Compact symmetric bilinear forms

Mihai Putinar
Mathematics Department
UC Santa Barbara
<mputinar@math.ucsb.edu>

IWOTA 2006
joint work with:

J. Danciger (Stanford)
S. Garcia (Pomona College)
B. Gustafsson (KTH Stockholm)
E. Prodan (Princeton)
V. Prokhorov (U. So. Alabama)
H.S. Shapiro (KTH Stockholm)
Sources

and numerous more recent ramifications
Main problems

Spectral analysis of the Friedrichs form

\[
[f, g] = \int_G f g dA, \quad f, g \in L^2_a(G);
\]

Asymptotics of the singular numbers of Hankel operators on multiply connected domains;

Green function estimates for certain Schrödinger operators
Tools

Hilbert space with a bilinear symmetric (compact) form $[x, y]$

complex symmetric operators T w.r. to $[x, y]$

a refined polar decomposition for T

an abstract AAK theorem for compact T's

some analysis of complex variables and potential theory
Friedrichs’ operator

G bounded planar domain

dA Area measure

$L^2_a(G)$ Bergman space w.r. to dA

$P : L^2(G) \longrightarrow L^2_a(G)$ Bergman projection

The form

$$[f, g] = \int_G f g dA = \langle f, Fg \rangle, \quad f, g \in L^2_a(G)$$

defines Friedrichs operator

$$Fg = P(\overline{g}).$$
Angle operator

F is anti-linear, but $S = F^2$ is complex linear, s.a.,

$$\langle f, Sf \rangle = \|Ff\|^2,$$

and

$$Sf = PCPCf,$$

where C is complex conjugation in L^2.

S is the "angle operator" between $L^2_\alpha(G)$ and $CL^2_\alpha(G)$.

Side remark: for $h \in H^\infty(G)$, denote by T_h the Toeplitz operator on $L^2_\alpha(G)$. Then

$$FT_h = T_h^* F.$$
Compactness

Assume that G has real analytic, smooth boundary (not necessarily simply connected).

One can write $\bar{z} = S(z)$ with S analytic in a neighborhood of ∂G. Thus

$$2i[f, g] = \int_G f(z)g(z)\overline{d\bar{z}} \wedge dz =$$

$$= \int_{\partial G} f(z)g(z)S(z)dz = \int fgSd\mu,$$

where $\text{supp}\mu \subset G$.

Therefore $S = F^2$ is compact.
Corners

Assume that G has piece-wise smooth boundary, with finitely many corners, of interior angles $0 < \alpha_k \leq 2\pi$.

Friedrichs: For every k,

$$|\frac{\sin \alpha_k}{\alpha_k}|^2 \in \sigma_{ess}(S).$$

Moreover, there exists a constant $c(G) < 1$: for every $f \in L^2_\alpha(G)$,

$$\int_G f dA = 0,$$

$$|\int_G f^2 dA|^2 \leq c(G) \int_G |f|^2 dA.$$
Inverse spectral problem

P.-Shapiro: There exists a continuous family of planar domains with unitarily equivalent Friedrichs operators, and such that no two domains are related by an affine transform.

The measure μ in the example has three atoms.
Asymptotics

P.-Prokhorov: Assume ∂G real analytic and smooth, and let $\lambda_k = \sqrt{(\lambda_k(S))} \geq \lambda_{k+1}$ be the eigenvalues of F. Then

$$\limsup_{n \to \infty} (\lambda_0 \lambda_1 \ldots \lambda_n)^{1/n^2} \leq \exp(-1/C(\partial G, \text{supp}\mu)),$$

$$\limsup_{n \to \infty} \lambda_1^{1/n} \leq \exp(-1/C(\partial G, \text{supp}\mu))$$

and

$$\liminf_{n \to \infty} \lambda_1^{1/n} \leq \exp(-2/C(\partial G, \text{supp}\mu)),$$

where $C(.,.)$ is the (Green) capacitor of the two sets.
Boundary forms

Assume that $\Gamma = \partial G$ is real analytic, smooth.

$$L^2(\Gamma) = E^2(G) \oplus E^2(G)^\perp$$

with Smirov class projections P_\pm.

For $a \in C(\Gamma)$ the Hankel operator

$$H_a f = P_-(af),$$

is well defined.
Approximation theory questions lead to

$$a(z) = \frac{1}{2\pi i} \int \frac{d\mu(w)}{z - w},$$

with supp\(\mu\) compact in \(G\).

