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Abstract

This is a selection of facts, old and new, about quadrature domains. The text, writ-
ten in the form of a survey, is addressed to non-experts and covers a variety of phe-
nomena related to quadrature domains. Such as: the difference between quadrature
domains for subharmonic, harmonic and respectively complex analytic functions,
geometric properties of the boundary, instability in the reverse Hele-Shaw flow, de-
pendence and non-uniqueness on the quadrature data, interpretation in terms of
function theory on Riemann surfaces, a matrix model and a reconstruction algo-
rithm. Plus some low degree/order examples where computations can be carried
out in detail.
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1 Introduction

Finite nodes, Gaussian type quadratures are traditionally constructed for poly-
nomials of a fixed degree. The idea of studying planar domains which carry
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a finite node quadrature formula which is valid for all analytic (integrable)
functions has independently appeared, for different motivations and almost
simultaneously, in the works of Philip Davis [12], Dov Aharonov and Harold
S. Shapiro [2], and Makoto Sakai [64], [65]. The mere elaboration of the concept
and the discovery of the basic properties of quadrature domains for analytic,
harmonic, or subharmonic functions have revealed exciting new territories,
paved with an array of intriguing questions (some of them open still today)
and with ramifications to quite a few topics of classical mathematics.

The golden age of quadrature domains has started about thirty years ago and
was marked by the visionary ideas and works of H. S. Shapiro and his group.
As basic references for their contributions we cite [16], [72] and the more re-
cent volume [59]. Via S. Richardson’s paper [60] connections to Hele-Shaw
flow moving boundary problems (Laplacian growth) were revealed at an early
stage, and the two subjects have then developed largely in parallel. For ex-
ample, construction of quadrature domains using potential theoretic methods
[65], [66] and the equivalent theory of weak (variational inequality) solutions
for Hele-Shaw problems [13], [17] were obtained almost simultaneously, and
essentially independent, around 1980.

The evolution of the field has not been short of surprising new turns. A major
event was the discovery [54], [55] in the early 1990:s that quadrature domains
are highly relevant within the theory of hyponormal operators. The connection
is nontrivial and tools from operator theory, for example the determinantal
function which now bears the name exponential transform, has virtually rev-
olutionized the theory of quadrature domains.

Another big surprise was the appearance of Laplacian growth problems, both
in deterministic and probabilistic forms, in a variety of branches of modern
physics, like integrable systems, Toda lattice hierarchies, string theory, 2D
quantum gravity, DLA, random matrices. Examples of relevant articles in this
respect are [80], [47], [79], [42], [48], [45], [1], [43], [74], [33], [85]. See also [32].
Other papers in this volume will certainly witness of this development

We do not aim below at writing a self-contained mathematical introduction
to quadrature domains, the recent survey [31] serving better for this scope.
Rather, we offer the reader a quick glimpse at a selection of subjects related
to quadrature domains, with emphasis on some phenomena and constructs
which might be relevant to the group of participants to the meeting ”Growing
Interfaces, Los Alamos, 2006.”
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2 Subharmonic quadrature domains and Moving boundaries

If ϕ is a subharmonic function (i.e., ∆ϕ ≥ 0) then the submeanvalue property

ϕ(a) ≤ 1

|B(a, r)|

∫
B(a,r)

ϕ dA

holds for any disc B(a, r) ⊂ C contained in the domain of definition of ϕ.
Above, and throughout this article dA stands for Lebesgue dA. Thus, with
Ω = B(a, r), c = |B(a, r)| = πr2 and µ = cδa there holds∫

ϕ dµ ≤
∫
Ω

ϕ dA (1)

for all subharmonic functions ϕ in Ω. This set of inequalities says that Ω is
a quadrature domain for subharmonic functions with respect to µ [65], and it
expresses that Ω = B(a, r) is a swept out version of the measure µ = cδa. If c
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increases the corresponding expansion of Ω is a simple example of Hele-Shaw
evolution, or Laplacian growth.

