand, this Eilenberg-MacLane space has the remarkable
property ([40], page 250) that if M is any smooth manifold,

[M,K(Z, 2)] = {homotopy classes of maps M → K(Z, 2)} ∼= H2(M ; Z).

Combining this with the isomorphism of the Universal Bundle Theorem
yields a bijection

VectC
1 (M) ∼= H2(M ; Z). (1.20)

This proves the Classification Theorem for Complex Line Bundles stated
in §1.2.

The mapping that realizes the isomorphism (1.20) is (up to sign) just
an integral version of the first Chern class. To see this, we could use the
theory of differential forms on infinite-dimensional smooth manifolds, to-
gether with the corresponding version of de Rham cohomology. Using this
theory we could define a connection on the line bundle E∞ and the first
Chern class c1(E∞) ∈ H2(P∞(C); R). Naturality would then imply that

c1(E) = F ∗(c1(E∞)), where Γ(F ) = E.

Alternatively, we can avoid working with infinite-dimensional manifolds
by using N -dimensional projective space PN (C) as a finite-dimensional
approximation to P∞(C). The argument for the Universal Bundle Theorem
shows that for line bundles over M it suffices to take N = dimM + 1.
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Let’s adopt the second procedure and put two homotopy sequences like
(1.19) together to obtain

· · · → π2(C2 − {0}) → π2(P 1(C)) → π1(C− {0}) → · · ·

↓ ↓ ↓

· · · → π2(CN+1 − {0}) → π2(PN (C)) → π1(C− {0}) → · · · .

Since πi(C2 − {0}) ∼= πi(CN+1 − {0}) ∼= 0 for i = 1 or 2, application of the
five-lemma shows that the top horizontal arrow in the diagram

π2(P 1(C)) → π2(PN (C))

↓ ↓

H2(P 1(C); Z) → H2(PN (C); Z)

is an isomorphism. The vertical arrows are isomorphisms by the Hurewicz
isomorphism theorem ([36], page 79), so the bottom horizontal arrow is
also an isomorphism. The universal coefficient theorem then shows that
the maps

H2(P 1(C); Z)→ H2(PN (C); Z) and H2(P 1(C); R)→ H2(PN (C); R)
(1.21)

are both isomorphisms.
Let E∞ denote the universal bundle over PN (C), a line bundle with

total space

E∞ = {(V, (z1, . . . zN+1)) ∈ PNC× CN : (z1, . . . zN+1) ∈ V }. (1.22)

We claim that c1(E∞) is the image under the coefficient homomorphism

H2(PN (C); Z)→ H2(PN (C); R)

of a generator of H2(PN (C); Z). Because of the isomorphisms (1.21) it
suffices to check this for the universal bundle H−1 over P 1(C) = S2. But
the Gauss-Bonnet theorem implies that

c1(H2)[S2] = c1(TS2)[S2] =
∫
S2

(1/2π)KdA = 2.

Recall that by Proposition 4 from §1.5, if L1 and L2 are line bundles,

c1(L1 ⊗ L2) = c1(L1) + c2(L2).
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Hence c1(H)[S2] = 1 and c1(H−1)[S2] = −1.
Using naturality, we see that under the isomorphism (1.20),

F ∗E∞ 7→ F ∈ [M,P∞(C)] 7→ F ∗(generator of H2(P∞(C); Z)).

This element of H2(M ; Z) maps to −c1(E) under the coefficient homomor-
phism. In particular, the first Chern class of a line bundle E over any
smooth manifold M is “quantized”; c1(E) integrates to an integer over any
two-dimensional cycle in M .

There is a real version of the Universal Bundle Theorem which is proven
by exactly the same method: If M is a smooth manifold, there is a bijection

Γ : [M,Gm(R∞)]→ VectR
m(M)

defined by Γ(F ) = F ∗E∞, where E∞ is the universal bundle defined over
the real Grassmannian Gm(R∞).

Just as in the case of the first Chern class, higher degree Chern classes
and Pontrjagin classes can be defined by pulling back Chern or Pontrjagin
classes of universal bundles over Gm(C∞) or Gm(R∞). Using cohomology
with Z2-coefficients, one can also define Stiefel-Whitney classes. Details of
these constructions can be found in [29].

There is also a version of the Universal Bundle Theorem for quaternionic
bundles which can be used to prove the Classification Theorem for Quater-
nionic Line Bundles from §1.2. If P∞(H) denotes infinite-dimensional
quaternionic projective space, then just as in the complex case there is
a bijection

Γ : [M,P∞(H)]→ VectH
1 (M).

Unfortunately, unlike the complex case, this quaternionic projective space
is not an Eilenberg-MacLane space. Nevertheless, a homotopy sequence
argument shows that it does satisfy the weaker condition

πk(P∞(H)) = πk−1(H− {0}) =
{

Z if k = 4,
0 if 0 ≤ k ≤ 3.

This is sufficient to show that

{homotopy classes of maps M → P∞(H)} ∼= H4(M ; Z),

when M is a manifold of dimension ≤ 4, thereby establishing the Classifi-
cation Theorem for Quaternionic Line Bundles.
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1.8 Classification of connections

Now that we have classified the complex line bundles over a smooth mani-
fold M , we turn to the problem of classifying the unitary connections in a
given complex line bundle L over M .

At first glance, the classification might appear to be trivial. Indeed, we
claim that if dA0 is a unitary connection on L, chosen as base point, then
any unitary connection on L can be written uniquely in the form

dA0 − ia, where a ∈ Ω1(M). (1.23)

To establish the claim, we work first in a local trivialization, in terms
of which the connection dA0 takes the form

(dA0σ)α = dσα + ωασα,

where ωα is a purely imaginary one-form on Uα. The local representative
of any other unitary connection in L is

(dAσ)α = dσα + ωασα − iaασα,

where aα is a real-valued one-form on Uα. Using the formula (1.8) one
quickly verifies that

aα = aβ on the overlap Uα ∩ Uβ ,

Thus the aα’s fit together into a real-valued one form a on M and (1.23)
holds.

In other words, the space A of unitary connections on L is an “affine
space,” isomorphic to the space of one-forms onM . However, we really want
to classify connections up to isomorphism, also known as gauge equivalence.

In the case of U(1)-bundles, a gauge transformation of L is just a smooth
map g : M → S1, where S1 is regarded as the complex numbers of length
one. A gauge transformation induces a vector bundle isomorphism g :
L → L, g acting by scalar multiplication. Conversely, any vector bundle
isomorphism of L over M which preserves the Hermitian metric can be
regarded as a gauge transformation.

Let G denote the a space of gauge transformation, a group under mul-
tiplication in S1. If p0 is some choice of base point in M , let

G0 = {g ∈ G : g(p0) = 1}.

Elements of G0 are called based gauge transformations. We have a direct
product of groups,

G = G0 × S1,
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where S1 is the group of constant gauge transformations.
Gauge transformations act on connections by conjugation,

(g, dA) 7→ g ◦ dA ◦ g−1 = da + gd(g−1).

Constant gauge transformations act trivially on the space A, while the
group G0 acts freely. Thus the space of equivalence classes of connections
on L is

B = A/G = A/G0.

It is easy to describe the topology of these spaces. (To be precise,
we should complete the spaces A and G with respect to suitable norms,
such as Ck norms or the Sobolev norms that will be described in more
detail in §3.2.) In the case where M is simply connected any based gauge
transformation

g : M → S1, g(p0) = 1,

has a global logarithm; it can be written in the form

g = eiu, where u : M → R, u(p0) = 0.

Since the space of maps from M to R is contractible, so is G0, and hence
G is homotopy equivalent to S1. In this case, since A and G0 are both
contractible, so is the space B of connections.

Suppose that M is not simply connected. Since S1 is a K(Z, 1), the
theorem on Eilenberg-MacLane spaces cited earlier implies that

[M,S1] = { homotopy classes of maps M → S1 } ∼= H1(M ; Z).

Thus the components of G0 are in one-to-one correspondence with Zb1 , each
component being contractible by an argument similar to that given for the
simply connected case. The exact homotopy sequence of the fibration

G0 → A→ B

then shows that each connected component of B is a K(G, 1), where G =
H1(M ; Z). For example, if H1(M ; Z) has no torsion (which always happens
for compact oriented manifolds by Poincaré duality), it is a free abelian
group on b1 generators, where b1 is the first Betti number of M , and each
component of B is homotopy equivalent to a torus of rank b1.

Actually, there is also a far more concrete description of B, which comes
from asking the question: If F is an ordinary real-valued two-form on M ,
when is Ω = −iF the curvature of a unitary connection in some line bundle
over M?
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One necessary condition is that F satisfy the Bianchi identity

dF = 0.

From the previous section, we also know that the de Rham cohomology
class of (1/2π)F must lie in the image of the coefficient homomorphism

H2(M ; Z)→ H2(M ; R).

We claim that these two conditions are sufficient.
Assume first that M is simply connected. Let L be a complex line

bundle over M and let C denote the space of closed two-forms on M which
represent the first Chern class of L. Define

Γ : B → C by Γ([A]) =
1

2π
FA,

where −iFA is the curvature of A. We claim that Γ is an isomorphism.
To see that Γ is surjective, choose a unitary connection A0 on L to serve

as base point. If F is any element of C, we can write

F − FA0 = da,

where a is a real-valued one-form on M . Then dA = dA0 − ia is a unitary
connection on L which has curvature −iF .

To see that Γ is injective, note that if

dA0 − ia1 and dA0 − ia2

are two unitary connections on L which have the same curvature, then
da1 = da2. Since H1(M ; R) = 0 by hypothesis,

a1 − a2 = dφ, for some φ : M → R such that φ(p0) = 0.

Then eiφ : M → S1 is a gauge transformation such that

dA0 − ia1 = eiφ ◦ (dA0 − ia2) ◦ (eiφ)−1,

and hence the two connections are gauge equivalent.
It is possible to establish a similar result when M is not simply con-

nected. Suppose, for simplicity, that γ1, . . . , γb1 are oriented smooth simple
closed curves representing generators for the free part of H1(M ; Z), all pass-
ing through a given point p0 ∈ M . Given a unitary connection dA ∈ A,
parallel translation around γi defines an isomorphism

τi : Lp0 → Lp0 .
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Since the connection is assumed to be unitary, the isomorphism τi is simply
a rotation through some angle

τi = eiθi(A),

which is invariant under gauge transformations. This isomorphism τi is
called the holonomy around γi.

Holonomy and curvature completely determine a unitary connection in
a complex line bundle:

Theorem on Classification of Connections. IfH1(M ; Z) is free abelian
of rank b1, the map

Γ : B → C ×

b1︷ ︸︸ ︷
S1 × · · · × S1,

defined by

Γ([A]) =
(

1
2π
FA, e

iθ1(A), . . . , eiθb1 (A)

)
,

is a bijection.

To see that Γ is injective, suppose that

dA0 − ia1 and dA0 − ia2

are two unitary connections on L which have the same curvature and holon-
omy. Let M̃ be the universal cover of M , ã1 and ã2 the pullbacks of a1 and
a2 to the universal cover. Then dã1 = dã2 and hence

ã1 − ã2 = dφ̃, for some φ̃ : M̃ → R.

Using the fact that the two connections have the same holonomy, one can
check that the map eiφ̃ : M̃ → S1 descends to a map eiφ : M → S1 such
that

dA0 − ia1 = eiφ ◦ (dA0 − ia2) ◦ (eiφ)−1,

and hence the two connections are gauge equivalent.
To see that Γ is surjective, we first note that if (1/2π)FA represents

c1(L), then FA − FA0 is exact, so there is a smooth one-form a such that
the connection dA0 − ia has curvature FA. Moreover, we can add a closed
one-form to a with arbitrary periods over γ1, . . . , γb1 without changing the
curvature. Thus we can arrange that the connection dA0 − ia not only has
curvature FA, but also has any prescribed holonomy around each curve
γ1, . . . , γb1 .
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Example. Suppose that Σ is a Riemann surface of genus g and E is
the trivial complex line bundle over Σ. Then H1(Σ, Z) ∼= Z2g, and this
Classification Theorem implies that the flat connections in E are in one-
to-one correspondence with a torus S1 × · · · × S1 with 2g factors. In the
theory of Riemann surfaces, this torus is called the Picard variety of Σ.

The Classification Theorem has an interesting application to electricity and
magnetism. Recall that in general relativity (as explained for example in
[30]), space-time is a four-dimensional manifold with a pseudo-Riemannian
metric of Lorentz signature. It can be proven that any point p in such a
manifold lies in a normal coordinate system (x0, x1, x2, x3) = (t, x, y, z) in
terms of which the metric is expressed as

ds2 = −dt2 + dx2 + dy2 + dz2 +
3∑

i,j=0

hijdx
idxj ,

where hij(p) = 0 and dhij(p) = 0.
What is the right form for Maxwell’s equations (the equations of elec-

tricity and magnetism) on such a manifold? It turns out that Maxwell’s
equations can be expressed quite nicely in terms of differential forms, in a
way that carries over to curved space-time.

In the case of flat space-time with coordinates (t, x, y, z), we set

F = −Exdt ∧ dx− Eydt ∧ dy − Ezdt ∧ dz

+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy,

where
E = (Ex, Ey, Ez) and B = (Bx, By, Bz)

are the electric and magnetic fields. We agree to call the two-form F the
Faraday tensor . Then two of Maxwell’s equations,

div(B) = 0, curl(E) +
∂B

∂t
= 0,

can be expressed in the simple equation

dF = 0.

The other two Maxwell equations utilize the “Hodge star,” a linear operator
? : Λ2T ∗M → Λ2T ∗M , which interchanges the role of E and B:

?F = Bxdt ∧ dx+Bydt ∧ dy +Bzdt ∧ dz
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+Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy.

The remaining Maxwell equations are (with appropriate choice of units)

div(E) = ρ, curl(B)− ∂E

∂t
= J,

where ρ is the charge density and J = (Jx, Jy, Jz) is the current density.
This pair of equations can be reexpressed as

d ? F = φ

where

φ = ρdx ∧ dy ∧ dz − Jxdt ∧ dy ∧ dz − Jydt ∧ dz ∧ dx− Jzdt ∧ dx ∧ dy.

The exterior derivative operator and the Hodge star can be defined on
an arbitrary pseudo-Riemannian manifold of Lorentz signature. Thus as
described in more detail in [30], Chapter 4, Maxwell’s equations can be
formulated in terms of the Faraday tensor on the curved space-times of
general relativity as

dF = 0, d ? F = φ.

We can now ask the question: When is F = FA, where −iFA is the
curvature of a unitary connection dA on some line bundle L over M with
Hermitian metric? Note that since F is closed, it represents a cohomology
class [F ] ∈ H2(M ; R). The preceding theorem states that −iF is the cur-
vature of a unitary connection precisely when this cohomology class lies in
the image of coefficient homomorphism

H2(M ; Z)→ H2(M ; R).

This fact can be interpreted as requiring quantization of magnetic charge.
What does one gain by regarding the electromagnetic field as a uni-

tary connection on a line bundle instead of as merely a two-form? First,
a connection gives a family of one-forms, the “electromagnetic gauges,”
which are useful for solving Maxwell’s equations in terms of a locally de-
fined gauge. Second, the connection allows for holonomy around closed
curves, which might be detected experimentally (the Bohm-Aharonov ef-
fect). Third, regarding the electromagnetic field as a connection suggests
fruitful generalizations to other structure groups which may help explain
other basic forces (such as weak and strong interactions). Indeed, this is the
basis for the standard model for interactions between elementary particles,
which isdescribed in [34], for example.
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1.9 Hodge theory

The Hodge star, which is used to formulate Maxwell’s equations in the
case of metrics of Lorentz signature, also plays an important role in four-
manifolds with positive-definite Riemannian metrics.

Let p be a point in an oriented four-dimensional Riemannian manifold
M and let V = TpM . We can use the Riemannian metric to identify V
with the cotangent space T ∗pM . If (e1, e2, e3, e4) is a positively oriented
orthonormal basis for V , then

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4

forms an orthonormal basis for Λ2V . We define the Hodge star

?Λ2V → Λ2V

by
?(ei ∧ ej) = er ∧ es,

whenever (i, j, r, s) is an even permutation of (1, 2, 3, 4).
More generally, we define the Hodge star

?ΛpV → Λ4−pV

by
?1 = e1 ∧ e2 ∧ e3 ∧ e4, ?ei = er ∧ es ∧ et,

where (i, r, s, t) is an even permutation of (1, 2, 3, 4), and so forth. The
Hodge star is invariant under the action of the orthogonal group and satis-
fies the identity ?2 = (−1)p on p-forms.

If M is compact, we can use the Hodge star to define a bilinear form

( , ) : Ωp(M)× Ωp(M)→ R by (ω, θ) =
∫
M

ω ∧ ?θ.

It is easily verified that this bilinear form is symmetric and positive-definite,
and hence it is an inner product on Ωp(M). We can use the Hodge star to
define the codifferential

δ = − ? d? : Ωp(M)→ Ωp−1(M),

which is the formal adjoint of the exterior derivative, as one verifies by the
calculation,

(dω, θ) =
∫
M

dω ∧ ?θ =
∫
M

d(ω ∧ ?θ)− (−1)p
∫
M

ω ∧ d(?θ)



42 CHAPTER 1. PRELIMINARIES

= −
∫
M

ω ∧ (? ? d ? θ) =
∫
M

ω ∧ ?δθ = (ω, δθ),

where p = deg ω. Finally, we can define the Hodge Laplacian

∆ = dδ + δd : Ωp(M)→ Ωp(M).

In the case of Ω0(M), the Hodge Laplacian reduces to the standard Laplace
operator on functions.

Using the fact that d and δ are formal adjoints of each other, we find
that on a compact manifold M without boundary,

(∆ω, ω) = ((dδ + δd)ω, ω) = (δω, δω) + (dω, dω) ≥ 0.

On such a manifold,

∆ω = 0 ⇔ (∆ω, ω) = 0 ⇔ dω = 0 and δω = 0.

These last two equations can be thought of as analogs of Maxwell’s equa-
tions in the case where the charge density and current density vanish.

Definition. A differential p-form ω on a smooth oriented Riemannian man-
ifold M is harmonic if ∆ω = 0. Let Hp(M) denote the space of harmonic
p-forms on M .

Hodge’s Theorem. Every de Rham cohomology class on a compact ori-
ented Riemannian manifold M possesses a unique harmonic representative.
Thus

Hp(M ; R) ∼= Hp(M).

Moreover, Hp(M) is finite-dimensional and Ωp(M) possesses direct sum
decompositions

Ωp(M) = Hp(M)⊕∆(Ωp(M)) = Hp(M)⊕ d(Ωp−1(M))⊕ δ(Ωp+1(M)),

which are orthogonal with respect to the inner product ( , ).

For the proof, we refer the reader to Chapter 6 of [39].

One nice application of Hodge’s Theorem is to existence of solutions to
Poisson’s equation

∆f = g.

If M is connected, then the space H0(M) of harmonic zero-forms is just
the space of constant functions. Thus Hodge’s Theorem implies that if the
smooth function g : M → R is orthogonal to the constant functions with
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repect to ( , ), then g = ∆f for some smooth function f . Of course, g is
orthogonal to the constant functions if and only if its average value is zero,∫

M

g ? 1 = 0.

A second application of Hodge’s Theorem is to topology. Since ? takes
harmonic forms to harmonic forms, we see that if M is a compact oriented
Riemannian manifold without boundary,

Hp(M) ∼= Hn−p(M),

and hence one has an isomorphism of de Rham cohomology,

Hp(M ; R) ∼= Hn−p(M ; R).

This isomorphism is known as Poincaré duality for cohomology with real
coefficients.

Algebraic topology texts prove a more refined version of Poincarë duality
for integer coefficients: If M is a compact oriented n-manifold,

Hp(M ; Z) ∼= Hn−p(M ; Z).

Together with the universal coefficients theorem, this puts strong restric-
tions on the homology of M . If

Hp(M ; Z) = Fp ⊕ Tp,

where Fp is free abelian and Tp is torsion, then

Fp ∼= Fn−p and Tp ∼= Tn−p−1.

In particular, if M is a compact oriented four-manifold all the torsion in the
homology of M is determined by T1

∼= T2 and H3(M ; Z) is automatically
free abelian.