Let \(R : E^2(G) \rightarrow L^2(\mu)\) be the restriction operator. Then

$$|H_a|^2 = (R^* CR)^2$$

and asymptotics (as in the planar case) can be derived with a similar proof.
Hilbert space part in the proof

Double orthogonal system of vectors \((u_n)\):

\[
[u_k, u_n] = \lambda_n \delta_{kn}, \quad \langle u_k, u_n \rangle = \delta_{kn},
\]

where one can choose a positive spectrum:

\[
\lambda_0 \geq \lambda_1 \geq \ldots \ldots \geq 0.
\]

Weyl-Horn inequality: For every system of vectors \(g_0, \ldots, g_n\) one has

\[
|\det([g_k, g_n])| \leq \lambda_0 \ldots \lambda_n \det(\langle g_k, g_n \rangle).
\]
Danciger: Assume \([., .]\) is a compact bilinear symmetric form in a complex Hilbert space \(H\). Let \(\sigma_0 \geq \sigma_1 \geq \sigma_2 \geq \cdots \geq 0\) be the singular values, repeated according to multiplicity. Then

\[
\min_{\text{codim} V = n} \max_{x \in V} \frac{\Re [x, x]}{\|x\|} = \sigma_{2n}
\]

\[
\sigma_n = 2 \min_{\text{codim} V = n} \max_{(x, y) \in V} \frac{\Re [x, y]}{\|(x, y)\|} = 1
\]

for all \(n \geq 0\). Here \(V\) denotes a \(\mathbb{C}\)-linear subspace of \(H \oplus H\).
Abstract Friedrichs Inequality

Danciger-Garcia-P.: Same conditions: $[.,.]$ compact, with spectrum σ_k and eigenvalues u_k. Then

$$|[x,x]| \leq \sigma_2\|x\|^2$$

whenever x is orthogonal to the vector $\sqrt{\sigma_1}u_0 + i\sqrt{\sigma_0}u_1$.

Furthermore, the constant σ_2 is the best possible for x restricted to a subspace of H of codimension one.
The ellipse

\[\Omega_t - \text{the interior of the ellipse} \]

\[\frac{x^2}{\cosh^2 t} + \frac{y^2}{\sinh^2 t} < 1, \]

where \(t > 0 \) is a parameter.

Quadrature identity

\[\int_{\Omega_t} f(z) \, dA(z) = (\sinh 2t) \int_{-1}^{1} f(x) \sqrt{1 - x^2} \, dx \]
hence

$$\int_{\Omega_t} fg dA = (\sinh 2t) \int_{-1}^{1} f(x)g(x)\sqrt{1-x^2} \, dx.$$

Singular values $\sigma_n(t)$ and normalized (in $L^2_{a(\Omega_t)}$) singular vectors e_n:

$$\sigma_n(t) = \frac{(n+1) \sinh 2t}{\sinh[2(n+1)t]}$$

$$e_n(z) = \sqrt{\frac{2n+2}{\pi \sinh[2(n+1)t]}} U_n(z)$$

where U_n denotes the nth Chebyshev polynomial of the second kind.
Since $U_0 = 1$, $U_1 = 2z$, and

$$
\sigma_2 = \frac{3 \sinh 2t}{\sinh 6t},
$$

we obtain

$$
\sqrt{\sigma_1} e_0(z) - i \sqrt{\sigma_0} e_1(z) = \frac{2}{\sqrt{\pi \sinh 4t}}(1 - 2iz),
$$

then the inequality

$$
\left| \int_{\Omega_t} f^2 \, dA \right| \leq \left(\frac{3 \sinh 2t}{\sinh 6t} \right) \int_{\Omega_t} |f|^2 \, dA
$$

holds whenever $f \perp (1 - 2iz)$. Furthermore, the preceding inequality is the best possible that can hold on a subspace of $L^2_a(\Omega_t)$ of codimension one.
Takagi’s work

Original approach to the Carathéodory-Fejér problem; leads to the form

\[B(f, g) = \frac{(ufg)^{(n)}(0)}{n!}, \quad f, g \in H^2(\mathbb{T}). \]

where \(u(z) = c_0 + c_1 z + \cdots + c_n z^n \) is a prescribed Taylor polynomial at the origin.
Extremal problem

There exists an analytic function F in the unit disk such that

$$F(z) = c_0 + c_1 z + \cdots + c_n z^n + O(z^{n+1})$$

and $\|F\|_\infty \leq M$ if and only if

$$\max_{\|f\|_2=1} \frac{1}{n!} \left| (uf^2)^{(n)}(0) \right| \leq M,$$

where f is a polynomial of degree $\leq n$ and $\|f\|_2$ denotes the l^2-norm of its coefficients.
C-symmetric operators

Let H be a Hilbert space with an anti-linear conjugation C, which is isometric: $\|Cx\| = \|x\|, C^2 = I$. An operator T is called C-symmetric, if $T^*C = CT$, i.e. T is symmetric w.r. to the form

$$\{x, y\} = \langle x, Cy \rangle.$$

Our examples were of the form

$$[x, y] = \langle Tx, Cy \rangle = \{Tx, y\}.$$
Polar decomposition

Garcia-P.: \(T \in L(H) \) is \(C \)-symmetric if and only if

\[
T = CJ|T|
\]

where \(J \) is another isometric anti-linear conjugation which commutes with \(|T| \).