The above can be repeated with finitely many points, i.e., with µ of the form

µ = c1δa1 + . . . + cnδan , (2)

aj ∈ C, cj > 0: there always exists a unique (up to nullsets) open set Ω ⊂ C
such that (1) holds for all ϕ subharmonic and integrable in Ω. One can think of

it as the union
⋃n

j=1 B(aj, rj), rj =
√

cj/π, with all multiple coverings smashed

out to a singly covered set, Ω. In particular,
⋃n

j=1 B(aj, rj) ⊂ Ω.

The above sweeping process, µ 7→ Ω, or better µ 7→ χΩ · (dA), called partial
balayage [65], [28], [21], applies to quite general measures µ ≥ 0 and can be
defined in terms of a natural energy minimization: Given µ, ν = χΩ · (dA) will
be the unique solution of

Minimizeν ||µ− ν||2e :

ν ≤ dA,
∫

dν =
∫

dµ.

Here || · ||e is the energy norm:

||µ||2e = (µ, µ)e, with

(µ, ν)e =
1

2π

∫
log

1

|z − ζ|
dµ(z)dν(ζ).

If µ has infinite energy, like in (2), one minimizes −2(µ, ν) + ||ν||2e instead of
||µ− ν||2e, which can always be given a meaning. Cf. [63], for example.

By choosing
ϕ(ζ) = ± log |z − ζ|

in equation (1), the plus sign allowed for all z ∈ C, the minus sign allowed
only for z /∈ Ω, one gets the following statements for potentials: Uµ ≥ UΩ in all C,

Uµ = UΩ outside Ω.
(3)

Here

Uµ(z) =
1

2π

∫
log

1

|z − ζ|
dµ(ζ)

denotes the logarithmic potential of the measure µ, and UΩ = UχΩ·dA. In
particular, the measures µ and χΩ · (dA) are graviequivalent outside Ω. By an
approximation argument, (3) is actually equivalent to (1).

4



In order to keep the treatment at an algebraic level we shall mainly discuss
measures µ of the form (2). It can be shown [2] (see also section (3) below)
that ∂Ω in this case is an algebraic curve with an equation

Q(z, z) = 0, z ∈ ∂Ω, (4)

where Q(z, w) is a polynomial of degree n in each of z and w. After a normal-
ization, setting the coefficient of znwn equal to one, Q is uniquely determined
and Hermitian symmetric: Q(z, w) = Q(w, z). However, Q seems to depend
in a rather transcendental way on the data (aj, cj), and no general method is
known for efficiently finding Q from these. Only in some special cases, with
symmetries and small values of n, there are known procedures [18], [10]. Note
that Q contains much more data than µ (the numbers of parameters are of
orders of magnitude n2 and n, respectively).

Let K = conv supp µ be the convex hull of the support of µ, i.e., the convex
hull of the points a1, . . . , an. As mentioned, Ω can be thought of as smashed out
version of

⋃n
j=1 B(aj, rj). The geometry of Ω which this enforces is expressed

in the following sharp result.

Theorem 2.1 [28], [29], [30] Assume that Ω satisfies (1) for a measure µ ≥ 0
of the form (2). Then

(i) ∂Ω may have singular points (cusps, double points, isolated points), but
they are all located inside K. Outside K, ∂Ω is smooth algebraic.

For z ∈ ∂Ω \K, let Nz denote the inward normal of ∂Ω at z (well defined by
(i)).

(ii) For each z ∈ ∂Ω \K, Nz intersects K.
(iii) For z, w ∈ ∂Ω \K, z 6= w, Nz and Nw do not intersect each other before

they reach K. Thus Ω \ K is fibered by (is the disjoint union of) the
inward normals from ∂Ω \K.

(iv) There exist r(z) > 0 for z ∈ K ∩ Ω such that

Ω =
⋃

z∈K∩Ω

B(z, r(z)).

(Statement (iv) is actually a consequence of (iii).)