If bp denotes the p-th Betti number ofM , defined by bp = dimHp(M ; R),
then Poincaré duality implies that bp = bn−p. The Betti numbers of a
compact oriented four-manifold are determined by b0 (which is 1 if M is
connected), b1 (which is 0 if M is simply connected) and b2. The second
Betti number b2 possesses a further decomposition, which we now describe.

Since ?2 = 1 on two-forms, we can divide Λ2V into a direct sum,

Λ2V = Λ2
+V ⊕ Λ2

−V,

where

Λ2
+V = {ω ∈ Λ2V : ?ω = ω}, Λ2

−V = {ω ∈ Λ2V : ?ω = −ω}.
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Thus Λ2
+V is generated by

e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3,

while Λ2
−V is generated by

e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3.

Sections of the bundles whose fibers are Λ2
+V and Λ2

−V are called self-dual
and anti-self-dual two-forms respectively. If ω is any smooth two-form on
M , it can be divided into two orthogonal components,

ω+ = P+(ω) =
1
2

(ω + ?ω) ∈ Ω2
+(M) = { self-dual two-forms on M },

ω− = P−(ω) =
1
2

(ω − ?ω) ∈ Ω2
−(M) = { anti-self-dual two-forms on M }.

Since ? interchanges the kernels of the operators d and δ, the self-dual
and anti-self-dual components of a harmonic two-form are again harmonic.
Thus the space of harmonic two-forms on M divides into a direct sum
decomposition

H2(M) ∼= H2
+(M)⊕H2

−(M),

the two summands consisting of self-dual and anti-self-dual harmonic two-
forms, respectively. Let

b+ = dimH2
+(M), b− = dimH2

−(M).

Then b+ + b− = b2, the second Betti number of M , while

τ(M) = b+ − b−

is called the signature of M .
On a compact oriented four-manifold, the operator d+ = P+ ◦ d :

Ω1(M)→ Ω2
+(M) fits into a fundamental elliptic complex

0→ Ω0(M)→ Ω1(M)→ Ω2
+(M)→ 0. (1.24)

Hodge’s Theorem allows us to calculate the cohomology groups of this com-
plex. Indeed, if ω ∈ Ω2

+(M) is ( , )-orthogonal to the image of d+, then
δω = 0. Self-duality then implies that dω = 0, so ω is harmonic. On
the other hand, suppose that ω ∈ Ω1(M) lies in the kernel of d+ and is
perpendicular to the image of d. Then δω = 0 and d ? ω = 0, and hence

(d+ δ)(ω + ?ω) = dω + δ ? ω = dω + ?dω = 2d+ω = 0.
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Thus ω ∈ H1(M), and the cohomology groups of the complex (1.24) are
just

H0(M) ∼= R, H1(M), H2
+(M).

This leads to an immediate proof of the following

Proposition. Let L be a complex line bundle over the compact oriented
Riemannian manifold M . An element φ ∈ Ω2

+(M) will be the self-dual part
of the curvature of some unitary connection on L if and only if φ lies in an
affine subspace Π of Ω2

+(M) of codimension b+.

Indeed, we can choose a base connection dA0 on L and let Π be the image
of the map

a 7→ F+
A0

+ (da)+.

Then Π is the required affine space of codimension b+, its orthogonal com-
plement being the space H2

+(M) of self-dual harmonic two forms.

From Hodge’s Theorem and the classification theorem for connections pre-
sented in the previous section, we see that every complex line bundle with
Hermitian inner product over a compact oriented simply connected Rie-
mannian four-manifold M has a canonical connection, one with harmonic
curvature.

This connection has an important variational characterization. We de-
fine the Yang-Mills functional

Y : A → R by Y(dA) =
∫
M

FA ∧ ?FA.

A critical point of this functional is a Yang-Mills connection or an abelian
instanton (said to be abelian because the Lie group U(1) is abelian). Since

Y(dA − ita) =
∫
M

(FA + tda) ∧ ?(FA + tda)

= Y(dA)+2t
∫
M

da∧?FA+ t2(· · ·) = Y(dA)−2t
∫
M

a∧ (d?FA)+ t2(· · ·),

we see that
d

dt
Y(dA − ita)

∣∣∣∣
t=0

= −2
∫
M

a ∧ (d ? FA),

so the critical points of the Yang-Mills functional are solutions to the Yang-
Mills equation

d(?FA) = 0.

Since dFA = 0 by the Bianchi identity, we see that aYang-Mills connection
is just a connection whose curvature form is harmonic.
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The Yang-Mills equation can be generalized to quaternionic line bun-
dles, thus leading to a nonabelian gauge theory, which is the foundation
for Donaldson’s original approach to the geometry and topology of four-
manifolds discussed in [12].



Chapter 2

Spin geometry on
four-manifolds

2.1 Euclidean geometry and the spin groups

The fact that R2 possesses a complex multiplication making it into a field
has important applications, leading for example to the theory of Riemann
surfaces. Similarly, the quaternion multiplication on R4 has important
applications to the geometry of four-manifolds. In four dimensions, quater-
nions yield a simplification of the theory of spinors (which is presented in
full generality in the highly recommended references[24] and [4]).

We will consider Euclidean four-space to be the space V of quaternions,
complex 2× 2 matrices of the form

Q =
(
t+ iz −x+ iy
x+ iy t− iz

)
,

where i =
√
−1. Recall that as a real vector space, V is generated by the

four matrices

1 =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
, j =

(
0 i
i 0

)
, k =

(
i 0
0 −i

)
,

the matrix product restricting to minus the cross product on the subspace
spanned by i, j and k. The determinant of a quaternion Q is given by the
formula

detQ = t2 + z2 + x2 + y2 = 〈Q,Q〉,
where 〈 , 〉 denotes the Euclidean dot product. Moreover,

tQ̄Q = (t2 + x2 + y2 + z2)I,

47
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so the unit sphere in Euclidean four-space can be identified with the special
unitary group

SU(2) = {Q ∈ V : 〈Q,Q〉 = 1},

while Euclidean four-space itself can be regarded as the set of real multiples
of SU(2) matrices. The sphere of unit quaternions SU(2) forms a Lie group
under quaternion multiplication, whose Lie algebra—the tangent space to
the unit sphere at the identity—is the linear space of “purely imaginary
quaternions” spanned by i, j and k, or equivalently, the linear space oftrace-
free 2× 2 skew-Hermitian matrices.

The four-dimensional spin group is simply the direct product of two
copies of the special unitary group,

Spin(4) = SU+(2)× SU−(2);

a typical element is (A+, A−), where A± ∈ SU±(2). We have a representa-
tion

ρ : Spin(4)→ GL(V ) = { isomorphisms from V to itself }

defined by
ρ(A+, A−)(Q) = A−Q(A+)−1.

Since A+ and A− have determinant one,

〈A−Q(A+)−1, A−Q(A+)−1〉 = det(A−Q(A+)−1) = detQ = 〈Q,Q〉,

and hence the representation preserves the Euclidean inner product. In
other words,

ρ : Spin(4)→ SO(4) ⊂ GL(V ).

To get an idea of how this action works, consider the element

A =
(
eiθ 0
0 e−iθ

)
∈ SU(2).

Then

ρ(A, I)
(
t+ iz ]
x+ iy ]

)
=
(
t+ iz ]
x+ iy ]

)(
eiθ 0
0 e−iθ

)

=
(
eiθ(t+ iz) ]
eiθ(x+ iy) ]

)
,

a rotation through the angle θ in the same direction in the (t, z)- and (x, y)-
planes. On the other hand, one checks that ρ(I, A) rotates the (t, z)- and
(x, y)-planes in opposite directions.
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More generally, any element A ∈ SU(2) is conjugate to an element of
the form (

eiθ 0
0 e−iθ

)
,

and hence there is a positively oriented orthonormal basis (e1, e2, e3, e4) of
V such that ρ(A, I) rotates the planes e1 ∧ e2 and e3 ∧ e4 through an angle
θ in the same direction, while ρ(I, A) rotates e1∧ e2 and e3∧ e4 in opposite
directions.

Since SO(4) is generated by rotations constructed as above, any element
of SO(4) lies in the image of ρ and ρ : Spin(4)→ SO(4) is surjective. The
image and range are both compact Lie groups of the same dimension and
ρ induces an isomorphism on the level of Lie algebras, so the kernel K of
ρ is a finite subgroup and ρ is a smooth covering. Topologically, Spin(4) is
a product S3 × S3, hence simply connected, while π1(SO(4), I) = Z2. The
homotopy exact sequence

π1(Spin(4), I)→ π1(SO(4), I)→ K → 0

shows that K is isomorphic to Z2 and one easily checks that

K = {(I, I), (−I,−I)}.

We can regard Spin(4) as the space of (4× 4)-matrices(
A+ 0
0 A−

)
, where A± ∈ SU±(2).

This Lie group of dimension six is contained in an important Lie group of
dimension seven,

Spin(4)c =
{(

λA+ 0
0 λA−

)
: A+ ∈ SU+(2), A− ∈ SU−(2), λ ∈ U(1)

}
.

Moreover, the representation ρ described above extends to a representation

ρc : Spin(4)c → GL(V ),

given by the formula

ρc
(
λA+ 0

0 λA−

)
(Q) = (λA−)Q(λA+)−1.

We also have a group homomorphism π : Spin(4)c → U(1) defined by

π

(
λA+ 0

0 λA−

)
= det(λA+) = det(λA−) = λ2.
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The spin groups Spin(4) and Spin(4)c fit into exact sequences

0→ Z2 → Spin(4)→ SO(4)→ 0, (2.1)

0→ Z2 → Spin(4)c → SO(4)× U(1)→ 0.

The key advantage to using the spin groups is that these groups have
representations which are more basic that the representations we have de-
scribed on Euclidean space V itself. Indeed, each factor has its own basic
unitary representation. Let W+ and W− be two copies of C2 with its stan-
dard hermitian metric 〈 , 〉, one each for SU+(2) and SU−(2). Then Spin(4)
acts on W+ and W− by

ρ+

(
A+ 0
0 A−

)
(w+) = A+w+,

ρ−

(
A+ 0
0 A−

)
(w−) = A−w−.

Similarly, Spin(4)c acts on W+ and W− by

ρ+

(
λA+ 0

0 λA−

)
(w+) = λA+w+,

ρ−

(
λA+ 0

0 λA−

)
(w−) = λA−w−.

These actions preserve the standard Hermitian metrics on W+ and W−,
and we have an isomorphism of representation spaces

V ⊗ C ∼= Hom(W+,W−).

Since unit-length elements of V are represented by unitary matrices, they
act as isometries from W+ to W−.

Remark: In physics one is often concerned with four-dimensional space-
times of Lorentz signature, and the relevant group is SL(2,C) instead of
Spin(4). In this case, a point of flat space-time can be thought of as a 2×2
Hermitian matrix

X =
(
t+ z x− iy
x+ iy t− z

)
= tI + xσx + yσy + zσz,

where σx, σy and σz are the so-called Pauli matrices. Note that

detX = t2 − x2 − y2 − z2 = −〈X,X〉,

where 〈 , 〉 is the usual Lorentz metric of special relativity. An element
A ∈ SL(2,C) acts on Hermitian matrices by X 7→ AXtĀ, and since
det(AXtĀ) = detX, SL(2,C) covers the component of the identity in
the Lorentz group.
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2.2 What is a spin structure?

Suppose that (M, 〈 , 〉) is an oriented Riemannian manifold of dimension
four. The Riemannian metric enables us to reduce the structure group of
TM from GL(4,R) to SO(4). Thus we can choose a trivializing open cover
{Uα : α ∈ A} for TM so that the corresponding transition functions take
their values in SO(4):

gαβ : Uα ∩ Uβ → SO(4) ⊂ GL(4,R).

Definition 1. A spin structure on (M, 〈, 〉) is given by an open covering
{Uα : α ∈ A} of M and a collection of transition functions

g̃αβ : Uα ∩ Uβ → Spin(4)

such that ρ ◦ g̃αβ = gαβ and the cocycle condition

g̃αβ g̃βγ = g̃αγ on Uα ∩ Uβ ∩ Uγ

is satisfied.

Manifolds which admit spin structures are called spin manifolds. Topolo-
gists have found a nice necessary and sufficient condition for existence of
a spin structure: M admits a spin structure if and only if w2(TM) = 0,
where w2(TM) represents the second Stiefel-Whitney class of the tangent
bundle, an element of H2(M ; Z2).

Indeed, the second Stiefel-Whitney class can be defined in terms of Čech
cohomology as follows. We say that an open covering {Uα : α ∈ A} of M
is a good cover (following [7], page 42) if it satisfies the condition,

Uα1 ∩ Uα2 ∩ · · · ∩ Uαk is either empty or diffeomorphic to R4,

for every choice of (α1, . . . , αk). Suppose that we choose a good cover as
trivializing cover for TM . Since Uα ∩ Uβ is contractible, each

gαβ : Uα ∩ Uβ → SO(4) can be lifted to g̃αβ : Uα ∩ Uβ → Spin(4).

The problem is that the cocycle condition may not hold. However, by
exactness of (2.1),

ηαβγ = g̃αβ g̃βγ g̃γα : Uα ∩ Uβ ∩ Uγ −→ {±1} = Z2.

It is readily verified that

ηαβγ = ηβγα = ηβαγ = η−1
βαγ ,
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the last equality holding because elements of Z2 are their own inverses, and

ηβγδη
−1
αγδηαβδη

−1
αβγ = 1.

Thus in the language of Čech cohomology,

{ηαβγ : (α, β, γ) ∈ A×A×A}

is a Čech cocycle which, since the cover is good, represents a cohomology
class in H2(M ; Z2). That cohomology class is called the second Stiefel-
Whitney class of the tangent bundle and is denoted by w2(TM).

If M has a spin structure, we can choose the g̃αβ ’s to satisfy the cocycle
condition, so the second Stiefel-Whitney class must be zero. Conversely,
if the second Stiefel-Whitney class is zero, the Čech theory implies that
{ηαβγ} is a coboundary, which means that there exist constant maps

ηαβ : Uα ∩ Uβ −→ Z2 such that ηαβηβγηγα = ηαβγ .

Then {ηαβ g̃αβ} are transition functions defining a spin structure on M .
Recall that once we have transition functions satisfying the cocycle con-

dition, we get a corresponding vector bundle. Thus if we have a spin struc-
ture on (M, 〈 , 〉) defined by

g̃αβ : Uα ∩ Uβ → Spin(4)

the transition functions

ρ+ ◦ g̃αβ : Uα ∩ Uβ → SU+(2), ρ− ◦ g̃αβ : Uα ∩ Uβ → SU−(2)

determine complex vector bundles of rank two over M , which we denote by
W+ and W−. Moreover,

TM ⊗ C ∼= Hom(W+,W−),

so a spin structure allows us to represent the complexified tangent bundle
of M in terms of two more basic complex vector bundles. These bundles
W+ and W− can be regarded as quaternionic line bundles over M . More
generally, if L is a complex line bundle over M , we can also write

TM ⊗ C ∼= Hom(W+ ⊗ L,W− ⊗ L),

because the transition functions for L cancel out.

Definition 2. A spinc structure on (M, 〈, 〉) is given by an open covering
{Uα : α ∈ A} and a collection of transition functions

g̃αβ : Uα ∩ Uβ → Spin(4)c
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such that ρ ◦ g̃αβ = gαβ and the cocycle condition is satisfied.

If (M, 〈, 〉) has a spin structure defined by the transition functions

g̃αβ : Uα ∩ Uβ → Spin(4)

and L is a complex line bundle over M with Hermitian metric and transition
functions

hαβ : Uα ∩ Uβ → U(1),

we can define a spinc structure on M by taking the transition functions to
be

hαβ g̃αβ : Uα ∩ Uβ → Spin(4)c.

In fact, on a simply connected spin manifold, isomorphism classes of spinc

structures on a given Riemannian manifold are in one-to-one correspon-
dence with complex line bundles L over M . However, spinc structures also
exist on manifolds which do not have genuine spin structures:

Theorem. Every compact oriented four-manifold possesses a spinc struc-
ture.

Sketch of proof: The key fact we need is that the second Stiefel-Whitney
class is the Z2-reduction of an integral cohomology class. For simply con-
nected four-manifolds (the case we need for subsequent applications), this
fact follows from the long exact sequence corresponding to the sequence of
coefficient groups

1 −→ Z −→ Z −→ Z2 −→ 1

and the fact that H3(M ; Z) = 0 by Poincaré duality. (For the general case,
we refer the reader to Appendix D of [24].)

If {Uα : α ∈ A} is a good trivializing cover for TM , we now know that
there is a Čech cocycle ηαβγ : Uα ∩ Uβ ∩ Uγ → {±1} representing w2(TM)
which lifts to an integral cocycle

η̃αβγ : Uα ∩ Uβ ∩ Uγ −→ Z so that exp(πiη̃αβγ) = ηαβγ .

Here η̃αβγ changes sign under an odd permutation of the indices and the
cocycle condition is

η̃βγδ − η̃αγδ + η̃αβδ − η̃αβγ = 0. (2.2)

Let {ψα : α ∈ A} be a partition of unity subordinate to {Uα : α ∈ A} and
define

fβγ : Uβ ∩ Uγ −→ R by fβγ =
∑
α

ψαη̃αβγ .
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Then a straightforward calculation using (2.2) shows that

fαβ + fβγ + fγα =
∑
δ

ψδ η̃δαβ +
∑
δ

ψδ η̃δβγ +
∑
δ

ψδ η̃δγα

=
∑
δ

ψδ η̃αβγ = η̃αβγ .

Thus if we set

hαβ = exp(πifαβ) : Uα ∩ Uβ −→ U(1),

we find that the hαβ ’s fail to satisfy the cocycle condition for a line bundle
with exactly the same discrepancy as the g̃αβ ’s:

hαβhβγhγα = ηαβγ

It follows that the maps

hαβ g̃αβ : Uα ∩ Uβ → Spin(4)c

do satisfy the cocycle condition and therefore define a spinc structure on
M , finishing our sketch of the proof.

Given a spinc structure defined by the transition functions

g̃αβ : Uα ∩ Uβ → Spin(4)c,

the transition functions

π ◦ g̃αβ : Uα ∩ Uβ → U(1)

determine a complex line bundle. We denote this bundle by L2 to remind
ourselves of the fact that it is the square of the line bundle L used in the
construction of a spinc structure on a spin manifold. It follows from the
proof of the above theorem that w2(TM) is the reduction mod 2 of c1(L2).

Similarly, the representations ρc+ and ρc− yield U(2)-bundles W+ ⊗ L
and W− ⊗ L. Note that the bundles W+ ⊗ L and W− ⊗ L exist as genuine
vector bundles even though the factors W+, W− and L do not unless M is
spin. In these notes, we will call W+, W− and L virtual vector bundles.

Just as in the case of spin structures, we see that a spinc structure allows
us to represent the complexified tangent bundle in terms of two more basic
bundles,

TM ⊗ C ∼= Hom(W+ ⊗ L,W− ⊗ L).

Sections of W+ ⊗ L and W− ⊗ L are called spinor fields of positive or
negative chirality, respectively.
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2.3 Almost complex and spinc structures

Suppose now that M is a complex manifold of complex dimension two.
Thus M has complex coordinate systems

(z1, z2) = (x1 + iy1, x2 + iy2)

which are related holomorphically on overlaps. We can define a complex
multiplication

J : TM → TM by J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi
.

This is a vector bundle endomorphism which satisfies the identity J2 = −I.
More generally, an almost complex structure on a manifold M is simply

a vector bundle endomorphism

J : TM → TM such that J2 = −I.

An almost complex structure on a four-manifold enables us to construct
trivializations of the tangent bundle TM so that the corresponding transi-
tion functions take their values in GL(2,C) ⊂ GL(4,R). This enables us
to regard TM as a complex vector bundle.

A Riemannian metric 〈, 〉 on an almost complex manifold M is said to
be Hermitian if it satisfies the condition

〈Jv, Jw〉 = 〈v, w〉,

for all v, w ∈ TpM . Such a metric can be constructed using a partition
of unity. The Hermitian metric reduces the structure group further from
GL(2,C) to U(2) ⊂ SO(4). We claim that this allow us to construct a
canonical spinc structure on M .

Indeed, we have a canonical embedding j : U(2)→ Spin(4)c defined by

j(A) =

 1 0
0 detA

0 0
0 0

0 0
0 0 A


such that

ρc
(
j(A),

(
t+ iz −x+ iy
x+ iy t− iz

))
= A

(
t+ iz ]
x+ iy ]

)
.