Refines f. dim. decompositions of Takagi and Schur, and infinite dim. ones of Godic-Lucenko.
Compact C-sym. operators

\[|T| u_k = \sigma_k u_k \]

admits \(J \)-invariant solutions, hence

\[J|T| u_k = \sigma_k u_k, \]

and

\[T u_k = C J|T| u_k = \sigma_k C u_k. \]

\[\|T\| = \max\{\lambda \geq 0; \text{there exists } x \neq 0, \; Tx = \lambda Cx\}. \]
C-symmetric approximants

If $T = CJ|T|$ is compact C-symmetric, then choose $F_n \geq 0, F_n|T| = |T|F_n$, of rank $n + 1$, so that

$$\| |T| - F_n \| \leq \sigma_{n+1} = \sigma_{n+1}(|T|).$$

Then $T_n = CJF_n$ is C-symmetric, and

$$\| T - T_n \| \leq \sigma_{n+1}.$$
Unbounded operators

H with isometric conjugation C

$T : \mathcal{D}(T) \rightarrow H$ closed graph, densely defined is C-symmetric, if

$$\mathcal{D}(T) \subset C\mathcal{D}(T^*)$$

and

$$CTC \subset T^*.$$

For instance Schrödinger operators with complex potentials, or certain PDE’s with non-symmetric boundary values are C-symmetric.
Example

Let $q(x)$ be a real valued, continuous, even function on $[-1, 1]$ and let α be a nonzero complex number satisfying $|\alpha| < 1$. For a small parameter $\epsilon > 0$, we define the operator

$$[T_\alpha f](x) = -if'(x) + \epsilon q(x)f(x),$$

with domain

$$\mathcal{D}(T_\alpha) = \{ f \in L^2[-1, 1] : f' \in L^2[-1, 1], f(1) = \alpha f(-1) \}.$$
If C denotes the conjugation operator $[Cu](x) = \overline{u(-x)}$ on $L^2[-1,1]$, then it follows that that nonselfadjoint operator T_α satisfies $T_\alpha = CT_1/\alpha C$ and $T_\alpha^* = T_{1/\alpha}$ and hence T_α is a C-selfadjoint operator.

Takagi’s anti-linear equation

$$(T_\alpha - \lambda)u_n = \sigma_n Cu_n,$$

will give, for $n = 0$ the norm of the resolvent of T_α.
Application

\(-\nabla^2_D\) Laplace operator with zero (Dirichlet) boundary conditions over a finite domain (with smooth boundary) \(\Omega \subset \mathbb{R}^d\).

\(v(x) \geq 0\) be a scalar potential, which is \(\nabla^2_D\)-relatively bounded, with relative bound less than one.

\[H : \mathcal{D}(\nabla^2_D) \longrightarrow L^2(\Omega); \quad H = -\nabla^2_D + v(x),\]

the associated selfadjoint Hamiltonian with compact resolvent.
Assumption on H: its energy spectrum σ consists of two parts, $\sigma \subset [0, E_-] \cup [E_+, \infty)$, which are separated by a gap $G \equiv E_+ - E_- > 0$.

Let $E \in (E_-, E_+)$ and $G_E = (H - E)^{-1}$ be the resolvent and take the average

$$ \bar{G}_E(x_1, x_2) \equiv \frac{1}{\omega_\epsilon^2} \int_{|x-x_1| \leq \epsilon} dx \int_{|y-x_2| \leq \epsilon} dy \ G_E(x, y), $$

where ω_ϵ is the volume of a sphere of radius ϵ in \mathbb{R}^d.
Green function estimate

Garcia-Prodan-P.: For q smaller than a critical value $q_c(E)$, there exists a constant $C_{q,E}$, independent of Ω, such that:

$$|\tilde{G}_E(x_1, x_2)| \leq C_{q,E} e^{-q|x_1-x_2|}.$$

$C_{q,E}$ is given by

$$C_{q,E} = \frac{\omega_e^{-1} e^{2q e}}{\min |E_{\pm} - E - q^2|} \frac{1}{1 - q/F(q,E)}$$

with

$$F(q, E) = \sqrt{\frac{(E_+ - E - q^2)(E - E_- + q^2)}{4E_-}}.$$

The critical value $q_c(E)$ is the positive solution of the equation $q = F(q, E)$.