Remark 2.2 The theorem remains true for any measure µ ≥ 0 with compact
support, with “analytic” in place of “algebraic” in (i).

Since Ω is uniquely determined by (aj, cj) one can steer Ω by changing the
cj (or aj). Such deformations are of Hele-Shaw type, as can be seen by the
following computation, which applies in more general situations: Hele-Shaw
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evolution Ω(t) corresponding to a point source at a ∈ C (“injection of fluid” at
a) means that Ω(t) changes by ∂Ω(t) moving in the outward normal direction
with speed

−
∂GΩ(t)(·, a)

∂n
.

Here GΩ(z, a) denotes the Green function of the domain Ω. If ϕ is subharmonic
in a neighborhood of Ω(t) then, as a consequence of GΩ(·, a) ≥ 0, GΩ(·, a) = 0
on ∂Ω and −∆GΩ(·, a) = δa,

d

dt

∫
Ω(t)

ϕ dA =

∫
∂Ω(t)

(speed of ∂Ω(t) in normal direction) ϕ ds

= −
∫

∂Ω(t)

∂GΩ(t)(·, a)

∂n
ϕ ds =

−
∫

∂Ω(t)

∂ϕ

∂n
GΩ(t)(·, a) ds

−
∫

Ω(t)

ϕ ∆GΩ(t)(·, a) dA

+
∫

Ω(t)

GΩ(t)(·, a) ∆ϕ dA ≥ ϕ(a).

Hence, integrating from t = 0 to an arbitrary t > 0,∫
Ω(t)

ϕ dA ≥
∫

Ω(0)

ϕ dA + tϕ(a),

telling that if Ω(0) is a quadrature domain for µ then Ω(t) is a quadrature
domain for µ + tδa.

We mention (tangentially to this survey) that there is a variety of unsolved
problems pertaining to generalized quadrature domains, in the sense that the
quadrature distribution is not necessarily supported by a compact subset of
the domain. Physically, the simplest of these problems describes equilibrium
shapes of air bubbles or droplets of conducting fluids in the presence of an
electrostatic fields. These investigations have started in the ’50s in the works
of Garabedian, Lewy, Schiffer, McCleod and have been recently continued by
Solynin, Vassilev, Khavinson, Beneteau and others. For an extensive list of
related bibliography, see [39], [6].
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3 Algebraic domains

It does not make sense to allow cj < 0 in (1), (2), because ϕ(z) = log |z − aj|
is subharmonic and integrable in any bounded domain, and ϕ(aj) = −∞, so
(1) will never hold with cj < 0 for some j.

However, if one restricts to harmonic test functions it makes good sense to
allow cj < 0. Alternatively, one may consider analytic test functions and allow
cj ∈ C or, slightly more generally, allow µ to be an arbitrary complex-valued
distribution with support in finite number of points. This can still be thought
of being represented by (2), incorporating limit cases when some of the aj

coincide. In the above cases the inequality (1) becomes equality:∫
ϕ dµ =

∫
Ω

ϕ dA. (5)

On the other hand, Ω will not always be uniquely determined by µ. However,
∂Ω remains algebraic, and quadrature domains as above for analytic func-
tions are in physics literature (starting with [78]) often referred to as algebraic
domains. There are good reasons for this terminology, as we shall now explain.

Given any µ as in (2) and any open set Ω containing supp µ, define (as distri-
butions in all C)

u = Uµ − UΩ,

S(z) = z − 4
∂u

∂z
.

Then

∆u = χΩ − µ,
∂S

∂z
= 1− χΩ + µ.

In particular, S(z) is meromorphic in Ω.