This is the usual unitary action on C2 with coordinates (t+ iz, x+ iy) and
hence

ρc ◦ j : U(2)→ SO(4)
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is the usual inclusion.
Thus a U(2)-structure

{gαβ : Uα ∩ Uβ → U(2) : α, β ∈ A}

on M determines a corresponding spinc structure

{g̃αβ = j ◦ gαβ : Uα ∩ Uβ → Spin(4)c : α, β ∈ A}.

As described in the preceding section, this allows us to define the complex
vector bundles W+ ⊗ L and W− ⊗ L.

Of course, when M has a bona fide spin structure, these vector bundles
are just the tensor products of the spin bundles W+ and W− with a complex
line bundle L.

In the general case, L is not well-defined, but L2 is. It has the transition
functions

π ◦ g̃αβ : Uα ∩ Uβ −→ U(1)

where π : Spin(4)c → U(1) is the “determinant map”

π

(
λA+ 0

0 λA−

)
= det(λA−) = λ2.

The line bundle L2 will be called the anticanonical bundle of the U(2)-struc-
ture. Note that W− ⊗ L can be identified with the holomorphic tangent
bundle of the complex manifold M and the anticanonical bundle L2 is
isomorphic to the second exterior power of the holomorphic tangent bundle.

2.4 Clifford algebras

Instead of using the tangent bundle TM as the foundation for tensor algebra
on a Riemannian manifold, we can use the more basic bundles W+ and W−
or W+ ⊗ L and W− ⊗ L, where L is a line bundle with Hermitian metric.

Let’s start on the vector space level. An element of Euclidean space V
can be regarded as a complex linear homomorphism from W+ to W− and
represented by a quaternion Q. It can be extended to a skew-Hermitian en-
domorphism of W = W+⊕W− which is represented by the 2×2 quaternion
matrix

θ(Q) =
(

0 −tQ̄
Q 0

)
.

This formula defines a complex linear map

θ : V ⊗ C→ End(W ).
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Note that End(W ) is a sixteen-dimensional algebra over the complex num-
bers with composition (or matrix multiplication) as the algebra multiplica-
tion. If Q ∈ V ,

(θ(Q))2 =
(
−tQ̄Q 0

0 −QtQ̄

)
= (−detQ)I = −〈Q,Q〉. (2.3)

Because of this formula, we can regard End(W ) as the complexification of
the Clifford algebra of (V, 〈 , 〉); matrix multiplication in this algebra is
referred to as Clifford multiplication.

There is another way that is commonly used to obtain the Clifford
algebra of (V ⊗ C, 〈 , 〉). One simply constructs complex 4 × 4 matrices
e1, e2, e3, e4 which satisfy the identities

ei · ej + ej · ei = −2δij =
{
−2 if i = j,
0 if i 6= j.

These matrices correspond to the image under θ of an orthonormal basis
of V . Although any such choice would work, it is often convenient to have
an explicit one in mind. We take

e1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , e2 =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 ,

e3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , e4 =


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

 .

As a complex vector space End(W ) has a basis consisting of the matrices

I, ei, eiej for i < j, eiejek for i < j < k, e1e2e3e4. (2.4)

It follows immediately from (2.3) that

eiej = −ejei, when i 6= j.

Thus we can identify the complexified second exterior power Λ2V ⊗C with
the complex subspace of End(W ) generated by the products ei ·ej for i < j.
Similarly, the third exterior power of V sits inside End(W ). Indeed, the
basis (2.4) corresponds to a direct sum decomposition

End(W ) = Λ0V ⊗C⊕ Λ1V ⊗C⊕ Λ2V ⊗C⊕ Λ3V ⊗C⊕ Λ4V ⊗C. (2.5)
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We can therefore regard the Clifford algebra as just the complexified exte-
rior algebra with a new multiplication, Clifford product instead of wedge
product. In fact, the Clifford product of ei with an element ω ∈

∑4
k=0 ΛkV

can be defined in terms of the wedge product and the interior product

ι(ei) : ΛkV → Λk−1V, 〈ι(ei)ω, θ〉 = 〈ω, ei ∧ θ〉

by means of the formula

ei · ω = ei ∧ ω − ι(ei)ω. (2.6)

As in §1.8, Λ2V has a direct sum decomposition into self-dual and anti-
self-dual parts,

Λ2V = Λ2
+V ⊕ Λ2

−V,

the self-dual part being generated by

e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3.

The corresponding elements in the Clifford algebra are

e1 · e2 + e3 · e4 =


−2i 0 0 0

0 2i 0 0
0 0 0 0
0 0 0 0

 ,

e1 · e3 + e4 · e2 =


0 2 0 0
−2 0 0 0
0 0 0 0
0 0 0 0

 ,

e1 · e4 + e2 · e3 =


0 −2i 0 0
−2i 0 0 0

0 0 0 0
0 0 0 0

 .

Thus we see that Λ2
+V is just the space of trace-free skew-Hermitian endo-

morphisms of W+, which is the Lie algebra of SU+(2). Similarly, Λ2
−V is

the space of trace-free skew-Hermitian endomorphisms of W−.
If we represent an element ψ ∈W+ in terms of its components as

ψ =
(
ψ1

ψ2

)
,

then if 〈·, ·〉 denotes the standard Hermitian inner product on W+, a direct
calculation yields

〈e1e2ψ,ψ〉 = 〈e3e4ψ,ψ〉 = ( ψ̄1 ψ̄2 )
(
−i 0
0 i

)(
ψ1

ψ2

)
= −i(|ψ1|2 − |ψ2|2),
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〈e1e3ψ,ψ〉 = 〈e4e2ψ,ψ〉 = ( ψ̄1 ψ̄2 )
(

0 1
−1 0

)(
ψ1

ψ2

)
= (ψ̄1ψ2 − ψ1ψ̄2) = −2i Im(ψ1ψ̄2),

〈e1e4ψ,ψ〉 = 〈e2e3ψ,ψ〉 = ( ψ̄1 ψ̄2 )
(

0 −i
−i 0

)(
ψ1

ψ2

)
= −i(ψ̄1ψ2 + ψ1ψ̄2) = −2i Re(ψ1ψ̄2).

We can define a quadratic map σ : W+ → Λ2
+V in one of two ways: The

simplest approach is to identify Λ2
+V with 2× 2 trace-free skew-Hermitian

matrices and set

σ(ψ) = 2i Trace-free part of
(
ψ1

ψ2

)
( ψ̄1 ψ̄2 )

= i

(
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ2ψ̄1 |ψ2|2 − |ψ1|2
)
.

Equivalently, we can identify Λ2
+V with trace-free skew-Hermitian matrices

lying in the upper left 2× 2 block of the Clifford algebra, and set

σ(ψ) = − i
2

∑
i<j

〈ei · ej · ψ,ψ〉ei · ej . (2.7)

Since ei · ej has length one, we can readily verify that

|σ(ψ)|2 =
1
2

(|ψ1|2 − |ψ2|2)2 + 4|ψ1ψ2|2 = |ψ|4, or |σ(ψ)| = 1√
2
|ψ|2.

Note that σ forgets the phase of ψ: σ(eiθψ) = σ(ψ).
The groups Spin(4) and Spinc(4) act on the linear space End(W ) by

conjugation; these actions are denoted by Ad and Adc and are called the
adjoint representations. If T ∈ End(W ),

Ad
(
A+ 0
0 A−

)
(T ) =

(
A+ 0
0 A−

)
T

(
A−1

+ 0
0 A−1

−

)
,

while

Adc
(
λA+ 0

0 λA−

)
(T ) =

(
λA+ 0

0 λA−

)
T

(
(λA+)−1 0

0 (λA−)−1

)
.

If (M, 〈 , 〉) has a spin or spinc structure, we can use these representations
to construct a sixteen-dimensional complex vector bundle over M , a bundle
of Clifford algebras. For simplicity, we denote this bundle also by End(W ).
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Note that this bundle of Clifford algebras is defined even when M is not
a spin manifold and W+ and W− are not defined, because the adjoint
representations factor through SO(4).

Since the actions of Spin(4) and Spinc(4) preserve the direct sum decom-
position (2.5), the bundle End(W ) divides into a direct sum decomposition

End(W ) =
4∑
k=1

ΛkTM ⊗ C, Λ2TM ⊗ C = Λ2
+TM ⊗ C⊕ Λ2

−TM ⊗ C.

Moreover, since the vector space quadratic map σ : W+ → Λ2
+V is equiv-

ariant with respect to the group action, it extends to a quadratic map on
the vector bundle level σ : W+ ⊗ L→ Λ2

+TM .
The trace of the Hermitian matrix(

ψ1

ψ2

)
( ψ̄1 ψ̄2 )

is the length of the spinor field ψ. The trace-free part of this matrix is σ(ψ),
which can be thought of as a field of infinitesimal rotations, rotating two
planes e1 ∧ e2 and ?(e1 ∧ e2) through the same angle in the same direction.
The quadratic map σ gives a geometric interpretation to spinor fields: a
spinor field of positive chirality can be regarded as the square root of a
self-dual two-form, together with a choice of phase.

2.5 The spin connection

From Riemannian geometry we know that if (M, 〈 , 〉) is a Riemannian
manifold, its tangent bundle TM inherits a canonical connection, the Levi-
Civita connection. We claim that when W+ and W− are defined, they
inherit canonical connections from the Levi-Civita connection.

There are two steps to the construction of these connections. First we
construct a connection on the bundle End(W ). This is easy, because the
Levi-Civita connection on TM induces a connection on ΛkTM for each k
and hence a connection on

End(W ) =
4∑
k=1

ΛkTM ⊗ C.

However, we want a connection on W itself. A connection dA on W
is called a Spin(4)-connection if it can be expressed in terms of each local
trivialization as

(dAσ)α = dσα + φασα,
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where φα is a one-form with values in the Lie algebra of Spin(4) = SU+(2)×
SU−(2). Now the Lie algebra of Spin(4) is Λ2TM which is generated by
ei · ej for i < j. Thus the condition that dA is a Spin(4)-connection is
simply

φα =
∑
i<j

φαijei · ej , φαij = −φαji,

where φαij are ordinary real-valued one-forms.
Given a Spin(4)-connection dA on W , there is a unique connection (also

to be denoted by dA) on End(W ) which satisfies the Leibniz rule:

dA(ωσ) = (dAω)σ + ωdAσ, for ω ∈ Γ(End(W )), σ ∈ Γ(W ). (2.8)

The following theorem allows us to go the other direction:

Theorem 1. Suppose that M is a four-dimensional oriented Riemannian
manifold with a spin structure. Then there is a unique Spin(4)-connection
on W which induces the Levi-Civita connection on End(W ).

Proof: In fact, we claim that there is a one-to-one correspondence between
Spin(4)-connections on W and SO(4)-connections on TM . To see this, let
ψ̃ be a trivialization of W over an open set U ⊂ M . The trivialization of
W determines a trivialization of End(W ) as well as trivializations of the
subbundles of End(W ) which correspond to linear subspaces of the Clifford
algebra which are left fixed by the action of Spin(4). In particular, ψ̃ induces
a trivialization ψ of TM over U .

Let (ε1, ε2, ε3, ε4) be the orthonormal sections of W |U defined by

ψ̃ ◦ ε1(p) =

 p,


1
0
0
0


 , . . . , ψ̃ ◦ ε4(p) =

 p,


0
0
0
1


 ,

and let (e1, e2, e3, e4) be the orthonormal sections of TM |U defined by

ψ ◦ e1(p) =

 p,


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , . . . ,

ψ ◦ e4(p) =

 p,


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0


 .
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Then

ei · ελ =
4∑

µ=1

cµiλεµ,

where the cµiλ’s are fixed constants.
Suppose now that dA is a Spin(4)-connection on W , given over U by

d+
4∑

i,j=1

φijei · ej , φij = −φji.

Since the components of ελ and ek · ελ with respect to the given trivializa-
tions are constant,

dAελ =
4∑

i,j=1

φijeiejελ, dA(ekελ) =
4∑

i,j=1

φijeiejekελ.

Hence it follows from condition (2.8) that

4∑
i,j=1

φijeiejekελ = (dAek)ελ + ek

4∑
i,j=1

φijeiejελ,

or equivalently,

(dAek)ελ =
4∑

i,j=1

φij(eiejek − ekeiej)ελ.

The only terms surviving in the sum on the right are those in which i 6= j
and k = i or k = j. A short calculation shows that

dAek = −4
4∑
i=1

φikei.

It follows directly from this formula the the induced connection dA on
End(W ) preserves TM and is an orthogonal connection.

Conversely, given an orthogonal connection

dAek =
4∑
i=1

ωikei

on TM , we can define a corresponding Spin(4)-connection on W by setting

φij = −1
4
ωij .



2.5. THE SPIN CONNECTION 63

This is the unique Spin(4)-connection on W which induces the SO(4)-
connection. In terms of the local trivialization, the connection is simply

d− 1
4

4∑
i,j=1

ωijei · ej . (2.9)

Note that in terms of the local trivializations, the products ei · ej for i 6= j
are represented by skew-Hermitian matrices, and hence covariant differen-
tiation does indeed satisfy the metric condition:

d〈ψ, η〉 = 〈dAψ, η〉+ 〈ψ, dAη〉. (2.10)

What is the curvature

Ω =

d− 1
4

4∑
i,j=1

ωijei · ej

2

of the spin connection? It is not difficult to answer this question if we
remember that in the local trivializations, the ei’s are constant elements of
End(W ). A short calculation shows that

Ω = d

−1
4

4∑
i,j=1

ωijei · ej

+

1
4

4∑
i,j=1

ωijei · ej

2

= −1
4

4∑
i,j=1

Ωijei · ej ,

where

Ωij = dωij +
4∑
k=1

ωik ∧ ωkj .

We can set

Rijkl = Ωij(ek, el), so that Ωij =
4∑

k,l=1

Rijklθk ∧ θl,

where (θ1, θ2, θ3, θ4) is the coframe dual to (e1, e2, e3, e4). The Rijkl’s are
the components of the Riemann-Christoffel curvature tensor . which is stud-
ied extensively in Riemannian geometry texts, and the components satisfy
the curvature symmetries

Rijkl = −Rjikl = Rijlk = Rklij , Rijkl +Riklj +Riljk = 0.

An important invariant of the Riemannian manifold M is the scalar
curvature s, given by the formula

s =
4∑

i,j=1

Rijij .
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We claim that
4∑

i,j=1

eiejΩ(ei, ej) =
s

2
. (2.11)

Indeed, since Rklij = Rijkl,

4∑
i,j=1

eiejΩ(ei, ej) = −1
4

4∑
i,j,k,l=1

eiejekelΩkl(ei, ej)

= −1
4

4∑
i,j,k,l=1

eiejekelRijkl.

Now observe that if i, j, k and l are distinct,

eiejekelRijkl + eiekelejRiklj + eielejekRiljk

= eiejekel(Rijkl +Riklj +Riljk) = 0,

by the last of the curvature symmetries. Similarly, if i, j and l are distinct,

eiejeielRijil + eieleiejRilij = eiejeiel(Rijil −Rilij) = 0.

Hence the only terms surviving in the sum are those containing Rijij or
Rijji, and

4∑
i,j=1

eiejΩ(ei, ej) = −1
4

4∑
i,j=1

eiejeiejRijij −
1
4

4∑
i,j=1

eiejejeiRijji =
s

2
,

establishing the claim.
Given a unitary connection dA on a complex line bundle L over a spin

manifold M , we can define a connection on the bundle W ⊗L by taking the
tensor product of this connection with the connection given by Theorem 1.
This connection will also be denoted by dA. It is a Spin(4)c-connection,
which means that it can be expressed in terms of each local trivialization
as

(dAσ)α = dσα + φασα,

where φα is a one-form with values in the Lie algebra of Spin(4)c. In fact,

φα = −iaI − 1
4

4∑
i,j=1

ωijei · ej ,
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a being an ordinary real-valued one-form. Moreover, da = FA, where −iFA
is the curvature of the original connection on L. The curvature of the new
connection on W ⊗ L is

ΩA = −iFAI + Ω = −iFAI −
1
4

4∑
i,j=1

Ωijei · ej , (2.12)

a two-form with values in End(W ). In this formula, the Ωij ’s are the
curvature forms for the Levi-Civita connection corresponding to the given
Riemannian metric on M .

If M is not a spin manifold, we can still construct bundles W ⊗ L
for various choices of line bundles L2. A Spin(4)c-connection on W ⊗ L
determines a connection on the Clifford algebra bundle End(W ) and also
on the determinant line bundle Λ2(W+ ⊗ L) = L2. When we denote the
connection on W ⊗ L by dA, we will denote the induced connection on L2

by d2A.

Theorem 2. Suppose that M is a four-dimensional oriented Riemannian
manifold with a spinc structure which has determinant line bundle L2.
Given a connection d2A on L2, there is a unique Spin(4)c-connection on W⊗
L which induces the Levi-Civita connection on End(W ) and the connection
d2A on L2.

The proof is similar to that of Theorem 1. The curvature of this connection
is still given by (2.12), in agreement with the case of spin manifolds.

2.6 The Dirac operator

Let M be a four-dimensional Riemannian manifold with a spinc structure
and a Spin(4)c-connection dA on the spin bundle W ⊗ L.

Definition. The Dirac operator DA : Γ(W ⊗ L)→ Γ(W ⊗ L) with coeffi-
cients in the line bundle L is defined by

DA(ψ) =
4∑
i=1

ei · dAψ(ei) =
4∑
i=1

ei · ∇Aeiψ. (2.13)

In the case where M is four-dimensional Euclidean space with the global
Euclidean coordinates (x1, x2, x3, x4) the bundleW is trivial—W = M×C4.
If, in addition, L is the trivial line bundle, the Dirac operator is just

DAψ =
4∑
i=1

ei
∂ψ

∂xi
,
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the ei’s being constant matrices such that

ei · ej + ej · ei = −2δij =
{
−2 for i = j,
0 for i 6= j.

Thus we find that

DA ◦DA(ψ) = −
4∑
i=1

∂2ψ

∂x2
i

.

In this case, the Dirac operator is (up to sign) a square root of the usual
Euclidean Laplacian.

The notion of Dirac operator with coefficients in a line bundle can be ex-
tended further to coefficients in a general vector bundle. This is a powerful
extension which includes many of the familiar first order elliptic operators
of differential geometry.

Indeed, if M has a spin structure, and E is a complex vector bundle
over M with Hermitian metric and unitary connection, we have an induced
Hermitian metric and a unitary connection on W ⊗ E. If M has only a
spinc structure with spin bundle W ⊗ L, a Hermitian metric and unitary
connection in a complex vector bundle E ⊗ L−1 will induce a Hermitian
metric and unitary structurein W ⊗ E. In either case we can construct a
Dirac operator DA : Γ(W ⊗ E) → Γ(W ⊗ E) with coefficients in E by a
straightforward extension of (2.13):

DA(ψ ⊗ σ) =
4∑
i=1

ei · dAψ(ei ⊗ σ),

in which dA now denotes the connection on W ⊗ E.
For example, if we take the bundle of coefficient E to be W itself, we

obtain in this way a familiar operator from Hodge theory:

Proposition. The Dirac operator with coefficients in W is

DW = d+ δ :
4∑
k=0

ΛkTM ⊗ C→
4∑
k=0

ΛkTM ⊗ C.

Sketch of proof: First one shows that if ∇ denotes the Levi-Civita connec-
tion on the exterior algebra

∑4
k=0 ΛkTM , then the exterior derivative d is

given by the formula

dω =
4∑
i=1

ei ∧∇eiω,
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while the codifferential δ is given by

δω = −
4∑
i=1

ι(ei)∇eiω,

where ι(ei) denotes the interior product. The claimed formula can then be
derived from (2.6).

The main result of this section, Weitzenböck’s formula, gives a simple re-
lationship between a Dirac operator and the “vector bundle Laplacian”
∆A : Γ(W ⊗ E)→ Γ(W ⊗ E) defined by the formula

∆Aψ = −
4∑
i=1

[∇Aei ◦ ∇
A
eiψ −∇

A
∇eiei

ψ], (2.14)

where (e1, e2, e3, e4) is a moving orthonormal frame. (The term ∇A∇eieiψ is
needed to make ∆Aψ independent of the choice of frame.)

Theorem (Weitzenböck’s formula). The square of the Dirac operator
with coefficients in a line bundle bundle L is related to the Laplace operator
∆A by the formula

D2
Aψ = ∆Aψ +

s

4
ψ −

∑
i<j

FA(ei, ej)(iei · ej · ψ). (2.15)

Here s is the scalar curvature ofM and FA is the curvature of the connection
in L.

Proof: Choose a moving orthonormal frame on a neighborhood of p in M
so that ∇eiej(p) = 0. (Recall that the Spin(4)c-connection ∇A acts as the
Levi-Civita connection ∇ on vector fields.) Then at p,

D2
Aψ =

(
4∑
i=1

ei∇Aei

) 4∑
j=1

ej∇Aej

ψ =
4∑

i,j=1

eiej∇Aei∇
A
ejψ

= −
4∑
i=1

∇Aei∇
A
eiψ +

1
2

4∑
i,j=1

eiej [∇Aei∇
A
ej −∇

A
ej∇

A
ei ]ψ

= ∆Aψ +
1
2

4∑
i,j=1

eiej(d2
Aψ)(ei, ej) = ∆Aψ +

1
2

4∑
i,j=1

eiejΩA(ei, ej) · ψ,
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where ΩA is the curvature of the Spin(4)c-connection. Substituting (2.12)
into this expression and utilizing (2.11) yields

D2
Aψ = ∆Aψ− 1

2

4∑
i,j=1

FA(ei, ej)iei ·ej ·ψ−
1
8

4∑
i,j,k,l=1

Ωkl(ei, ej)ei ·ej ·ek ·el ·ψ

= ∆Aψ −
∑
i<j

FA(ei, ej)iei · ej · ψ +
s

4
ψ,

which proves the theorem.

In addition to being almost the square root of a Laplacian, the Dirac oper-
ator has another key property—self-adjointness:

Proposition. The Dirac operator is “formally self-adjoint”:∫
M

〈DA(ψ), η〉dV =
∫
M

〈ψ,DA(η)〉dV (2.16)

Proof: (Compare [24], page 114.) As in the preceding proof, we choose a
moving orthonormal frame on a neighborhood of p in M so that ∇eiej(p) =
0. Then

〈DA(ψ), η〉(p) =
4∑
i=1

〈ei · ∇Aeiψ, η〉(p) = −
4∑
i=1

〈∇Aeiψ, ei · η〉(p)

= −
4∑
i=1

[
ei〈ψ, ei · η〉(p)− 〈ψ,∇Aei(ei · η)〉(p)

]
= −

4∑
i=1

ei〈ψ, ei · η〉(p) + 〈ψ,DA(η)〉(p),

because ei· is skew-Hermitian and ∇A is a unitary connection. If we define
a one-form b on M by 〈b, ei〉 = 〈ψ, ei ·η〉, we can reexpress the result of this
calculation as

〈DA(ψ), η〉(p)− 〈ψ,DA(η)〉(p) = δb. (2.17)

Integration over M now yields equation (2.16).

It follows from (2.10) that the vector bundle Laplacian ∆A is also formally
self-adjoint; one could prove this via the integral formula∫

M

〈∆Aψ,ψ〉dV =
∫
M

|∇Aψ|2dV. (2.18)
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2.7 The Atiyah-Singer Index Theorem

In many respects, the simplest Dirac operator with coefficients is the op-
erator d + δ from Hodge theory, whose square is the Hodge Laplacian
∆ = dδ + δd. Since

(d+ δ)ω = 0 ⇔ dω = 0 and δω = 0 ⇔ ∆ω = 0,

we see that the kernel of d + δ is the finite-dimensional space of harmonic
forms. We can set

Ω+ = Ω0(M)⊕ Ω2(M)⊕ Ω4(M), Ω− = Ω1(M)⊕ Ω3(M)

and divide the operator d+ δ into two pieces,

(d+ δ)+ : Ω+ → Ω−, (d+ δ)− : Ω− → Ω+.

we define the index of (d+ δ)+ to be

index of (d+ δ)+ = dim(Ker(d+ δ)+)− dim(Ker(d+ δ)−).

But
Ker((d+ δ)+) = H0(M)⊕H2(M)⊕H4(M),

Ker((d+ δ)−) = H1(M)⊕H3(M),

so
index of (d+ δ)+ = b0 + b2 + b4 − (b1 + b3) = χ(M),

the Euler characteristic of M .
In a similar spirit, the Atiyah-Singer Index Theorem gives a formula for

the index of any first order elliptic linear differential operator in terms of
topological data. Of most importance to us is the Dirac operator DA with
coefficients in a line bundle.

First note that the Dirac operator DA divides into two pieces,

D+
A : Γ(W+ ⊗ L)→ Γ(W− ⊗ L), D−A : Γ(W− ⊗ L)→ Γ(W+ ⊗ L),

which are formal adjoints of each other by (2.16 ). Just as in Hodge theory,
the theory of elliptic operators implies that the kernels of the operators D+

A

and D−A are finite-dimensional complex vector spaces. We define the index
of D+

A to be

index of D+
A = dim(Ker(D+

A))− dim(Ker(D−A)).
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Atiyah-Singer Index Theorem (for the Dirac operator with coef-
ficients in a line bundle). If DA is a Dirac operator with coeffficients in
a line bundle L on a compact oriented four-manifold M , then

index of D+
A = −1

8
τ(M) +

1
2

∫
M

c1(L)2, (2.19)

where τ(M) = b+ − b−, the signature of M .

This theorem is a consequence of a more general theorem to be stated later
in this section. It has many striking applications. In particular, if we take
L to be the trivial line bundle over a spin manifold, we can derive:

Rochlin’s Theorem. The signature of a compact oriented smooth spin
manifold of dimension four satisfies the condition

τ(M) ≡ 0, mod 16.

Proof: If D+ is the Dirac operator with coefficients in the trivial line bundle,

index of D+ = −τ(M)
8

.

This shows immediately that the signature of M is divisible by 8.
But there are also endomorphisms J : W± → W± defined by Clifford

multiplication on the right by the quaternion j. If ψ is a harmonic section of
W+, so is J(ψ), a section which is perpendicular to ψ. In fact, the kernel of
D+ is quaternionic, and we can construct an orthonormal basis of Ker(D+)
of the form

ψ1J(ψ1), . . . , ψk, J(ψk).

The same argument applies to Ker(D−), so Ker(D+) and Ker(D−) are
both even-dimensional over C. Thus the index of D+ is divisible by two,
and the signature of M is divisible by 16.

Another striking application of the Atiyah-Singer Index Theorem is to the
problem of relating curvature to topology of Riemannian manifolds:

Theorem of Lichnerowicz. If M is a compact oriented spin manifold of
dimension four with a Riemannian metric of positive scalar curvature, then
the signature of M is zero.

Proof: We use the Weitzenböck formula for the Dirac operator D in the
case of the trivial line bundle with the trivial connection. If ψ is a harmonic
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spinor field (Dψ = 0), then

0 =
∫
M

[
|∇Aψ|2 +

s

4
|ψ|2

]
dv,

and hence positive scalar curvature implies that ψ = 0. Thus the kernel of
D+ and − are both zero, which implies that

−τ(M)
8

= (index of D+) = 0.

This theorem shows that most compact oriented four-manifolds with spin
structure do not admit Riemannian metrics with positive scalar curvature.

Coefficients in a general complex vector bundle: The Atiyah-Singer
Index Theorem with coefficients in a line bundle is a special case of a more
general theorem, which gives the index of a Dirac operator

D+
A : Γ(W+ ⊗ E)→ Γ(W− ⊗ E)

with coefficients in a general complex vector bundle or virtual complex
vector bundle E. To state the more general theorem, we need the Chern
character discussed in §1.5 and the Â-polynomial in the Pontrjagin classes.

It follows from our earlier discussion of the Chern character and (1.16)
that

ch(E) = dimE + c1(E) +
1
2

(c1(E))2 − c2(E) + · · · , (2.20)

the dots denoting terms of degree > 4. We can apply these formulae to the
quaternionic line bundles W+ and W− which have vanishing first Chern
classes:

ch(W+) = 2− c2(W+), ch(W−) = 2− c2(W−).

Since W+ is isomorphic to its conjugate or dual bundle,

TM ⊗ C = Hom(W+,W−) ∼= W+ ⊗W−,

and hence

ch(TM ⊗ C) = ch(W+)ch(W−) = 4− 2c2(W+)− 2c2(W−).

Thus according to the definition of Pontrjagin class,

p1(TM) = −c2(TM ⊗ C) = −2c2(W+)− 2c2(W−) = −2c2(W ). (2.21)
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It follows from the product formula for the Chern character that if E is any
SU(2)-bundle, then

(2− c2(E) + · · ·)2 = 4− c2(E ⊗ E) + · · · ,

which implies that

c2(E) =
1
4
c2(E ⊗ E).

If M is not spin, we can use this formula to define c2(W+) and c2(W−),
since the vector bundles W+⊗W+ and W−⊗W− always exist as bona fide
vector bundles. Similarly, we set c1(L) = (1/2)c1(L2), when L2 exists as a
complex line bundle, but L does not. Thus we can use the product formula
for Chern characters to define c1(E) and c2(E) when E is only a virtual
vector bundle.

The Â-polynomial is defined by a power series

Â(TM) = 1− 1
24
p1(TM) + · · · ∈ H∗(M ; R),

where p1 is the first Pontrjagin class and the dots indicate terms in higher
order Pontrjagin classes, which once again will vanish on a manifold of
dimension ≤ 4.

Atiyah-Singer Index Theorem (over four-manifolds). If DA is a
Dirac operator with coefficients in a virtual vector bundle E over a compact
oriented four-manifold M , then

index of D+
A = Â(TM)ch(E)[M ]

=
∫
M

[−(1/24)(dimE)p1(TM) + (1/2)(c1(E))2 − c2(E)].

For the proof of this theorem, one of the monuments of twentieth century
mathematics, we refer the reader to [6] or [24]. This theorem gives a formula
for the indices of virtually all the geometrically interesting elliptic operators
on a compact oriented four-manifold.

How does this theorem imply the Atiyah-Singer Theorem we previously
stated for Dirac operators with coefficients in line bundles? To answer this
question, we need to consider first the special case where E = W , so that

W ⊗ E =
4∑
k=1

ΛkTM ⊗ C and DA = (d+ δ).
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In this case,

Ker(DA) = Ker(d+ δ) = { complex-valued harmonic forms }.

This is the operator considered at the beginning of this section, but now
we divide up the operator differently—this time we take

D+
A : Γ(W+ ⊗W )→ Γ(W− ⊗W ).

It is easiest to understand the new decomposition in the case where M is
simply connected, so b1 = b3 = 0. In this case, the harmonic forms consist
of the constant functions, constant multiples of the volume form ?1, and
elements of

H2
+(M) and H2

−(M),

which are sections of W+ ⊗W+ and W− ⊗W−, respectively. Since 1 + ?1
and 1−?1 are sections of W+⊗W+ and W−⊗W− respectively, we see that

the index of D+
A = b+ − b− = τ(M),

the signature of M . With a little more work, one can show that this formula
also holds in the case where b1 = b3 6= 0, and hence by the Atiyah-Singer
Index Theorem and (2.21),

τ(M) =
∫
M

[−(1/24)(dimW )p1(TM)− c2(W )]

=
∫
M

[−(1/6)p1(TM) + (1/2)p1(TM)] =
∫
M

(1/3)p1(TM).

We have sketched the proof of:

Hirzebruch Signature Theorem (for four-manifolds). The signature
of a compact oriented smooth four-manifold M is given by the formula

τ(M) =
1
3

∫
M

p1(TM).

The Signature Theorem allows us to eliminate the term containing p1(TM)
in the general Atiyah-Singer Index Theorem, thereby obtaining (2.19) in the
case of coefficients in a line bundle.

We conclude this chapter by deriving the characteristic class invariants
for the bundles W± ⊗ L. From (2.21) we conclude that

c2(W+)[M ] + c2(W−)[M ] = −1
2

∫
M

p1(TM) = −3
2
τ(M).
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On the other hand, we can take Dirac operators DW+ and DW− with coef-
ficients in W+ and W− respectively, and verify that

the index of D+
W+
− the index of D+

W−
= 2b0 − 2b1 + b2 = χ(M),

the Euler characteristic of M . Hence by the Atiyah-Singer Theorem,

−c2(W+)[M ] + c2(W−)[M ] = χ(M).

We can solve for the Chern classes of W+ and W−, obtaining

c2(W+)[M ] = −3
4
τ(M)− 1

2
χ(M), c2(W−)[M ] = −3

4
τ(M) +

1
2
χ(M).

By the classification theorem for quaternionic line bundles, these numbers
completely determine the spinor bundles W+ and W−, when they exist.

Applying the product formula for Chern characters to W+ ⊗ L gives

(2− c2(W+) + · · ·)(1 + c1(L) +
1
2

(c1(L))2 + · · ·)

= 2 + c1(W+ ⊗ L) +
1
2

[c1(W+ ⊗ L)]2 − c2(W+ ⊗ L) + · · · .

Thus
c1(W+ ⊗ L) = 2c1(L) = c1(L2)

and finally,

c2(W+ ⊗ L)[M ] = −3
4
τ(M)− 1

2
χ(M) +

1
4
c1(L2)2[M ], (2.22)

c2(W− ⊗ L)[M ] = −3
4
τ(M) +

1
2
χ(M) +

1
4
c1(L2)2[M ]. (2.23)



Chapter 3

Global analysis of the
Seiberg-Witten equations

3.1 The Seiberg-Witten equations

As we have seen, the theory of linear partial differential equations—in
particular, the Atiyah-Singer index theorem—yields topological invariants
which have striking geometric applications. We now investigate more re-
fined invariants constructed with nonlinear partial differential equations,
invariants that are not available from the linear theory.

Here is the procedure we might try to follow. Choose a nonlinear PDE.
Show that its space of solutions is a compact finite-dimensional smooth
manifold which lies in some ambient “configuration space.” The solution
space will in general depend upon certain choices, such as the choice of a
Riemannian metric, but in favorable cases the “cobordism class” of the so-
lution space may be independent of the choices. This cobordism class may
then become a new topological invariant. Since it is defined in terms of a
PDE (which requires a smooth structure), it may be possible for the invari-
ant to distinguish between smooth structures on the underlying topological
manifold associated to M .

In broad outline, this is in fact the way Donaldson’s original instan-
ton theory works, as described in [12]. The moduli space of anti-self-dual
connections in an SU(2)-bundle over a compact oriented four-manifold is
generically a smooth manifold. However, this moduli space is not usually
compact, and much effort is expended towards finding a suitable compact-
ification.

Gromov’s theory of pseudoholomorphic curves [26] is a second case in

75
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which the above procedure can be carried through, with compactification
once again providing difficulties. A body of techniques has been developed
for studying these and related geometrical theories. Perhaps the Seiberg-
Witten invariants, which we will proceed to describe, provide the simplest
context for the working out of these techniques.

Let (M, 〈 , 〉) be an oriented four-dimensional Riemannian manifold
with a spinc structure and corresponding positive spinor bundle W+ ⊗ L.
We seek pairs (d2A, ψ), where d2A is a connection on the line bundle L2

and ψ is a section of W+ ⊗ L such that

D+
Aψ = 0, F+

A (ei, ej) = − i
2
〈ei · ej · ψ,ψ〉, for i < j. (3.1)

Here F+
A = (1/2)F+

2A where F+
2A is the self-dual part of the curvature of

the connection d2A. In the expression ei · ej · ψ, Clifford multiplication is
understood.

We will sometimes write (dA, ψ) instead of (d2A, ψ) and think of dA as
a connection in the line bundle L, a bundle which strictly speaking does
not exist unless M is spin. Often, we will simplify yet further, and write
(A,ψ) instead of (dA, ψ).

If J : W+ ⊗ L → W+ ⊗ L−1 is the conjugate-linear multplication on
the right by the quaternion J , then any solution (dA, ψ) for the Seiberg-
Witten equations for L yields a corresponding solution (dA∗ , J ◦ ψ) for the
Seiberg-Witten equations for L−1.

Equations (3.1) are known as the Seiberg-Witten equations. It follows
from (2.7) that they can also be written in the form

D+
Aψ = 0, F+

A = σ(ψ), (3.2)

where σ : W+ → Λ2
+V is the standard quadratic map. We will also need

the “perturbed” Seiberg-Witten equations,

D+
Aψ = 0, F+

A = σ(ψ) + φ, (3.3)

in which φ is a prescribed self-dual two-form. Note that equations (3.2) and
(3.3) fail to be linear only because of the presence of the term σ(ψ), which
is quadratic in ψ. This nonlinearity is much milder than that encountered
in the Yang-Mills equations from nonabelian gauge theory.

Just like the Yang-Mills equations, the Seiberg-Witten equations are re-
lated to a variational principle. We define a nonnegative real-valued func-
tional S on the space

A = {(A,ψ) : A is a unitary connection on L,ψ ∈ Γ(W+ ⊗ L)},
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by the formula

S(A,ψ) =
∫
M

[
|DAψ|2 + |F+

A − σ(ψ)|2
]
dV, (3.4)

where dV denotes the volume element on M . Clearly the absolute minimum
of this functional is assumed at solutions to (3.2) when these solutions exist.

We expand, using the fact that DA is self-adjoint, to obtain

S(A,ψ) =
∫
M

[
|DAψ|2 + |F+

A |
2 − 2〈F+

A , σ(ψ)〉+ |σ(ψ)|2
]
dV

=
∫
M

|DAψ|2 + |F+
A |

2 +
∑
i<j

F+
A (ei, ej)〈ieiejψ,ψ〉+ |σ(ψ)|2

 dV.
Hence we obtain

S(A,ψ) =
∫
M

[
|∇Aψ|2 +

s

4
|ψ|2 + |F+

A |
2 + |σ(ψ)|2

]
dV. (3.5)

where in the last step we have used the Weitzenböck formula. If the scalar
curvature s is strictly positive, all terms in the last expression are nonnega-
tive and thus there are no nonzero solution to the Seiberg-Witten equations
in this case. Moreover, since

|σ(ψ)|2 =
1
2
|ψ|4 and

(s
4

+ |ψ|2
)2

≥ 0,

if (A,ψ) is a solution to the Seiberg-Witten equations,∫
M

|F+
A |

2dV ≤
∫
M

[
−s

4
|ψ|2 − 1

2
|ψ|4

]
dV ≤ 1

2

∫
M

s2

16
dV. (3.6)

In the next few sections, we will study the properties of the space of solu-
tions to the Seiberg-Witten equations. We will see that in the generic case,
the moduli space of solutions to the perturbed Seiberg-Witten equations is
a compact finite-dimensional manifold.

3.2 The moduli space

We choose a “base connection” dA0 in L so that our configuration space
becomes

A = {(dA0 − ia, ψ) : a ∈ Ω1(M), ψ ∈ Γ(W+ ⊗ L)}.
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As in §1.8, the group of gauge transformations,

G = Map(M,S1) = { maps g : M → S1}

acts on A by

(g, (dA0 − ia, ψ)) 7→ (dA0 − ia+ gd(g−1), gψ).

In the case where M is simply connected, each element g ∈ G has a global
logarithm u, so we can write

g = eiu, u : M → R,

and the action of G on A simplifies to

(g, (dA0 − ia, ψ)) 7→ (dA0 − i(a+ du)), eiuψ).

As we saw in §1.8, G possesses a subgroup of “based gauge transforma-
tions,”

G0 = {g ∈ G : g(p0) = 1},

p0 being a chosen basepoint in M . The importance of the group G0 is that
it acts freely on A. Let B̃ = A/G0.

Proposition. If M is simply connected, each element of B̃ has a unique
representative of the form

(dA0 − ia, ψ), where δa = 0.

Proof of existence: It suffices to find a function u : M → R such that
δ(a + du) = 0. In other words, it suffices to find an element u ∈ Ω0(M)
such that

∆u = δ(du) = −δa, (3.7)

which is simply Poisson’s equation. To solve it, we use Hodge theory: The
theorem of Stokes shows that∫

M

1 ∧ ?(δa) =
∫
M

d(?a) = 0,

so δa lies in the orthogonal complement of the space H0(M) of constant
functions on M , with respect to the L2 inner product ( , ). Since this is
also the orthogonal complement to the range of ∆ by Hodge’s Theorem,
there does indeed exist a solution u to (3.7).
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Proof of uniqueness: If

(dA0 − ia1, ψ1), (dA0 − ia2, ψ2)

are two elements of A which are equivalent under the action of G0 such
that δa1 and δa2 are both zero, then since da1 = da2 and M is simply
connected, there exists a map u : M → R such that a1 − a2 = du. Hence

(a1 − a2, a1 − a2) = (du, a1 − a2) = (u, δ(a1 − a2)) = 0 ⇒ a1 − a2 = 0.