It is clear from (3) that Ω is a subharmonic quadrature domain for µ if and
only if u ≥ 0 everywhere and u = 0 outside Ω. Then also ∇u = 0 outside
Ω. Similarly, the criterion for Ω being a quadrature domain for harmonic
functions is that merely u = ∇u = 0 on C \Ω. (The vanishing of the gradient
is a consequence of the vanishing of u, except at certain singular points on the
boundary.) To be a quadrature domain for analytic functions it is enough that
just the gradient vanishes, or better in the complex-valued case, that ∂u

∂z
= 0

on C \ Ω (or just on ∂Ω).

Thus Ω is a quadrature domain for analytic functions (an algebraic domain)
if and only if

S(z) = z on ∂Ω.

This means that S(z) is the Schwarz function [12], [72] of ∂Ω. Since S(z) is
meromorphic in Ω this relationship can be interpreted as saying that z and
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S(z) fit together to form a meromorphic functions on the Schottky double
of Ω, i.e., the compact symmetric Riemann surface obtained by glueing two
copies of Ω together along ∂Ω, one of the copies (the “backside”) provided
with the opposite conformal structure. The symmetry means that the surface
is equipped with an anticonformal involution, namely the map taking a point
on the front side to the corresponding point on the backside, and conversely.

Using the involution one actually gets one more meromorphic function. If the
first one is represented as (z, S(z)) the other is (S(z), z). Since any two mero-
morphic functions on a compact Riemann surface are polynomially related, it
follows that there is a polynomial Q(z, w) such that Q(z, S(z)) = 0 (identi-
cally). This gives (4) on the boundary.

We wish to point out that not every domain bounded by an algebraic curve
is an algebraic domain in the above sense. In general, if a domain Ω ⊂ C is
bounded by an algebraic curve Q(z, z) = 0 (Q a polynomial with Hermitian
symmetry), then one can associate two compact symmetric Riemann surfaces
to it: one is the Schottky double of Ω and the other is the Riemann sur-
face classically associated to the complex curve Q(z, w) = 0. For the latter
the involution is given by (z, w) 7→ (w, z). In the case of algebraic domains
(quadrature domains for analytic functions), and only in that case, the two
Riemann surfaces canonically coincide: the lifting

z 7→ (z, S(z))

from Ω to the locus of Q(z, w) = 0 extends to the Schottky double of Ω
and then gives an isomorphism, respecting the symmetries, between the two
Riemann surfaces.

As a simple example, the Schottky double of the simply connected domain

Ω = {z = x + iy ∈ C : x4 + y4 < 1}

has genus zero, while the Riemann surface associated to the curve x4 + y4 = 1
has genus 3. Hence they cannot be identified, and in fact Ω is not an algebraic
domain.

Other ways of characterizing algebraic domains, by means of rational embed-
dings into n dimensional projective space, are discussed in [24].

4 Signed measures, instability, uniqueness

Consider now quadrature domains (5) for harmonic test functions and real-
valued measures (2). As to the relationship between the geometry of Ω and
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the location of supp µ there are then drastic differences between the cases of
having all cj > 0 vs. having no restrictions on the signs of cj. This is clearly
demonstrated in the following theorem due to M. Sakai [70], [71]. The second
part of the theorem is discussed (and proved) in some other forms also in [16],
[20], [4], [5], [85], for example.

Theorem 4.1 Let r and R be positive numbers, R ≥ 2r. Consider measures
µ of the form (2) with cj real and related to r and R by

supp µ ⊂ B(0, r), (6)

n∑
j=1

cj = πR2. (7)

(i) If µ ≥ 0, then any quadrature domain Ω for harmonic functions for µ is
also a quadrature domain for subharmonic functions. Hence theorem 2.1
applies, and in addition

B(0, R− r) ⊂ Ω ⊂ B(0, R + r).

(The upper bound is actually a consequence of (iv) of theorem 2.1.)
(ii) With µ not necessarily ≥ 0, and with no restrictions on

∑n
j=1 |cj| and

n, any bounded domain containing B(0, r) and having area πR2 can be
uniformly approximated by quadrature domains for harmonic functions
for measures µ satisfying (6), (7).