Thus when M is simply connected, the quotient space B̃ is in one-to-one
correspondence with a linear subspace of A:

B̃ ∼= {(dA0 − ia, ψ) : a ∈ Ω1(M), ψ ∈ Γ(W+ ⊗ L), δa = 0}. (3.8)

We can think of this linear space as giving a global coordinate system on
B̃.

However, we actually want to divide out by the full gauge group, and
now we encounter an essential difference between the Seiberg-Witten theory
and abelian gauge theory—instead of acting trivially, the group U(1) of
constant gauge transformations acts freely on B̃ except at the points (dA0−
ia, 0). The quotient space B = A/G by the full gauge group will have
singularities at the “reducible” elements (dA0 − ia, 0). Sometimes, we can
avoid dealing with the reducible elements by excising these singular points
and setting

A∗ = {(dA0 − ia, ψ) ∈ A : ψ 6= 0}, B̃∗ = A∗/G0, B∗ = A∗/G.

We want to think of B∗ as an infinite-dimensional manifold modeled on
a Hilbert or Banach space, as described in [23]. To do this precisely, we need
to complete our spaces of sections—just as in the older instanton theory—
with respect to suitable Sobolev norms. We give only the basic definitions
here and refer the reader to [14] or [12] for a more detailed treatment of
“Sobolev completions.”

If E is a smooth O(m)- or U(m)-bundle over a compact Riemannian
manifold M with connection dA, we can use the Levi-Civita connection on
TM to define connections (also denoted by dA) on the bundles ⊗kT ∗M ⊗
E = Hom(⊗kTM,E). If σ ∈ Γ(E), we can define

dkAσ = (dA ◦ · · · ◦ dA)σ ∈ Γ(Hom(⊗kTM,E)).

For p > 1, let

‖σ‖p,k =
[∫

M

[|σ|p + |dAσ|p + · · ·+ |dkAσ|p]dV
](1/p)

.
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It can be checked that this is a norm on Γ(E), and we let Lpk(E) denote the
completion of Γ(E) with respect to this norm. The choice of Riemannian
metric, the fiber metric on E or the connection dA replaces the norms on
Γ(E) by equivalent norms, and hence does not affect the resulting comple-
tions.

For all choices of p, Lpk(E) is a Banach space, and it is a Hilbert space
if p = 2. The spaces Lpk(E) are called Sobolev spaces.

Here are some key results from functional analysis (which are described
in more detail in the appendix to Donaldson and Kronheimer [12]): In the
case where the base manifold has dimension four, the Sobolev Embedding
Theorem states that if k − (4/p) > l there is a continuous embedding

Lpk(E)→ Cl(E),

the space of Cl sections of E. Rellich’s Theorem states that the inclusion

Lpk+1(E)→ Lpk(E)

is compact for all p and k, meaning that a sequence σi which is bounded in
Lpk+1 possesses a subsequence which converges in Lpk. When k− (4/p) > 0,
the multiplication theorems state that there are continuous multiplications

Lpk(E)× Lpk(F )→ Lpk(E ⊗ F ).

Thus for p and k in this range and for E the trivial line bundle, Lpk(E) is
a Banach algebra.

With these preparations out of the way, we can set

B̃pk = {(dA0 − ia, ψ) : a ∈ Lpk(T ∗M), ψ ∈ Lpk(W+ ⊗ L), δa = 0}.

Similarly, we can define Apk,

Gpk+1 = Lpk(End(E)) ∩ C0(M,S1),

when k+ 1− (4/p) > 0, and so forth. It can also be shown that Gpk+1 is an
infinite-dimensional Lie group which acts smoothly on Apk, although these
last facts will not be needed in our subsequent arguments.

Henceforth, when we write spaces such as A, B̃∗ or G, appropriate
Sobolev completions will be understood. We will only include the indices p
and k when explicit values are needed for clarity.

After Sobolev completion, B̃∗ can be regarded as an S1 bundle over
the infinite-dimensional manifold B∗. Just as πk(Sn) = 0 for k < n, the
k-th homotopy group of an infinite-dimensional sphere must vanish for all
k. Thus A∗, which is homotopy equivalent to an infinite-dimensional linear
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space minus a point, must have the homotopy groups of a point. If M is
simply connected, G0 is also contractible, and hence B̃∗ has the homotopy
groups of a point. It follows from the exact homotopy sequence of the fiber
bundle

S1 → B̃∗ → B∗ (3.9)

that B∗ is a K(Z, 2), just like P∞C. In fact, all K(Z, 2)’s are homotopy
equivalent, so B∗ is homotopy equivalent to P∞C.

We can define a complex line bundle E over B∗ which pulls back to the
universal bundle under the homotopy equivalence P∞C → B∗. Then B̃∗
can be identified with the bundleof unit-length vectors in E.

Definition. The monopole moduli space is

MM,L = {[A,ψ] ∈ B : (A,ψ) satisfies (3.2)},

or more generally, if φ is a given self dual two-form,

MM,L,φ = {[A,ψ] ∈ B : (A,ψ) satisfies (3.3)}.

Using (3.8), we see that the latter space is the quotient of

M̃M,L,φ = {(dA0 − ia, ψ) ∈ Ω1(M)× Γ(W+ ⊗ L) :

δa = 0 and (dA0 − ia, ψ) satisfies (3.3) }

by the action of S1.

We will often simplify notation, and write ML,φ or Mφ for MM,L,φ, for
example. Our next goal is to show thatMφ is a finite-dimensional manifold,
a submanifold of B, except for possible singularities at points where ψ = 0.

3.3 Compactness of the moduli space

The first remarkable property of the moduli spaces M or Mφ is that they
are compact, as we now show following the treatment in Kronheimer and
Mrowka [22]:

Lemma. If (A,ψ) is a solution to the Seiberg-Witten equations with ψ
not identically zero, and the maximum value of |ψ| is assumed at a point
p ∈M , then

|ψ|2(p) ≤ −s(p)
4
,
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where s is the scalar curvature. Similarly, if (A,ψ) is a solution to the
perturbed Seiberg-Witten equations (3.3), then

|ψ|2(p) ≤ −s(p)
4

+
√

2|φ(p)|.

Proof: The restriction of the Hodge Laplacian to zero-forms or functions
can be expressed as

∆ = − 1
√
g

4∑
i,j=1

∂

∂xi

(
gij

∂

∂xj

)
,

where the gij ’s are the components of the meric with respect to coordinates
(x1, . . . , x4) and (gij) = (gij)−1. Note that ∆(f) ≥ 0 at a local maximum
of a function f , and hence since p is a maximum for |ψ|2,

d(|ψ|2)(p) = 0, ∆(|ψ|2)(p) ≥ 0.

Since dA is a metric connection,

−〈dAψ, dAψ〉(p) + 〈∆Aψ,ψ〉(p) ≥ 0 ⇒ 〈∆Aψ,ψ〉(p) ≥ 0,

where ∆A is the vector bundle Laplacian defined by (2.14). It follows
from the first of the Seiberg-Witten equations and the Weitzenböck formula
(2.15) that

0 = D2
Aψ = ∆Aψ +

s

4
ψ −

∑
i<j

F+
A (ei, ej)(iei · ej · ψ).

Take the inner product with ψ to obtain

〈∆Aψ,ψ〉+
s

4
|ψ|2 + 2〈F+

A , σ(ψ)〉 = 0.

It follows from the second of the Seiberg-Witten equations and the fact
that 〈∆Aψ,ψ〉(p) ≥ 0 that

s(p)
4
|ψ(p)|2 + 2〈σ(ψ) + φ, σ(ψ)〉(p) ≤ 0.

Thus

|ψ(p)|4 = 2|σ(ψ)(p))|2 ≤ −s(p)
4
|ψ(p)|2 + 2|σ(ψ)(p)||φ(p)|,

and the desired result follows by dividing by |ψ(p)|2.
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Thus the range of ψ is contained in a compact subset of W+ ⊗L. To show
that the moduli space itself is compact, however, we need to use the Sobolev
completions described in the preceding section, as well as the following key
inequality from PDE theory: If D is a Dirac operator or a Dirac operator
with coefficients (such as d+ δ), then

‖σ‖p,k+1 ≤ c[‖Dσ‖p,k + ‖σ‖p,k], (3.10)

where c is a constant. The ‖σ‖p,k term can be omitted in the case where
D has trivial kernel. In the case where p = 2 inequality (3.10) is often used
to prove Hodge’s Theorem. The general case is discussed in the Appendix
to [12] and Appendix B to [26].

Compactness Theorem. If M is simply connected, then for every choice
of self-dual two-form φ, the moduli space M̃φ of solutions to the perturbed
Seiberg-Witten equations is compact.

Remark: Simple connectedness of M is not actually necessary, but makes
the proof especially simple.

Proof: We choose a base connection A0, so that any unitary connection
on L is of the form dA0 − ia, for some a ∈ Ω1(M). We need to show that
any sequence [dA0 − iai, ψi] of solutions to the perturbed Seiberg-Witten
equations possesses a convergent subsequence.

Imposing the gauge condition δa = 0 puts the perturbed Seiberg-Witten
equations into the form{

DA0ψ − ia · ψ = 0,
(da)+ + F+

A0
= σ(ψ) + φ,

δa = 0,

or equivalently, {
DA0ψ = ia · ψ,
(da)+ = σ(ψ) + φ− F+

A0
,

δa = 0.
On the left-hand side of this system appear the two Dirac operators DA0

and (δ⊕d+), the second of these being the Dirac operator with coefficients
in W+ described in §2.7. The Lemma implies that ψi is bounded in C0 and
hence in every Lp. Since M is simply connected, the operator

δ ⊕ d+ : Ω1(M)→ Ω0(M)⊕ Ω2
+(M)

has trivial kernel. It therefore follows from (3.10) applied to the last two
equations that ai is bounded in Lp1 for all p. In particular, taking p > 4,
we see that it is bounded in C0 by the Sobolev Embedding Theorem, and
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hence aiψi is bounded in Lp for all p. Then it follows from (3.10) applied
to the first equation that ψi is bounded in Lp1 for all p. If p > 4, Lp1 is in
Banach algebra range, so

ai, ψi bounded in Lp1 ⇒ aiψi, σ(ψi) bounded in Lp1

⇒ ai, ψi bounded in Lp2.

Similarly,

ai, ψi bounded in Lpk ⇒ aiψi, σ(ψi) bounded in Lpk

⇒ ai, ψi bounded in Lpk+1.

Thus we can “bootstrap” to conclude that ai, ψi are bounded in Lpk for all
k. Then Rellich’s Theorem produces a subsequence which converges in Lpk
for all k, and the sequence must converge in Cl for all l by the Sobolev
Embedding Theorem. This proves compactness.

3.4 Transversality

The second remarkable property of the moduli spaceMφ is that for generic
choice of φ it is a smooth manifold, except possibly at reducible elements.
To prove this, we need to use Smale’s infinite-dimensional version of Sard’s
theorem [35].

A familiar method for constructing smooth submanifolds of a finite-
dimensional smooth manifold Mm goes like this: Suppose that F : Mm →
Nn be a smooth map which has q as a regular value. Then F−1(q) is
a smooth embedded submanifold of Mm by the implicit function theorem,
and its dimension is m−n. This is complemented by Sard’s theorem, which
states that almost all q ∈ Nn are regular values.

In order to apply this idea to nonlinear PDE’s, we need to generalize to
maps between manifolds modeled on infinite-dimensional Banach spaces.
To do this we need the notion of Fredholm map. Suppose that E1 and E2

are reflexive Banach spaces. A continuous linear map T : E1 → E2 is said
to be Fredholm if

1. the kernel of T is finite-dimensional,

2. the range of T is closed, and

3. the range of T has finite codimension in E2.



3.4. TRANSVERSALITY 85

The index of a Fredholm map T is defined to be

dim(Ker(T ))− codim(T (E1)) = dim(Ker(T ))− dim(Ker(T ∗)),

where T ∗ : E∗2 → E∗1 is the adjoint of T defined by T ∗(φ)(ψ) = φ(T (ψ)).
A key feature of Fredholm operators is that their index is invariant under
perturbation; if a family depends continuously upon a parameter which
ranges through a connected topological space, the index of the family must
be constant.

For example, if M is a compact four-manifold and

D+
A : Γ(W+ ⊗ L)→ Γ(W− ⊗ L)

is a Dirac operator with coefficients in a line bundle L, D+
A extends to a

continuous linear map

D+
A : Lpk+1(W+ ⊗ L)→ Lpk(W− ⊗ L),

for every choice of p and k ≥ 0. This extension is a Fredholm map with
adjoint D−A ([24], Theorem 5.2, page 193) and its Fredholm index is twice
the complex index defined before, which is calculated by the Atiyah-Singer
Index Theorem.

Suppose now that F : M1 → M2 is a smooth nonlinear map from
a Banach manifold M1 to a Banach manifold M2. We say that F is a
Fredholm map between Banach manifolds of index k if its linearization at
p,

dF (p) : TpM1 → TF (p)M2,

is a Fredholm map of index k for every p ∈ M1. Note that a smooth
map F : M1 → M2 between finite-dimensional manifolds is automatically
Fredholm of index dimM1 − dimM2.

A point q ∈ M2 is said to be a regular value of F if dF (p) is surjective
for every p ∈ F−1(q); otherwise it is called a critical value. It follows from
the implicit function theorem on Banach spaces (see [23]) that if q ∈ M2

is a regular value, then F−1(q) is a smooth submanifold of M1, just as
in the finite-dimensional case. Moreover, F−1(q) is finite-dimensional, its
dimension being the Fredholm index of F .

Finally, a subset of the Banach manifold M2 is called residual if it is a
countable intersection of open dense sets. Recall that the Baire Category
Theorem states that a residual subset of a complete metric space is dense.
It is customary to refer to an element of a residual subset of M2 as a generic
element .

With these preparations out of the way, we can now state Smale’s ex-
tension of Sard’s theorem [35]:



86 CHAPTER 3. GLOBAL ANALYSIS

Sard-Smale Theorem. If F : M1 → M2 is a Ck Fredholm map between
separable Banach manifolds and k > max(0, index of F ), then the set of
regular values of F is residual in M2.

In other words, a generic element of M2 is a regular value. In our applica-
tions, the separability assumption will automatically hold, since all of the
manifolds modeled on the Lpk spaces that we have constructed are separa-
ble. The idea behind the proof of the Sard-Smale Theorem is to reduce to
the finite-dimensional version of Sard’s theorem; we refer the reader to [35]
for further details.

We will need one further theorem from the theory of elliptic PDE’s, the
Unique Continuation Theorem found in [2]. This theorem asserts that if ψ is
a solution to the equation D+

Aψ = 0 on a connected manifold, then ψ cannot
vanish on an open set without vanishing identically. This is analogous to
a familiar property of holomorphic functions. (Indeed, the Dirac operator
could be thought of as a generalization of the Cauchy-Riemann operator
from two to four dimensions.)

Transversality Theorem 1. Let M be a compact simply connected
smooth four-manifold with a spinc-structure. In the special case in which
b+(M) = 0, we make the additional assumption that the index of the Dirac
operator D+

A associated to the spinc-structure is positive. Then for a generic

choice of self-dual two-form φ, M̃φ is an oriented smooth manifold, whose
dimension is given by the formula

dim(M̃φ) = 2(index of D+
A)− b+. (3.11)

Proof: Define

F : B̃ × Ω2
+(M)→ Γ(W− ⊗ L)× Ω2

+(M)

by
F (A,ψ, φ) = (D+

Aψ, F
+
A − σ(ψ)− φ).

The differential of F at (A,ψ, φ) is

dF (A,ψ, φ)(a, ψ′, φ′) = (D+
Aψ
′ − ia · ψ, (da)+ − 2σ(ψ,ψ′)− φ′),

where

σ(ψ,ψ′) = 2i Trace-free Hermitian part of
(
ψ1

ψ2

)
( ψ̄′1 ψ̄′2 ) .

We claim that if (A,ψ, φ) is a solution to F (A,ψ, φ) = 0 with ψ 6= 0,
then dF (A,ψ, φ) is surjective. Indeed, by letting φ′ vary, we see that the
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image of dF (A,ψ, φ) is foliated by translates of the linear space {0} ⊕
Ω2

+(M). Thus it suffices to show that the projection on the first component
is surjective when we set φ′ = 0. Suppose that (σ, 0) is an L2 section of
(W− ⊗ L)⊕ (Λ0 ⊕ Λ2

+) which is L2-perpendicular to

dF (A,ψ, φ)(T[A,ψ]B̃ × {0}).

By self-adjointness of the Dirac operator, we know that D−Aσ = 0, so σ is
actually smooth, and if it is not identically zero, it is nonvanishing on an
open dense set by the Unique Continuation Theorem. The Unique Con-
tinuation Theorem also implies that the set of points U on which ψ 6= 0
is open and dense. On U , the linear map a 7→ a · ψ is pointwise injective
(because a ·a ·ψ = −|a|2ψ), and hence it is an isomorphism (since the fibers
of T ∗M and W+⊗L have the same dimension). Since σ is L2-perpendicular
to the image of a 7→ a ·ψ, it must vanish identically, and hence dF (A,ψ, φ)
is surjective when ψ 6= 0, as claimed.

By the implicit function theorem

N = {(A,ψ, φ) ∈ B̃ × Ω2
+(M) : F (A,ψ, φ) = 0, ψ 6= 0}

= {(A,ψ, φ) ∈ B̃ × Ω2
+(M) : D+

Aψ = 0, F+
A = σ(ψ) + φ, ψ 6= 0}

is a submanifold of B̃ ×Ω2
+(M) whose tangent space at the point (A,ψ, φ)

is
T(A,ψ,φ)N = {(a, ψ′, φ′) : L(a, ψ′) = (0, 0, φ′)},

where
L(a, ψ′) = (D+

Aψ
′ − ia · ψ, δa, (da)+ − 2σ(ψ,ψ′)).

In this last formula, L is an elliptic operator,

L : Γ(W+ ⊗ L)⊕ Ω1(M)→ Γ(W− ⊗ L)⊕ Ω̃0(M)⊕ Ω2
+(M),

the symbol Ω̃0(M) denoting the space of smooth functions on M which
integrate to zero.

We claim that the projection

π : N → Ω2
+(M), defined by π(A,ψ, φ) = φ,

is a Fredholm map. Indeed, the kernel of dπ is immediately seen to be the
kernel of L, while

(Image of dπ) = {φ′ ∈ Ω2
+ : (0, 0, φ′) = L(a, ψ′) for some a, ψ′ }

= (Image of L) ∩ ({0} ⊕ {0} ⊕ Ω2
+).
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Since L is an elliptic operator, the image of dπ is closed and of finite codi-
mension.

To show that the cokernel of dπ has the same dimension as the cokernel
of L, it suffices to show that

(Γ(W− ⊗ L)⊕ Ω̃0(M)⊕ {0}) ∩ (Image of L)⊥ = {0}. (3.12)

But if
(σ, u, 0) ∈ Γ(W− ⊗ L)⊕ Ω̃0(M)⊕ Ω2

+(M)

is perpendicular to the image of L, then D−Aσ = 0, and (ia ·ψ, σ) = (δa, u),
for all a ∈ Ω1(M). We can define a one-form b on M by

〈b, a〉 = 〈ia · ψ, σ〉.

and since D+
Aψ = 0 and D−Aσ = 0, it follows from (2.17) that δb = 0. Thus

(b, b) = (ib · ψ, σ) = 0 ⇒ b = 0 ⇒ 〈ia · ψ, σ〉 = 0,

for all a ∈ Ω1(M). It follows that σ = 0 on a nonempty open subset of
M , and by the Unique Continuation Theorem once again, σ ≡ 0 and hence
(δa, u) = 0 for all a ∈ Ω1. Thus u = 0 and (3.12) holds.

Choose φ to be a regular value of π. Then π−1(φ) is a submanifold of
N whose dimension is the index of L, which is one more than the index of

L0 = D+
A ⊕ δ ⊕ d

+,

since we replaced Ω0(M) by Ω̃0(M). The index we want is a real index, so
the index of D+

A given by the Atiyah-Singer index must be doubled in the
present calculation. We find that

real index of L = 2(complex index of D+
A)− b+

= −τ(M)
4

+ c21(L)[M ]− b+.