Remark 4.2 The theorem remains valid (with minor adjustments of the for-
mulation) for arbitrary measures (not necessarily of the form (2)), and also
in higher dimension.

With µ a signed measure of the form (2) we still have
∑n

j=1 cj = |Ω|, but∑n
j=1 |cj| may be much larger. In view of the theorem, the ratio

ρ =

∑n
j=1 cj∑n

j=1 |cj|
=

∫
dµ∫
|dµ|

(0 < ρ ≤ 1) might give an indication of how strong is the coupling between
the geometry of supp µ and the geometry of Ω.

As mentioned, a quadrature domain for harmonic functions is not always
uniquely determined by its measure µ. Still there is uniqueness at the in-
finitesimal level, in a neighbourhood of a domain with smooth boundary: if

n∑
j=1

cjϕ(aj) =
∫
Ω

ϕ dA (8)
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and (for example) the aj are kept fixed, then one can always increase the cj

and get a unique evolution of Ω (well-posed Hele-Shaw). This evolution may
be continued indefinitely, but during the evolution Ω may undergo changes
of connectivity. If ∂Ω has no singularities then one can also decrease the cj

slightly and have a unique evolution (backward Hele-Shaw, which is ill-posed).
Therefore it makes sense, in the smooth case, to write

Ω = Ω(c1, . . . , cn)

for cj in some interval around the original values. Note however that decreasing
the cj makes the ratio ρ decrease, indicating a loss of control or stability.

In case ∂Ω does contain singular points, several scenarios are possible: the cj

cannot be shrinked at all (e.g., if there are 3/2-cusps), the cj can be decreased
and the evolution of Ω is unique or the cj can be decreased with several possible
evolutions for Ω (branching). In the latter case Ω is not uniquely determined
by the cj in a neighbourhood of the original domain, and this occurs when the
singular point is a so-called special point (see section 10.4) which has arisen
as the eventual stage of a hole which has been filled in an opposite evolution
(with increasing cj); in that case the branching (in the ill-posed direction)
amounts to the choice between letting the hole appear again or just ignoring
that there has ever been a hole. A specific example can be distilled from the
example in section 10.4.

For decreasing cj, the evolution Ω(c1, . . . , cn) (unique or not) always breaks
down by singularity development of ∂Ω or by ∂Ω reaching some of the points
aj (see e.g. [36], [35], [69], [32]) before Ω is empty, except in the case that
Ω(c1, . . . , cn) is a quadrature domain for subharmonic functions. In the latter
case the cj (necessarily positive) can be decreased down to zero, and Ω will
be empty in the limit c1 = . . . = cn = 0. However, it may happen that
Ω(c1, . . . , cn) breaks up into components under the evolution.

In the simply connected case, Ω will be the image of the unit disc D under a
rational conformal map f = f(c1,...,cn) : D → Ω(c1, . . . , cn). This rational func-
tion is simply the conformal pull-back of the meromorphic function (z, S(z))
on the Schottky double of Ω to the Schottky double of D, the latter being
identified with the Riemann sphere. It follows that the poles of f are the mir-
ror points (with respect to the unit circle) of the points f−1(aj). When the cj

increase then the |f−1(aj)| decrease (this follows by an application of Schwarz’
lemma to f−1

larger cj
◦ foriginal cj

), hence the poles of f move away from the unit
circle. Conversely, the poles of f approach the unit circle as the cj decrease,
also indicating a loss of stability.

When Ω is simply connected, the analytic and harmonic functions are equiv-
alent as test classes for (8). In the limit case that all the points aj coincide,
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say a1 = . . . = an = 0, then (8) corresponds to

n∑
j=1

cjϕ
(j−1)(0) =

∫
Ω

ϕ dA (9)

for ϕ analytic. The cj (allowed to be complex) now have a slightly different
meaning than before. In fact, they are essentially the analytic moments of Ω:

cj =
1

(j − 1)!

∫
Ω

zj−1dA (j = 1, . . . , n).