Thus the moduli space M̃φ = π−1(φ) is indeed a smooth submanifold of
the required dimension, so long as we can arrange that ψ 6= 0.

If b+ > 0, we can choose φ so that it does not lie within the affine
subspace Π of codimension b+ described in the Proposition from §1.9. In
this case, there are never any solutions (A,ψ, φ) to the perturbed Seiberg-
Witten equations with ψ = 0, and the theorem is proven.

In the case where b+ = 0 we need a special argument to handle the
possibility that ψ = 0. For this, we define a modified map

F0 : B̃ × Ω2
+(M)→ Γ(W− ⊗ L)× Ω2

+(M)
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which omits the quadratic term,

F0(A,ψ, φ) = (D+
Aψ, F

+
A − φ).

The above argument then provides a submanifold

N0 = {(A,ψ, φ) ∈ B̃ × Ω2
+(M) : D+

Aψ = 0, F+
A = φ, ψ 6= 0},

and once again π : N0 → Ω2
+(M) is a Fredholm map whose Fredholm index

is the index of the map D+
A ⊕ (δ ⊕ d+). Since b+ = 0, the summand

δ ⊕ d+ : Ω1(M) −→ Ω̃0(M)⊕ Ω2
+(M)

and by hypothesis the Fredholm index of D+
A is positive. For a given φ ∈

Ω2
+(M), π−1(φ) consists of the pairs (A,ψ) such thatD+

Aψ = 0 and F+
A = φ.

By the Sard-Smale theorem, there is a residual set V of φ ∈ Ω2
+(M), for

which D+
A is surjective. We note that V must be an open set.

Thus if b+ = 0, dF (A,ψ, φ) is surjective when either ψ 6= 0 or φ ∈ V ,
and

Ñ = {(A,ψ, φ) ∈ B̃ × Ω2
+(M) : F (A,ψ, φ) = 0, φ ∈ V }

is a submanifold by the implicit function theorem. The above argument
then shows that for generic φ ∈ V , M̃φ = π−1(φ) is a smooth submanifold
of the required dimension, finishing the proof of the theorem when b+ = 0.

Orientation of the moduli space: To finish the proof of Transversality
Theorem 1, we need to show that the moduli space M̃φ is oriented. This
requires some results from the theory of families of Fredholm operators
(presented, for example, in the Appendix to [3] or in Chapter III, §7 of
[24]). In particular, we need the notion of the determinant line bundle for
a family of Fredholm operators, the operators depending upon a parameter
which ranges through a smooth manifold.

To make this precise, we suppose that p 7→ L(p) is a family of Fred-
holm operators on a real Hilbert space H, say L(p) : H → H, depending
continuously on p ∈ M , where M is a finite-dimensional compact smooth
manifold. Then by Proposition A.5 on page 156 of [3], there is a closed
linear subspace V ⊂ H of finite codimension such that

1. V does not intersect the kernel of L(p) for any p ∈M .

2. (L(p)(V )) has constant codimension and p 7→ H/(L(p)(V )) is a finite-
dimensional vector bundle E over M .

3. The linear maps L(p) induce a vector bundle map L̃ : (H/V )×M →
E.
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We can then define the determinant line bundle of L by

det(L) = Λmax((H/V )×M)⊗ [Λmax(E)]∗,

where max denotes the rank of the vector bundle in question.
We claim that the determinant line bundle is independent of the choice

of V . Indeed, if V1 is a second choice of linear subspace satisfying the above
conditions, we can assume without loss of generality that V1 ⊂ V , and then

H

V1

∼=
H

V
⊕ V

V1
, E ∼= E1 ⊕

V

V1
,

where E1 is the line bundle whose fiber at p is H/(L(p)(V )). Since

Λmax(W1 ⊕W2) ∼= Λmax(W1)⊗ Λmax(W2),

Λmax(W )⊗ Λmax(W ∗) ∼= Θ,

Θ being the trivial line bundle, we see that

Λmax((H/V1)×M)⊗ [Λmax(E1)]∗ ∼= Λmax((H/V )×M)⊗ [Λmax(E)]∗.

Now we can use the exact sequence

0→ Ker(L(p))→ H

V
→ H

L(p)(V )
→ Coker(L(p))→ 0

to show that there is a natural isomorphism

det(L)(p) ∼= Λmax(Ker(L(p)))⊗ [Λmax(Coker(L(p)))]∗.

The key point of this construction is that the determinant line bundle of a
family of elliptic operators L is well-defined even though the dimensions of
the kernels and cokernels vary from point to point.

It is not difficult to extend the above discussion to families of Fredholm
maps, L(p) : H1 → H2, between two different Hilbert spaces. In our case,
we have a family of surjective linear operators (A,ψ) ∈ M̃φ 7→ LA,ψ which
are Fredholm on the suitable L2

k completions, with

Ker(LA,ψ) = TA,ψ(M̃φ).

Hence if d is the dimension of the moduli space, the determinant line bundle
of L is the top exterior power of the tangent bundle to M̃φ,

det(L) = ΛdKer(L) = Λd(M̃φ).
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Thus a nowhere zero section of det(L) will give an orientation of M̃φ.
If we define a family of elliptic operators Lt, for t ∈ [0, 1], by

Lt(a, ψ′) = (D+
Aψ
′ − ita · ψ, δa, (da)+ − 2tσ(ψ,ψ′)),

the determinant line bundle det(Lt) is defined for every t and depends
continuously on t. Thus the bundles det(Lt) are all isomorphic, and it
suffices to construct a nowhere zero section of det(L0), where L0 = D+

A ⊕
δ ⊕ d+. But

det(L0) = det(D+
A)⊗ det(δ ⊕ d+).

The first factor has a nowhere zero section which comes from the orienta-
tions of the kernel and cokernel of D+

A defined by complex multiplication,
whereas the second factor inherits a nowhere zero section from an orienta-
tion of H2

+(M). Thus det(L0) is trivialized, which in turn trivializes the top
exterior power of the tangent space to the moduli space, thereby orienting
the moduli space and finishing the proof of the theorem.

Transversality Theorem 2. Let M be a compact oriented simply con-
nected smooth four-manifold with a spinc-structure. If b+(M) > 0, then for
generic choice of self-dual two-form φ,Mφ is an oriented smooth manifold,
whose dimension is given by the formula

dim(Mφ) = 2(index of D+
A)− b+ − 1,

or equivalently

dim(Mφ) = 〈c1(L)2, [M ]〉 − 1
4

(2χ(M) + 3τ(M)). (3.13)

Proof: Note that a solution to the perturbed Seiberg-Witten equations with
ψ = 0 will occur only if c1(L) contains a connection with F+

A = φ, and this
will occur for φ lying in a subspace Π of Ω2

+(M) of codimension b+ ≥ one,
by the Proposition of §1.9.

This theorem therefore follows from the preceding one by dividing out
by the free S1-action, which decreases the dimension by one. The second
formula for the index follows from the Atiyah-Singer Index Theorem applied
to D+

A .

Remark. Note that for the moduli space to have nonnegative formal di-
mension,

c1(L)2[M ] ≥ τ(M)
4
− b+ − 1,
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and hence for any unitary connection on L,

1
4π2

∫
M

[|F+
A |

2 − |F−A |
2]dV ≥ τ(M)

4
− b+ − 1,

or ∫
M

|F−A |
2dV ≤

∫
M

|F+
A |

2dV − (4π2)
(
τ(M)

4
− b+ − 1

)
. (3.14)

This, together with an extension of inequality (3.6) to the case of nonzero
φ, shows that

∫
M
|FA|2dV is bounded, and hence for generic φ, the mod-

uli space given by the Transversality Theorem 2 will be empty except for
finitely many line bundles L.

3.5 The intersection form

We now describe some of the classical topological invariants of simply con-
nected four-dimensional manifolds.

Let M be a compact simply connected four-manifold. The intersection
form on integer cohomology is a symmetric bilinear map

Q : H2(M ; Z)×H2(M ; Z)→ Z,

defined to be the composition of the cup product

H2(M ; Z)×H2(M ; Z)→ H4(M ; Z)

with the standard isomorphism of H4(M ; Z) to Z which pairs an element
of H4(M ; Z) with the orientation class of M .

The intersection form can also be defined on de Rham cohomology by
integration of differential forms. Indeed, we can let

Q̃ : H2(M ; R)×H2(M ; R)→ R by Q̃([α], [β]) =
∫
M

α ∧ β.

In the case where M is simply connected, it follows from the universal
coefficient theorem that

H2(M ; Z) ∼= Hom(H2(M ; Z),Z),

a free abelian group. This group lies inside the real cohomology as a lattice,

H2(M ; Z) = {[α] ∈ H2(M ; R) : the integral
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of α over any compact surface in M is an integer}.

The restriction of Q̃ to H2(M ; Z) is integer-valued, and this restriction is
the intersection form defined before.

Finally, we can also regard the intersection form as defined on integer
homology H2(M ; Z). To see this, we need to utilize an important fact from
the topology of four-manifolds: any element of H2(M ; Z) can be represented
by a compact oriented surface Σ which is embedded in M . One way of
proving this is to note that since M is simply connected, it follows from
the Hurewicz isomorphism theorem that H2(M ; Z) ∼= π2(M) and hence any
element of H2(M ; Z) can be represented by a smooth map f : S2 →M . We
can arrange, after a possible perturbation, that this map be an immersion
with transverse self-intersections, and the self-intersections can be removed
by surgeries, each of which replaces two intersecting disks by an annulus.
The result is that a given element of H2(M ; Z) can be represented by an
embedded surface which may have several components, each of which may
have arbitrary genus.

Using this fact, we can define a map

µ : H2(M ; Z)→ H2(M ; Z)

as follows: An element of H2(M ; Z) can be represented by a compact ori-
ented surface Σ. This surface Σ lies within a small tubular neighborhood
V , the image under the exponential map of an ε-neighborhood of the zero
section in the normal bundle of Σ in M . The Thom form on the total space
of the normal bundle, chosen as described in §1.6 to have compact support
within the given ε-neighborhood, can be pushed forward under the expo-
nential map to a closed two-form ΦΣ which has compact support contained
within V . Extending ΦΣ by zero to all of M gives a closed two-form defined
on M , which we still denote by ΦΣ. If Σ′ is an oriented embedded surface
in M which has transverse intersection with Σ, the integral of ΦΣ over Σ′

will be an integer, since the integral of the Thom form over any fiber is an
integer. In fact this integer is exactly the intersection number of Σ with Σ′

as described at the end of §1.6. Thus the de Rham cohomology class [ΦΣ]
of ΦΣ lies in the image of H2(M ; Z) under the coefficient homomorphism.
We set

µ([Σ]) = [ΦΣ] ∈ H2(M ; Z).

By the Classification Theorem for Complex Line Bundles, an element
of H2(M ; Z) is the first Chern class of a complex line bundle L over M .
Choose a smooth section σ : M → L which has transverse intersection with
the zero section, and let

Zσ = σ−1(zero section).
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If ΦZσ is the differential form constructed in the previous paragraph, the
integral of ΦZσ over any compact oriented surface Σ′ is the intersection
number of Zσ with Σ′, which is just 〈c1(L),Σ′〉, by the Corollary in §1.6.
In particular, we see that that [ΦZσ ] = c1(L) and hence

NZσ = L|Zσ, (3.15)

which is sometimes called the adjunction formula (see [18], page 146). Thus
µ([Zσ]) = c1(L), and µ must be onto. Since H2(M ; Z) and H2(M ; Z) are
free abelian groups of the same rank, µ is an isomorphism. (The fact that
µ is an isomorphism is one manifestation of Poincaré duality.)

If β is a smooth two-form on M it follows quickly from Fubini’s theorem
that ∫

M

ΦΣ ∧ β =
∫

Σ

i∗β,

where the i on the right denotes the inclusion of Σ in M . Thus

Q(µ([Σ]), [β]) =
∫

Σ

i∗β = 〈[Σ], [β]〉.

Finally, we can use the isomorphism µ to define the intersection form on
homology,

Q : H2(M ; Z)×H2(M ; Z)→ Z by Q([Σ], [Σ′]) = Q(µ([Σ]), µ([Σ′])).

We therefore have several equivalent ways of regarding Q:

Q([Σ], [Σ′]) =
∫
M

ΦΣ ∧ ΦΣ′ =
∫

Σ

ΦΣ′ =
∫

Σ′
ΦΣ

= intersection number of Σ with Σ′,

when Σ and Σ′ intersect transversely. The last interpretation of Q is the
motivation for calling it the intersection form.

Since H2(M ; Z) ∼= Hom(H2(M),Z), any group homomorphism φ :
H2(M ; Z)→ Z is of the form

φ(b) = 〈[M ], b〉 = Q(µ([M ]), b),

for some [M ] ∈ H2(M ; Z). This implies that Q is a unimodular symmetric
bilinear form. Thus in terms of a basis for the free abelian group H2(M ; Z),
the intersection form Q can be represented by a b2 × b2 symmetric matrix
with integer entries and determinant ±1.
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The integer-valued intersection form Q carries more information than
the real-valued form Q̃ defined on de Rham cohomology. Indeed, the
integer-valued symmetric bilinear forms represented by the matrices(

0 1
1 0

)
,

(
1 0
0 −1

)
are equivalent over the reals, but not over the integers because

(x y )
(

0 1
1 0

)(
x
y

)
= 2xy

takes on only even values, while

(x y )
(

1 0
0 −1

)(
x
y

)
= x2 − y2

can be either even or odd. in general, we say that a unimodular symmetric
bilinear form

Q : Zr × Zr → Z

is even if Q(a, a) is always even; otherwise it is said to be odd .
It is an interesting problem to classify unimodular symmetric bilinear

forms of a given rank up to isomorphism. Indefinite unimodular symmetric
bilinear forms are classified in [28]; in the odd case, they are direct sums of
(±1)’s, while in the even case, they are direct sums of H’s and E8’s, where
these forms are represented by the matrices

H =
(

0 1
1 0

)
and

E8 =



−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


.

This last matrix is negative-definite, has only even entries down the diag-
onal, and has determinant one. It can be shown to be the smallest rank
matrix with these properties.
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On the other hand, there are often many definite forms of a given rank.
For example, in the even case, there are over 1051 negative definite forms
of rank 40!

Here are the intersection forms of some important simply connected
four-manifolds.

Example 1. The intersection form of the complex projective plane P 2C
with its usual orientation is represented by the matrix

( 1 ) .

This follows immediately from the fact that the cohomology ring of P 2C is
generated by an element a ∈ H2(P 2C) subject to a single relation a3 = 0.
The intersection form of the complex projective plane with the opposite
orientation, denoted by P 2C, is

(−1 ) .

Example 2. The intersection form of S2×S2 is represented by the matrix
H. Indeed, if ω1 and ω2 are the area forms of the two factors, normalized
to give area one, (∫

S2×S2
ωi ∧ ωj

)
=
(

0 1
1 0

)
.

Example 3. The K3 surface is the smooth complex hypersurface in P 3C
which is defined in homogeneous coordinates by the equation

(z0)4 + (z1)4 + (z2)4 + (z3)4 = 0.

As we will see in §3.8, this four-manifold has an even intersection form and
the topological invariants

b+ = 3, b− = 19.

It then follows from the classification of indefinite forms that the intersec-
tion form of this algebraic surface is

E8⊕ E8⊕H ⊕H ⊕H.

Example 4. Let M1 and M2 be two compact oriented four-manifolds.
Choose points p ∈ M1 and q ∈ M2 and positively oriented coordinate
systems (U, φ) and (V, ψ) centered at p and q. By rescaling the coordinates
if necessary, we can arrange that

B2(0) ⊂ φ(U), B2(0) ⊂ ψ(V ),
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where B2(0) is the ball of radius two about the origin. We form the oriented
connected sum M1]M2 as the quotient of

[M1 − φ−1(B1/2(0))] ∪ [M2 − ψ−1(B1/2(0))]

by identifying φ−1(x) with ψ−1(x/|x|2). This corresponds to taking a disk
out of each manifold and identifying the boundaries by an orientation re-
versing diffeomorphism. If M1 and M2 have intersection forms Q1 and Q2

respectively, then the oriented connected sum M1]M2 has intersection form
Q1 ⊕Q2.

An element a ∈ H2(M ; Z) is said to be characteristic if it satisfies the
criterion

Q(a, b) = Q(b, b) mod 2, for all b ∈ H2(M ; Z).

Theorem. If L is the virtual line bundle for a spinc structure on a smooth
four-manifold M , then c1(L2) is a characteristic element. Conversely, any
characteristic element is c1(L2) for some spinc structure on M .

Proof: If E is a genuine line bundle on M , then L ⊗ E corresponds to a
second spinc structure. Using (2.19), we calculate the difference between
the indices of the Dirac operators with coefficients in L and L ⊗ E, and
conclude that ∫

M

c1(L) ∧ c1(E) +
1
2

∫
M

(c1(E))2 ∈ Z,

which immediately implies that

1
2
Q(c1(L2), c1(E)) +

1
2
Q(c1(E), c1(E)) = 0, mod Z.

Since any element of H2(M ; Z) is the first Chern class of some line bundle
E, we conclude that c1(L2) is characteristic.

We prove the converse using the the fact that every oriented four-
manifold has a spinc structure. Thus there exists at least one characteristic
element a which corresponds to a spinc structure with some virtual line
bundle, which we call L. If a′ is a second characteristic element, then

Q(a′ − a, b) = 0 mod 2, for all b ∈ H2(M ; Z),

from which it follows that a′ − a is divisible by two. Thus there is a line
bundle E over M with c1(E2) = a′ − a, and we can construct a spinc

structure on M with virtual line bundle L⊗E. Clearly c1((L⊗E)2) = a′.
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Corollary. A smooth four-manifold has an even intersection form if and
only if it has a spin structure.

Proof: Simply note that Q is even if and only if 0 is a characteristic element.

The intersection form is the basic topological invariant of a compact simply
connected topological four-manifold. In fact, a classical theorem of J. H. C.
Whitehead and John Milnor states that two such four-manifolds are homo-
topy equivalent if and only if they have the same intersection form. More
recently, Michael Freedman showed that any unimodular symmetric bilin-
ear form is realized as the intersection form of a compact simply connected
topological four-manifold, and that there are at most two such manifolds
with the same intersection form [15].

Not all unimodular symmetric bilinear forms are realized on smooth
four-manifolds, however. In particular, although E8 can be realized as the
intersection form of a compact oriented topological four-manifold, it cannot
be realized on a smooth manifold, because such a manifold would be spin
by the above theorem and hence would contradict Rochlin’s theorem.

3.6 Donaldson’s Theorem

There is a very striking restriction on the definite intersection forms that
can be realized on a a simply connected four-manifold which possesses a
smooth structure:

Theorem (Donaldson [8]). The only negative definite unimodular form
represented by a compact smooth simply connected four-manifold is the
standard form Q = −I.

There are two cases to the proof, Q even and Q odd. We will only give a
complete proof in the even case—we will show that an even negative definite
form (such as E8⊕ E8) cannot be realized on a smooth four-manifold.

In the even case, we can take L to be the trivial bundle and use Transver-
sality Theorem 1 of §3.4. Since b+ = 0 and we can assume without loss of
generality that b− > 0, this theorem implies that M̃φ is a smooth manifold
of dimension k = b−/4 > 0, and the quotient manifold Mφ is a smooth
manifold of dimension k − 1 except for a singularity at the point [dA, 0],
dA being the unique connection for which F+

A = φ. The tangent space to
M̃φ at dA is simply the space of harmonic spinor fields ker(D+

A) on which
the group S1 of unit-length complex numbers acts in the usual fashion
by complex multiplication. Hence Mφ is a smooth manifold except for a
singularity at [dA, 0], which is a cone on Pm−1C, where 2m = k.
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Now we recall the fiber bundle (3.9) in which the total space B̃∗ is
homotopy equivalent to the total space of the universal sphere bundle E.
We have a commutative diagram

M̃φ − {[dA, 0]} ⊂ B̃∗ = E

↓ ↓ ↓

Mφ − {[dA, 0]} ⊂ B∗ = P∞C

The bundle E over P∞C restricts to a bundle over Pm−1C which we easily
verify to be homotopy equivalent to the Hopf fibration

S1 → S2m−1 → Pm−1C.