The higher order moments vanish, and the conformal map f = f(c1,...,cn) :
D → Ω(c1, . . . , cn) is a polynomial of degree n. A precise form of the local
bijectivity of the map (c1, . . . , cn) 7→ Ω(c1, . . . , cn) has been established by
O. Kouznetsova and V. Tkachev [40], [76], who proved an explicit formula
for the (nonzero) Jacobi determinant of the map from the coefficients of f to
the moments (c1, . . . , cn)). This formula was conjectured (and proved in some
special cases) by C. Ullemar [77].

On the global level, it does not seem to be known whether (9), or (8), with
a given left part, can hold for two different simply connected domains and all
analytic ϕ.

Leaving the realm of quadrature domains, an explicit example of two different
simply connected domains having the same analytic moments has been given
by M. Sakai [64]. The idea of the example is that a disc and a concentric
annulus of the same area have equal moments. If the disc and annulus are not
concentric, then the union of them (if disjoint) will have the same moments
as the domain obtained by interchanging their roles. Arranging everything
carefully, with removing and adding some common parts, two different Jordan
domains having equal analytic moments can be obtained. Similar examples
were known earlier by A. Celmins [9], and probably even by P. S. Novikov.
On the positive side, a classical theorem of Novikov [50] asserts that domains
which are starshaped with respect to one and the same point are uniquely
determined by their moments. See [86] for further discussions.

Returning now to quadrature domains, there is definitely no uniqueness for
harmonic and analytic test classes if multiply connected domains are allowed.
If Ω has connectivity m + 1 (m ≥ 1), i.e., has m “holes”, then there is generi-
cally an m-parameter family Ω(t1, . . . , tm) of domains such that Ω(0, . . . , 0) =
Ω and

∂

∂tj

∫
Ω(t1,...,tm)

ϕ dA = 0 (j = 1, . . . ,m)

for every ϕ analytic in a neighborhood of the domains. (See section 10.4 for
an example of a one-parameter family.) These deformations are Hele-Shaw
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evolutions, driven not by Green functions but by “harmonic measures”, i.e.,
regular harmonic functions which take (different) constant boundary values
on the components of ∂Ω.

It follows that multiply connected quadrature domains for analytic functions
for a given µ occur in continuous families. It even turns out [19], [73] that any
two algebraic domains for the same µ can be deformed into each other through
families as above. Thus there is a kind of uniqueness at a higher level: given
any µ there is at most one connected family of algebraic domains belonging
to it.

For harmonic quadrature domains there are no such continuous families (choos-
ing ϕ(z) = log |z − a| in (8) with a ∈ C \ Ω in the holes stops them), but one
can still construct examples with a discrete set of different domains for the
same µ. It is for example possible to imitate the example with a disc and
an annulus with quadrature domains for measures µ of the form (2), with
aj = e2πj/n (n ≥ 3) and c1 = . . . = cn = c > 0 suitably chosen. See [18],
[10], and section 10.4 below. However, it seems very difficult to imitate the
full Sakai construction, with “removing and adding some common parts”, in
the context of quadrature domains. Therefore it is not at all easy to construct
different simply connected quadrature domains for the same µ.

5 Markov’s moment problem

We open this new section with a discussion of a second, rather independent
perspective on quadrature domains.

In his investigations of the limiting values of certain integrals appearing in
probability theory A. A. Markov has isolated a truncated moment problem
with bounds. It was M. G. Krein who put Markov’s problem into an abstract
setting, and raised it to the level of a simple and very flexible principle of
duality on locally convex spaces [3,41]. It is in this framework that various
finite determinateness phenomena, including among these the dependence of
quadrature domains on a finite set of their moments, find their natural expla-
nation ( see in addition [38]). We confine ourselves below to a generic form of
Krein’s interpretation of Markov moment problem.