Hence the restriction of E to Pm−1C has nontrivial first Chern class, and
since the cohomology of Pm−1C is a truncated polynomial algebra,

H∗(Pm−1C; Z) ∼= P [a]/(am),

where a has degree two, we see that∫
Pm−1C

(c1(E))m−1 6= 0 ⇒ [Pm−1C] 6= 0

as an element of H2m−2(B∗; Z). But this contradicts the fact that Mφ

exhibits Pm−1C as a boundary in B∗.
Here is a sketch of how to proceed if in the case where Q is odd. Note

that if the intersection form of M is negative definite, for any choice of
virtual line bundle L, we can always construct a unique connection such
that F+

A = φ giving rise to a reducible solution [dA, 0] ∈ Mφ,L. Thus the
argument in the preceding paragraphs will again yield a contradiction so
long as we can find a characteristic element [L2] such that the corresponding
moduli space Mφ has positive formal dimension.

Since b+ = b1 = 0, this will occur exactly when the index of D+
A is

positive. By the Atiyah-Singer index theorem, this means that

−τ(M)
8

+
1
2

∫
M

c1(L)2 =
1
8

(b− +Q(a, a)) > 0, or −Q(a, a) < b2,

since b2 = b−. An argument of Elkies [13] shows that either Q = −I
or there is a characteristic element satisfying this last inequality, thereby
completing this approach to proving Donaldson’s theorem.

Donaldson’s theorem gives a complete answer to the question of which def-
inite unimodular symmetric bilinear forms can be realized as intersection
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forms on compact simply connected smooth four-manifolds—the only pos-
sibilities are the intersection forms of

P 2C ] · · · ] P 2C and P 2C ] · · · ] P 2C.

One could ask a similar question for the indefinite forms. All the odd
indefinite forms can be realized on connected sums of P 2C’s and P 2C’s. If
s ≥ 3r, the even form

2r(E8)⊕ sH

can be realized on a connected sum of r copies of the K3 surfaces and s−3r
copies of S2×S2. One of the striking successes of the Seiberg-Witten theory
is a theorem due to Furuta: If 2rE8⊕ sH is realized on a compact simply
connected smooth four-manifold, then s ≥ 2r+1. (See [17] or [1] for further
details.)

Coupled with results of Freedman, which are described in [15], Don-
aldson’s Theorem implies that there are smooth four-manifolds which are
homeomorphic but not diffeomorphic to R4. A relatively elementary pre-
sentation of the basic idea is presented in [14], §1.

3.7 Seiberg-Witten invariants

For four-manifolds with indefinite intersection form, the Seiberg-Witten
equations provide a collection of invariants which depend upon the choice
of a spinc structure. We will see that these invariants sometimes allow us to
distinguish between smooth structures on a given topological four-manifold.

Let L be a virtual complex line bundle over M such that W+ ⊗ L is
defined as a genuine complex vector bundle. Assuming that b+(M) > 0,
we can then form the moduli space ML,φ, which depends upon L. Ac-
cording to the Transversality Theorem 2 from §3.4, this moduli space is a
compact manifold for a generic choice of φ. The key point in the argument
is that a solution to the perturbed Seiberg-Witten equations with ψ = 0
can occur only if c1(L) contains a connection with F+

A = φ. This will not
occur generically, but only for φ lying in an affine subspace Π of Ω2

+(M) of
codimension b+ ≥ one, by the Proposition at the end of §1.9.

Of course, the moduli spaceML,φ depends upon the choice of Rieman-
nian metric on M and the choice of φ. If φ1 and φ2 are two choices and
b+ ≥ 2, then a generic path γ from φ1 to φ2 will miss the subspace Π. It fol-
lows from Smale’s infinite-dimensional generalization of transversality (see
[35], Theorems 3.1 and 3.3) that W = π−1(γ) is an oriented submanifold
of N such that

∂W =ML,φ2 −ML,φ1 .
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In other words, different choices of φ yield cobordant moduli spaces. It
follows that if [α] is any cohomology class in B∗, then

〈[α], [ML,φ1 ]〉 = 〈[α], [ML,φ2 ]〉. (3.16)

Similarly, changing the Riemannian metric on M alters the moduli space
by a cobordism.

Definition. Suppose that b+ ≥ 2 and that the dimension ofML,φ is even.
Then the Seiberg-Witten invariant of L is

SW(L) = 〈cd1, [ML,φ]〉, where d =
1
2

dimML,φ,

c1 is the first Chern class of the complex line bundle E associated to the
S1-bundle B̃∗ → B∗, and φ is chosen to be generic.

Equation (3.16) and the corresponding equation for change of Riemannian
metrics shows that the Seiberg-Witten invariants are well-defined.

If (dA, ψ) is a solution to the Seiberg-Witten equations for L, the (dA∗ , J◦
ψ) is a solution for L−1, where J : W+ ⊗ L → W+ ⊗ L−1 represents
conjugate-linear multiplication on the right by the quaternion J . From this
fact, one can show that SW (L−1) = ±SW (L).

If b+ = 1, the moduli spaceML,φ is still a smooth manifold for generic
choice of φ so long as φ does not lie in a certain hyperplane Π ⊆ Ω2

+(M); Π
is the image of Ω1(M) under the map a 7→ (FA0 + da)+, where FA0 is the
curvature of a base connection in L. By Hodge theory, Π is perpendicular
to H2

+(M) in the orthogonal direct sum decomposition

Ω2
+(M) = H2

+(M)⊕ d+(Ω1(M)).

However, two moduli spaces ML,φ1 and ML,φ1 are not necessarily cobor-
dant if φ1 and φ2 belong to different components of Ω2

+(M)−Π.
In particular, we can define SW (L) when L 6= 0 and 〈c1(L)2, [M ]〉 ≥ 0.

Indeed, these conditions imply that the curvature of any connection in L
satisfies F+

A 6= 0, and hence no connection satisfies F+
A = φ, when φ is

sufficiently small, so we can take

SW(L) = 〈cd1, [ML,φ]〉, for generic small choice of φ.

Theorem (Witten [41]). If an oriented Riemannian manifold has a Rie-
mannian metric of positive scalar curvature, all of its Seiberg-Witten in-
variants vanish.
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Proof: This follows immediately from the Lemma of §3.3 that the modified
Seiberg-Witten equations have no solutions when the scalar curvature is
positive and φ is sufficiently small.

Manifolds which admit metrics of positive scalar curvature include S4, P 2C
and P 2C. A theorem of Gromov and Lawson [19] implies that if M and N
are four-manifolds of positive scalar curvature, their connected sum M]N
also admits a metric of positive scalar curvature. Thus Witten’s theorem
implies that the manifolds

k(P 2C) ] l(P 2C)

all have vanishing Seiberg-Witten invariants.
The simplest examples of manifolds with nonvanishing Seiberg-Witten

invariants come from the theory of simply connected complex algebraic
surfaces, as we will see in the next two sections. Such algebraic surfaces
are of simple type. The formal dimension of the moduli space ML is zero
when

c1(L2)2[M ] = 3τ(M) + 2χ(M),

which according to (2.22) occurs exactly when c2(W+ ⊗ L) = 0. The
following lemma explains the relationship between this last condition and
the existence of almost complex structures.

Lemma. Homotopy classes of almost complex structures on M are in
one-to-one correspondence with line bundles L2 over M such that

1. W+ ⊗ L exists as a bundle,

2. c1(L2)2[M ] = 3τ(M) + 2χ(M).

Proof: An almost complex structure J on M yields a spinc-structure as
we described in §2.3. If L is the corresponding virtual line bundle, then
W+ ⊗ L exists as a genuine vector bundle and divides as a Whitney sum,

W+ ⊗ L = Θ⊕ L2,

where Θ is the trivial line bundle. It follows from Proposition 4 from §1.5
that

ch(W+ ⊗ L) = 1 + ch(L2) = 2 + c1(L2) +
1
2

(c1(L2))2.

Thus c1(W+ ⊗ L) = c1(L2), and by (2.20), c2(W+ ⊗ L) = 0. The second
condition of the Lemma now follows from (2.22).

To prove the converse, note that if the conditions in the statement of
the Lemma hold, then according to (2.22), c2(W+⊗L) = 0. It then follows
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from obstruction theory for complex vector bundles of rank two that W+⊗L
has a nowhere vanishing section ψ. Thus

ω =
√

2
σ(ψ)
|σ(ψ)|

is a self-dual two-form on M of length
√

2. Such a self-dual two-form defines
an almost complex structure J(L2) on M by

ω(Jx, ·) = −〈x, ·〉.

It is readily checked that the two construction we have described are
inverse to each other.

3.8 Dirac operators on Kähler surfaces

Among the most important examples of smooth four-manifolds are Kähler
surfaces, Kähler manifolds of complex dimension two. In fact, it is relatively
easy to do computations with these manifolds.

Recall that a Riemannian metric 〈 , 〉 on a complex manifold M is called
Hermitian if

〈Jx, Jy〉 = 〈x, y〉, for all x, y ∈ TpM.

In this case we can define a rank two covariant tensor field ω on M by

ω(x, y) = 〈Jx, y〉. (3.17)

Since

ω(y, x) = 〈Jy, x〉 = 〈J2y, Jx〉 = −〈y, Jx〉 = −〈Jx, y〉 = −ω(x, y),

we see that ω is skew-symmetric. Thus ω is a two-form, called the Kähler
form on M .

Definition. A Kähler manifold is a complex manifold M with a Hermitian
metric 〈 , 〉 whose Kähler form is closed.

Let us consider the case where M has dimension four. In terms of a moving
orthonormal frame (e1, e2, e3, e4) such that e2 = Je1 and e4 = Je3, we can
express the Kähler form as

ω = e1 ∧ e2 + e3 ∧ e4.
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This formula makes it clear that the Kähler form ω is self-dual when the
complex manifold is given its standard orientation. The Kähler condition
dω = 0 therefore implies also that δω = 0, so ω ∈ H2

+(M).

Example 1. The complex projective space PNC can be made into a
Kähler manifold. To do this, we let π : CN+1 − {0} → PNC denote the
usual projection. If U is an open subset of PNC and Z : U → CN+1 − {0}
is a holomorphic map with π ◦ Z = id, we set

ω = i∂∂̄ log(|Z|2) = i

N∑
i,j=1

∂2

∂zi∂z̄j
log(|Z|2)dzidz̄j .

It is readily checked that ω is independent of the choice of holomorphic
section Z. Indeed, if Z = fW , where f is a nonzero holomorphic complex-
valued function on U , then

i∂∂̄ log(|Z|2) = i∂∂̄[log(|f |2) + log(|W |2)]

= i∂∂̄ log f + i∂̄∂ log f̄ − i∂∂̄ log(|W |2) = i∂∂̄ log(|W |2).

Moreover, one checks immediately that ω is closed, and a calculation in
local coordinates shows that it is of maximal rank (ωN 6= 0). One uses
(3.17) in reverse to define a Hermitian metric on PNC which makes PNC
into a Kähler manifold with the Kähler form ω.

Example 2. Any complex submanifold of a Kähler manifold is itself a
Kähler manifold in the induced metric. According to a famous theorem
of Chow, compact complex submanifolds of PNC are projective algebraic
varieties without singularities, each describable as the zero locus of a finite
collection of homogeneous polynomials.

For example, given a positive integer n, we can consider the complex
surface Mn ⊂ P 3C defined in homogeneous coordinates by the polynomial
equation

P (z0, z1, z2, z3) ∼= (z0)n + (z1)n + (z2)n + (z3)n = 0. (3.18)

It follows from a theorem of Lefschetz on hyperplane sections (which is
proven on pages 156-159 of [18] and in §7 of [27]) that Mn is simply con-
nected. The other topological invariants of Mn can be calculated by re-
garding the polynomial P as a section of Hn, where H is the hyperplane
section bundle over P 3C.

The hyperplane section bundle H over PNC is defined via the open
covering {U0, . . . UN}, where

Ui = {[z1, . . . , zN ] ∈ PNC : zi 6= 0},
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by the transition functions gij = (zj/zi). Thus a complex linear form
a0z0 + · · ·+ aNzN defines a section of H with local representatives

σj = a0
z0

zj
+ · · ·+ aN

zN
zj
,

and similarly, any polynomial of degree n (such as the polynomial P oc-
curring in (3.18)) will define a section of Hn. By the adjunction formula
(3.15) the normal bundle to Mn is simply the restriction of Hn to Mn.

The hyperplane section bundle is the inverse of the universal bundle,
which has total space E∞ given by (1.22), as we described in §1.7. Recall
that the first Chern class of E∞ is −a, where a is the standard generator of
H2(PNC); Z) such that 〈[P 1C], a〉 = 1. (Equivalently, a is the cohomology
class of the Kähler form ω.) Thus the first Chern class of H is a, and the
Chern characters of these bundles are

ch(E∞) = e−a, ch(H) = ea.

Using Proposition 4 of §1.5, we see that

ch(Hn) = ena, ch(E⊥∞) = (N + 1)− e−a,

the latter equality following from the fact that E∞ ⊕ E⊥∞ is the trivial
bundle of rank N + 1.

On the other hand, we have an isomorphism

TPNC ∼= Hom(E∞, E⊥∞) = E∗∞ ⊗ E⊥∞ = H ⊗ E⊥∞;

to see this, note that complex lines in CN+1 near a given complex line
[z0, . . . , zN ] correspond to linear maps from the one-dimensional linear space
spanned by (z0, . . . , zN ) to its orthogonal complement. It follows that

ch(TPNC) = ch(H)ch(E⊥∞) = ea[(N + 1)− e−a] = (N + 1)ea − 1.

We can apply these calculations to our hypersurface M = Mn contained
in P 3C. Since

TP 3C = TM ⊕NM ∼= TM ⊕ (Hn)|M,

we see that

4ea − 1 = ch(TM) + ena or ch(TM) = 4ea − ena − 1,

where a now denotes the pullback of the standard generator of H2(PNC; Z)
to M . Hence

2 + c1(TM) +
1
2

[c1(TM)]2 − c2(TM) = 2 + (4− n)a+
1
2

(4− n2)a2,
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modulo terms of degree greater than four, from which we conclude that

c1(TM) = (4− n)a, c2(TM) = (n2 − 4n+ 6)a2.

As explained in detail in [18], pages 171 and 172, the Kähler surface
Mn intersects a generic line in P 3C in n points and therefore has degree n
in the sense of algebraic geometry. By a theorem of Wirtinger, its volume
is therefore n times as large as that of P 2C, and hence 〈a2, [Mn]〉 = n.
Therefore,

〈[c1(TM)]2, [M ]〉 = (4− n)2n, 〈c2(TM), [M ]〉 = n3 − 4n2 + 6n.

In particular, in the case n = 4, which gives the K3 surface described in
§3.5,

c1(TM) = 0 and 〈c2(TM), [M ]〉 = 24.

But we will see shortly (3.23) that c2(TM)[M ] = χ(M), the Euler charac-
teristic of M , and hence

b0 = b4 = 1 and b1 = b3 = 0 ⇒ b2 = 22.

Since M has a complex structure with first Chern class zero, it follows from
the Lemma at the end of the previous section that

3τ(M) + 2χ(M) = 0, which implies τ(M) = −16,

from which it follows that

b+ = 3 and b− = 19,

as we claimed in §3.5. Moreover, the complex structure defines a canonical
spinc structure on M with canonical bundle L2 satisfying c1(L2) = 0. Thus
Lmust be trivial, M4 must have a genuine spin structure and its intersection
form must be even.

A similar computation in the case n = 5 would yield

〈[c1(TM)]2, [M ]〉 = 5, 〈c2(TM), [M ]〉 = χ(M) = 55,

and since 5 + 3τ(M) + 2χ(M) = 0, we must have τ(M) = −35, which
implies that

b+ = 9 and b− = 44;

in this case, c1(L2) is odd and hence 0 is not characteristic, so the inter-
section form is odd. Clearly, we could do similar calculations for arbitrary
choice of n.
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On a complex manifold M , a (p, q)-form is a complex-valued differential
form which can be expressed in local complex coordinates (z1, . . . , zn) as∑

fi1···ip,j1···jqdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

We can decompose the space of complex-valued k-forms into forms of type
(p, q),

Ωk(M)⊗ C =
∑
p+q=k

Ωp,q(M), Ωp,q(M) = {(p, q)-forms}. (3.19)

The exterior derivative divides into two components,

d = ∂ + ∂̄, ∂ : Ωp,q(M)→ Ωp+1,q(M), ∂̄ : Ωp,q(M)→ Ωp,q+1(M),

and the Kähler condition implies the identities:

∂ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0, ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0.

The Hermitian metric 〈·, ·〉 on TM extends to TM ⊗ C so that the
extension is complex linear in the first variable and conjugate linear in the
second. This in turn defines a Hermitian metric on each ΛkT ∗M ⊗ C and
a Hermitian inner product (·, ·) on the space of smooth k-forms by

(θ, φ) =
∫
M

〈θ, φ〉(1/n!)ωn,

where ω is the Kähler form. Note that the decomposition (3.19) is orthog-
onal with respect to this inner product. We can therefore define formal
adjoints,

∂∗ : Ωp+1,q(M)→ Ωp,q(M), ∂̄∗ : Ωp,q+1(M)→ Ωp,q(M),

just as in §1.9, by requiring

(θ, ∂∗φ) = (∂θ, φ), (θ, ∂̄∗φ) = (∂̄θ, φ). (3.20)

In the case of complex surfaces, the Hermitian metric reduces the struc-
ture group to U(2), and the various representations of U(2) correspond
to the different types of tensor fields, sections of various associated vector
bundles. For example, the standard representation of U(2) on C2 yields
the complex tangent bundle TM , while the representation A 7→ tA−1 = Ā
yields the complex cotangent bundle whose sections are the (1, 0)-forms on
M . If the transition functions for TM are

gαβ : Uα ∩ Uβ → U(2),
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then the transition functions for the cotangent bundle are

tg−1
αβ = ḡαβ : Uα ∩ Uβ → U(2).

Sections of the conjugate of this bundle are either (0, 1)-forms or complex
vector fields—in the presence of a Hermitian metric, we can identify (0, 1)-
forms with complex vector fields.

The complex exterior power K = Λ2
CT
∗M of the cotangent bundle is

called the canonical bundle. Its sections are (2, 0)-forms on M and it has
transition functions

(det ◦ tg−1
αβ ) = det ◦ḡαβ : Uα ∩ Uβ → U(1).

The canonical bundle played a key role in the classification of complex
surfaces due to Enriques and Kodaira (see [21] or [5]). Conjugation gives
the anti-canonical bundle whose sections are the (0, 2)-forms and whose
transition functions are

det ◦gαβ : Uα ∩ Uβ → U(1).

We would like to relate all of this to the canonical Spin(4)c-structure
constructed in §2.3. Recall that the transition functions for the distin-
guished line bundle L2 selected by the Spin(4)c-structure are

det ◦gαβ : Uα ∩ Uβ → U(1),

so L2 is just the anti-canonical bundle. Moreover,

W+ ⊗ L ∼= W+ ⊗K−(1/2) ∼= Θ⊕K−1, (3.21)

where Θ denotes the trivial line bundle. On the other hand, since ρc ◦ j is
the usual representation of U(2) on C2,

W− ⊗ L ∼= TM, (3.22)

the tangent bundle of M with its almost complex structure. Observe that
it follows from (3.21) that c2(W+⊗L) = 0, and then from (2.22) and (2.23)
that c2(W− ⊗ L)[M ] = χ(M), the Euler characteristic of M . Hence, by
(3.22),

c2(TM)[M ] = χ(M). (3.23)

By the method given in §2.5, we can constuct a Spin(4)c connection on
W ⊗ L, with local representative

d− iaI − 1
4

4∑
i,j=1

ωijei · ej , (3.24)
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the local moving orthonormal frame (e1, e2, e3, e4) being chosen so that the
Kähler form is

e1 · e2 + e3 · e4 =


−2i 0 0 0

0 2i 0 0
0 0 0 0
0 0 0 0

 .

The local representative (3.24) can be rewritten in matrix form as

d− iaI − 1
2


−i(ω12 + ω34) (ω13 + ω42)− i(ω14 + ω23) 0 0

] i(ω12 + ω34) 0 0
0 0 ] ]
0 0 ] ]

 .

Since the Kähler form is parallel with repect to the Levi-Civita connection,

ω13 + ω42 = 0 and ω14 + ω23 = 0.

We determine a connection dA0 on K−(1/2) by setting

a =
1
2

(ω12 + ω34),

so that the induced connection on the trivial summand Θ of W+⊗L is the
trivial connection. The connection induced on the other summand K−1 is
then exactly the same as that induced by the Levi-Civita connection. (It
follows that the curvature of a Kähler surfaces is always of type (1, 1), a
fact that is also easy to prove directly.)

Proposition. In the Kähler case, the Dirac operator corresponding to the
Spin(4)c connection dA0 is

DA0 =
√

2(∂̄ + ∂̄∗), (3.25)

when we identify sections of Θ with (0, 0)-forms, sections of K−1 with
(0, 2)-forms, and sections of W− ⊗ L = TM with (0, 1)-forms.

Sketch of proof: It suffices to show that the two sides of the above equation
agree at a given point of M . A key feature of Kähler manifolds (discussed in
[18], Chapter 1, §7) is that one can choose local coordinates z1 = x1 + ix2,
z2 = x3 + ix4, which are “normal” at p, so that

gij(p) = δij , (∂gij/∂xk)(p) = 0.

This implies that covariant derivatives can be replaced by ordinary deriva-
tives of components at p. We set ei(p) = (∂/∂xi)(p) and choose

ε1(p), ε2(p) ∈ (W+ ⊗ L)p, ε3(p), ε4(p) ∈ (W− ⊗ L)p
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with respect to which (e1(p), . . . , e4(p)) are represented by the matrices
given in §2.4. By means of the isomorphisms (3.21) and (3.22), we can
make the identifications

ε1(p) = 1, ε2(p) =
1
2

(dz̄2 ∧ dz̄1)(p),

ε3(p) =
1√
2
dz̄1(p), ε4(p) =

1√
2
dz̄2(p),

in which the (1/
√

2)’s occur to normalize dz̄1(p) and dz̄2(p) to unit length.
At the point p, the Dirac operator can be expressed in matrix form as

0 0 − ∂
∂x1

+ i ∂
∂x2

− ∂
∂x3

+ i ∂
∂x4

0 0 ∂
∂x3

+ i ∂
∂x4

− ∂
∂x1
− i ∂

∂x2
∂
∂x1

+ i ∂
∂x2

− ∂
∂x3

+ i ∂
∂x4

0 0
∂
∂x3

+ i ∂
∂x4

∂
∂x1
− i ∂

∂x2
0 0

 .

Applying our identifications, we find that

DA0


f
0
0
0

 =


0
0

∂f
∂x1

+ i ∂f∂x2
∂f
∂x3

+ i ∂f∂x4

 =
√

2
(
∂f

∂z̄1
dz̄1 +

∂f

∂z̄2
dz̄2

)
,

which is just
√

2(∂̄f)(p). Similarly,

DA0


0
0
h1

h2

 =


#

∂h1
∂x3

+ i∂h1
∂x4
− ∂h2

∂x1
− i∂h2

∂x2
0
0

 .

Thus

the K−1-component of DA0(h1dz̄1 + h2dz̄2) =
√

2∂̄(h1dz̄1 + h2dz̄2).

If Π(0,2) denotes the orthogonal projection on (0, 2)-forms, then

DA0 =
√

2∂̄ : Ω(0,0)(M) −→ Ω(0,1)(M),

Π(0,2) ◦DA0 =
√

2∂̄ : Ω(0,1)(M) −→ Ω(0,2)(M).

The argument for the Proposition is completed by noting that the only
self-adjoint operator with these two properties is

√
2(∂̄ + ∂̄∗).
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Remark. Any other Spin(4)c connection is of the form dA = dA0 − ia, for
some real-valued one-form a on M . In the general case, the above proof
shows that

D+
A


f
0
0
0

 =


0
0

∂f
∂x1
− ia( ∂

∂x1
)f + i ∂f∂x2

+ a( ∂
∂x2

)f
∂f
∂x3
− ia( ∂

∂x3
)f + i ∂f∂x4

+ a( ∂
∂x4

)f

 =
√

2∂̄Af, (3.26)

where ∂̄A denotes the ∂̄-operator, twisted by the connection dA = dA0 − ia,
a being a globally defined one-form on M .

In the case of the canonical Spin(4)c-structure associated to a Kähler
surface, the Atiyah-Singer Index Theorem for the operator D+

A0
specializes

to one of the key theorems of the theory of complex surfaces:

Riemann-Roch Theorem for Kähler surfaces. The index of D+
A0

is
given by Noether’s formula

complex index of D+
A0

=
1
12
{c21(TM)[M ] + c2(TM)[M ]}.

Proof: According to the Index Theorem,

index of D+
A0

= −1
8
τ(M) +

1
8
c1(K−1)2[M ].

By the lemma from the preceding section,

−3τ(M) = 2χ(M)− c1(K−1)2[M ],

and hence
index of D+

A0
=

1
12
χ(M) +

1
12
c1(TM)2[M ].

The formula we want now follows from (3.23).

On the other hand, the index of ∂̄ + ∂̄∗ can also be calculated directly by
means of Hodge theory. We give only a brief indication of how this goes,
and refer the reader to [18] for a more complete discussion.

On a Kähler manifold, J and ? are parallel with respect to the Levi-
Civita connection, from which it follows that the Hodge Laplacian com-
mutes with orthogonal projection onto the space of (p, q)-forms, and we
can therefore write

Hk(M) =
∑
p+q=k

Hp,q(M),
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where Hp,q(M) is the space of harmonic (p, q)-forms. Moreover, the Hodge
Laplacian can be expressed in terms of the operator ∂̄ and its adjoint:

∆ = 2(∂̄ + ∂̄∗)2.

In the case of a Kähler surface, it follows that

Index of (∂̄ + ∂̄∗) = dimH0,0(M) + dimH0,2(M)− dimH0,1(M). (3.27)

Note that under conjugation, we have H0,2(M) ∼= H2,0(M).
Since d = ∂̄ on Ω2,0(M) and (0, 2)-forms are automatically self-dual,

elements of H2,0(M) are just the ∂̄-closed (2, 0)-forms. These are just the
holomorphic sections of the canonical bundle K, and the dimension of the
space of such sections is called the geometric genus of M . We denote the
geometric genus by pg. If M is simply connected, H0,1(M) = 0 and it
follows from (3.27) that

Index of (∂̄ + ∂̄∗) = 1 + pg.

Noether’s formula now yields

1 + pg =
1
12
{c21(TM)[M ] + c2(TM)[M ]}.

The invariants on the right-hand side can be reexpressed in terms of Euler
characteristic and signature,

1 + pg =
1
4
{τ(M) + χ(M)} =

1
2

(b+ + 1),

so b+ = 2pg + 1. In particular, b+ is odd for any simply connected Kähler
surface. Holomorphic sections of K or antiholomorphic sections of K−1 are
self-dual harmonic forms of type (2, 0) or (0, 2), and these fill out a linear
space of dimension 2pg. We therefore conclude that the space of self-dual
harmonic forms of type (1, 1) is exactly one-dimensional, and any self-dual
harmonic two-form of type (1, 1) must be a constant multiple of the Kähler
form.

3.9 Invariants of Kähler surfaces

We are finally in a position to describe some compact simply connected
four-manifolds which have nontrivial Seiberg-Witten invariants. In this
section, we will calculate the Seiberg-Witten invariant SW (L) in the case
where M is a Kähler manifold with canonical bundle K and L = K−1/2.
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Recall that in this case, W+ = Θ⊕K−1, where Θ is the trivial line bundle.
The following theorem is due to Witten [41]:

Theorem. A simply connected Kähler surface with b+ ≥ 2 must satisfy
SW (K−1/2) = ±1.

Proof: Let A0 denote the connection defined by the Kähler structure, as
described in the previous section. Recall that we have some freedom in
choosing φ in the modified Seiberg-Witten equations. Following an idea
of Taubes [37], we set φ = F+

A0
+ ω so that the Seiberg-Witten equations

become
D+
Aψ = 0, F+

A = σ(ψ) + F+
A0

+ ω, (3.28)

The advantage to these equations is that they have an obvious solution

A = A0, ψ =
(√

2
0

)
,

since σ(ψ) = −ω. We will prove that the obvious solution is the only
solution in the moduli space, and that it forms a nondegenerate zero-
dimensional submanifold. This will show that SW (L) = ±1.

Suppose that (A,ψ) is any solution to (3.28) and write

ψ =
(
α
β

)
, where α ∈ Γ(Θ), β ∈ Γ(K−1). (3.29)

We make use of a transformation due to Witten,

A 7→ A, α 7→ α, β 7→ −β. (3.30)

We claim that this transformation leaves invariant the zeros of the func-
tional

Sφ(A,ψ) =
∫
M

[
|DAψ|2 + |F+

A − σ(ψ)− φ|2
]
dV,

and hence takes solutions of the perturbed Seiberg-Witten equations to
other solutions.

To see this, we write ∇A = ∇A0 − ia, where a is a real-valued one-form,
so that

F+
A − φ = (da)+ − ω,

and the functional becomes

Sφ(A,ψ) =
∫
M

[
|DAψ|2 + |(da)+ − ω − σ(ψ)|2

]
dV.
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Apply the Weitzenböck formula as in §3.1 to obtain

Sφ(A,ψ) =
∫
M

[
|∇Aψ|2 +

s

4
|ψ|2 + 2〈F+

A , σ(ψ)〉

+|σ(ψ) + ω − (da)+|2
]
dV.

We can rewrite this as

Sφ(A,ψ) =
∫
M

[
|∇Aα|2 + |∇Aβ|2 +

s

4
(|α|2 + |β|2) + |(da)+ − ω|2

+ |σ(ψ)|2 + 2〈σ(ψ), F+
A0

+ ω〉
]
dV.

Using the formula

σ(ψ) = i


|α|2 − |β|2 2ᾱβ 0 0

2αβ̄ |β|2 − |α|2 0 0
0 0 0 0
0 0 0 0

 , (3.31)

together with the fact that F+
A0

and ω are represented by diagonal matrices,
we can easily check that every term in the last expression for Sφ(A,ψ) is
invariant under the transformation (3.30).

Invariance under (3.30) implies that if (A,ψ) is a solution to the Seiberg-
Witten equations with ψ of the form (3.29), each of the components(

α
0

)
and

(
0
β

)
must be a solution to the Dirac equation. Moreover, it follows from (3.31),
invariance under (3.30) and the second of the Seiberg-Witten equations,

(da)+ − ω = σ(ψ)

that αβ̄ = 0, and since a solution to the Dirac equation which vanishes on
an open set must vanish identically, we see that either α = 0 or β = 0.
Comparison of (3.31) with the Clifford algebra expression for the Kähler
form,

ω = e1 · e2 + e3 · e4 =


−2i 0 0 0

0 2i 0 0
0 0 0 0
0 0 0 0

 ,

shows that
σ(ψ) ∧ ω =

1
2

(|β|2 − |α|2)ω ∧ ω.
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Since FA and FA0 lie in the same de Rham cohomology class, and

FA ∧ ω = F+
A ∧ ω, FA0 ∧ ω = F+

A0
∧ ω,

we see that

0 =
∫
M

(F+
A − F

+
A0

) ∧ ω =
∫
M

(da)+ ∧ ω =
∫
M

(
1 +

1
2

(|β|2 − |α|2)
)
ω ∧ ω.

Hence ∫
M

(|α|2 − |β|2)ω ∧ ω > 0,

and it is β which must be zero. Thus we obtain the equation

(da)+ = [1− (1/2)|α|2]ω,

and in particular, we note that F+
A is a (1, 1)-form on M . Equation (3.26)

from the previous section shows that

√
2∂̄Aα = D+

A

(
α
0

)
= 0,

so that our perturbed Seiberg-Witten equations become

∂̄Aα = 0, (da)+ = [1− (1/2)|α|2]ω, δa = 0,

the last being the familiar gauge condition.
We can now think of α as a holomorphic section in the trivial Hermitian

line bundle Θ over M with Hermitian connection dA having curvature of
type (1, 1). If we write α = he1, where e1 is a unit-length section,

∂̄A(he1) = 0 ⇒ (∂̄h)e1 + h∂̄Ae1 = 0 ⇒ ∂̄A(e1) = −(∂̄ log h)e1.

Since the connection form ω11 in a unitary line bundle is purely imaginary,

ω11 = ∂ log h− ∂̄ log h, so Ω11 = −2∂∂̄ log h,

and since Ω11 = −ida,

〈(da)+, ω〉 = 〈da, ω〉 = i〈∂∂̄ log h, ω〉 =
1
2

∆(log h)〈ω, ω〉.

Hence
∆(log |α|2) = 2∆(log h) = 4〈ω, (da)+〉 = 2− |α|2.

Recall that by our conventions on the sign of the Laplacian, ∆f(p) ≥ 0 if
p is a local maximum for f . Hence if |α| >

√
2 or |α| <

√
2 on an open set,
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the maximum principle yields a contradiction. It follows that |α| ≡
√

2,
(da)+ ≡ 0 and F+

A = F+
A0

. Since b1 = 0, it follows from Hodge theory that

(da)+ = 0 = δa ⇒ a = 0,

and hence the connection in the trivial bundle Θ is the trivial connection.
Thus α is holomorphic in the usual sense, and it follows from the maximum
modulus principle that α is constant. Moreover, A = A0, while α is uniquely
determined up to multiplication by a complex number of length one. After
dividing by the constant gauge transformations, we obtain a moduli space
which consists of a single point.

To conclude the proof of the Theorem, we note that we have found
a unique S1-orbit of solutions which provides a unique orbit in the mod-
uli space B. Since the formal dimension of the moduli space is zero, the
differential of

π : B × Ω2
+(M)→ Ω2

+(M)

is automatically surjective at our solution [A,ψ, 0], so this solution is auto-
matically regular.

Remark. The theorem of Witten has been extended by Taubes to sym-
plectic manifolds with K taken to be the canonical bundle for a compatible
almost complex structure. See [38] for further developments of this theory.

Corollary. A simply connected Kähler surface with b+ ≥ 2 cannot be
smoothly decomposed into a connected sum of P 2C’s and P 2C’s.

Proof: As we have seen before, a connected sum of P 2C’s and P 2C’s can be
given a metric of positive scalar curvature by the construction given in [19],
and must therefore have vanishing Seiberg-Witten invariants. However the
preceding theorem shows that a Kähler manifold with b1 = 0 and b+ ≥ 2
has nonvanishing Seiberg-Witten invariants.

This corollary allows us to construct many pairs of smooth manifolds which
are homeomorphic but not diffeomorphic. For example, by the discussion
in §3.7, a complex surface in P 3C defined by a nonsingular homogeneous
polynomial of fifth degree is a simply connected Kähler manifold which has
odd intersection form, and

b+ = 9, b− = 44.

Hence by the classification of odd quadratic forms, its intersection form is

Q = 9(1)⊕ 44(−1),
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and by Freedman’s theory it is also homeomorphic to 9(P 2C)]44(P 2C).
However, it has nonvanishing Seiberg-Witten invariants, so it cannot be
diffeomorphic to 9(P 2C)]44(P 2C). More generally, each of the hypersur-
faces Mn of odd degree n, described in §3.7, is homeomorphic but not
diffeomorphic to a connected sum of P 2C’s and P 2C’s. Thus we get many
pairs of compact simply connected four-manifolds which are homeomorphic
but not diffeomorphic, corroborating Theorem B from §1.1.

In the earlier technology, the above corollary would have been obtained
by means of Donaldson’s polynomial invariants which are constructed via
nonabelian Yang-Mills theory[10].

Actually, the first examples provided by Donaldson of compact simply con-
nected four-manifolds that are homeomorphic but not diffeomorphic sat-
isfy the condition b+ = 1. The Seiberg-Witten theory allows a very simple
treatment of these examples, based upon the following proposition.

Proposition. Suppose that a simply connected Kähler manifold with b+ =
1 has a canonical bundle K which satisfies the conditions

〈c1(K)2, [M ]〉 ≥ 0, 〈c1(K) ∪ [ω], [M ]〉 > 0. (3.32)

Then SW (K−1/2) is well-defined and SW (K−1/2) = ±1.

Proof: Note that according to the discussion in §3.7, the first of these hy-
potheses on the canonical bundle, together with the fact that the canonical
bundle is not trivial, imply that the Seiberg-Witten invariant SW (K−1/2)
is well-defined (when the perturbation φ is chosen to be small) even though
b+ = 1. The proof of the previous theorem once again shows that the
moduli space of solutions to the Seiberg-Witten equations (3.28) when
φ = F+

A0
+ ω consists of a single nondegenerate point. To see that the

same conclusion holds when φ is small, we need to check that there are
no singular solutions to the Seiberg-Witten equations with ψ = 0 when
φ = t(F+

A0
+ ω), for any t ∈ (0, 1). But such a solution would imply

F+
A = t(F+

A0
+ ω) ⇒ (1− t)

∫
M

(F+
A ) ∧ ω > 0 ⇒

∫
M

(FA) ∧ ω > 0.

This would contradict the second hypothesis since c1(K) = −c1(K−1) =
−2[FA].

To describe Donaldson’s examples, we need to utilize some results from the
theory of algebraic surfaces which can be found in [18], as well as other
sources. Let f and g be two generic cubic homogeneous polynomials in
three variables, which define a map

[f, g] : P 2C→ P 1C, [f, g]([z0, z1, z2]) = [f(z0, z1, z2), g(z0, z1, z2)],
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except at nine points of P 2C at which f and g have common zeros. (In
the language of algebraic geometry, [f, g] is a rational map; see [18], page
491 for the definition.) The preimage of a generic point in P 1C via [f, g]
is a Riemann surface of genus one, defined by a cubic polynomial equation
f + λg = 0.

To handle the nine singularities of [f, g], we use the notion of blow-up
of an algebraic surface ([18], page 182). Blowing M up at the nine common
zeros of f and g yields a new algebraic surface Y which is diffeomorphic
to P 2C](9P 2C) and a genuine holomorphic map Y → P 1C in which the
preimage of a generic point is still a torus. Y is an example of an elliptic
surface as described in [18], pages 564-572. Acording to a general formula
for the canonical bundle of an elliptic surface ([18], page 572),

c1(K) = µ(−[F ]),

where [F ] is the homology class of the fiber of Y → P 1C and µ is the
Poincaré duality isomorphism described at the beginning of §3.5. Since two
distinct fibers have empty intersection and the integral of the Kähler form
over a fiber must be positive,

〈c1(K)2, [M ]〉 = 0, 〈c1(K) ∪ [ω], [M ]〉 < 0.

The last inequality is reassuring, since P 2C](9P 2C) has a metric of positive
scalar curvature, as we have seen, so SW (K−1/2) must vanish.

However, we can modify the sign of the canonical bundle by performing
appropriate logarithmic transformations on the fibers of F , thereby ob-
taining a manifold which satisfies the hypotheses of the proposition. The
logarithmic transformation, described in [18], page 566, excises a tubular
neighborhood of a smooth fiber and glues it back in with a new diffeomor-
phism along the boundary, thereby obtaining a new elliptic surface. We can
perform two logarithmic transformations on Y obtaining a new algebraic
surface Z, with holomorphic map Z → P 1C, such that two of the fibers
(which we denote by F2 and F3) have multiplicities two and three, and
hence

[F ] = 2[F2] = 3[F3].

The new surface Z is called a Dolgachev surface. We can still apply the
formula for c1(K), but this time we obtain

c1(K) = µ(−[F ] + [F2] + 2[F3]) = µ((1/6)[F ]).

Since the integral of the Kähler form over F is positive, (3.32) holds.
Dolgachev showed that Z is simply connected, and it is possible to

verify that Y and Z have the same intersection forms (see [9]). Thus by
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Freedman’s theory, Y and Z are homeomorphic. However, the proposition
implies that SW (K−1/2) = ±1, and hence Y and Z are not diffeomorphic.

Using more general logarithmic transformations, one can construct el-
liptic surfaces homeomorphic to P 2C]9(P 2C) in which c1(K) satisfies (3.32)
and is divisible by an arbitarily large integer. (See Proposition 3.7 on page
316 of [16].) Given any smooth four-manifold, inequalities (3.6) and (3.14)
give a bound on how divisible c1(L) can be if SW (L) is defined and nonzero.
Any finite collection of smooth manifolds is also subject to such a bound.
This fact yields a simple proof of the following striking theorem:

Theorem [16], [33]. The compact topological manifold P 2C]9P 2C has
infinitely many distinct smooth structures.
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