Let (X, Σ, µ) be a measure space, with µ a positive, finite mass measure. Let
f1, ..., fn ∈ L1(X, µ) be a finite, linearly independent (over R) system of (real
valued) integrable functions, such that the level set of any nontrivial linear
combination has zero mass:

µ{x ∈ X; λ1f1 + ... + λnfn = γ} = 0, γ ∈ R.
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Markov’s moment problem consists of a finite numerical data (c1, ..., cn) ∈ Rn

and an unknown function g ∈ L∞(X), subject to the generalized moments
and bound conditions:∫

fjgdµ = cj, 1 ≤ j ≤ n; ‖g‖∞ ≤ 1. (10)

The main result can be stated as follows, see for more details [41].

Theorem 5.1 There exists a function g ∈ L∞(X) satisfying (10) if and only
if

n∑
j=1

λjcj ≤
∫
|

n∑
j=1

λjfj|dµ

for all scalars λj.

Moreover, the solution g is unique (up to a modification on a null set) if and
only if there are scalars λ̃j, such that the above inequality is an equality, and
in this case

g = sgn
n∑

j=1

λ̃jfj.

The proof of the first sentence is an application of Hahn-Banach Theorem,
remarking that the linear functional L which maps fj into cj has norm at
most one if and only if the inequality in the statement holds. If the inequality
is strict, obviously there are infinitely many solutions of the form g′ = g + εh
where

∫
fjh dµ = 0 for all j and ε is sufficiently small.

Assume that the inequality is an equality:

∫
(

n∑
j=1

λ̃jfj)g dµ =
∫
|

n∑
j=1

λ̃jfj| dµ.

Since −1 ≤ g ≤ 1 we infer that the function g has only two values, ±1, and
as a matter of fact it coincides with the signum of

∑n
j=1 λ̃jfj.

A typical application would require a fixed frame, say a closed cube ∆ in Rn

and a fixed degree d. We consider as test functions all monomials xα, |α| ≤
d, of degree less than or equal to d (adopting throughout the multi-index
notation). Then Markov’s problem:∫

∆

g(x)xαdx = cα, |α| ≤ d,

admits a measurable function g : ∆ −→ [−1, 1] as solution if and only if for
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all polynomials p(x) =
∑

|α|≤d aαxα, the inequality:

∑
|α|≤d

aαcα ≤
∫
∆

|p(x)|dx,

holds. Quite remarkably, this problem has a unique solution if and only if there
exists a polynomial q of degree less than or equal to d, such that

cα =
∫

{q(x)>0}∩∆

xαdx−
∫

{q(x)<0}∩∆

xαdx, |α| ≤ d.

Thus, in this extremal case, the recovery of the original ”shade” function q
from its moments

{cα; |α| ≤ d} −→ q(x)

is well posed. However, the constructive aspects of this unique determination
remain unclear in general.

Next we will show that quadrature domains fit into this scheme and well
illustrate a simple and robust recovery algorithm.

6 The trace formula

A normal operator is modelled via the spectral theorem as multiplication by
the complex variable on a vector valued Lebesgue L2-space. The interplay be-
tween measure theory and the structure of normal operators is well known and
widely used in applications. One step further, there are by now well under-
stood classes of close to normal operators; their classification and functional
models are sensibly more involved, but not less interesting, see [46,81]. We
record below a few aspects of the theory of semi-normal operators with trace
class self-commutators. They will be significant for our survey of quadrature
domains.

Let H be a separable, complex Hilbert space and let T ∈ L(H) be a linear
bounded operator. We assume that the self-commutator [T ∗, T ] = T ∗T −TT ∗

is trace-class. Then for a pair of polynomials p(z, z), q(z, z) one can choose an
ordering in the functional calculus p(T, T ∗), q(T, T ∗). The functional

(p, q) → trace[p(T, T ∗), q(T, T ∗)]

is then well-defined, independent of the ordering in the functional calculus,
and possesses the algebraic identities of the Jacobian ∂(p,q)

∂(z,z)
. Thus, a direct

14



reasoning will imply the existence of a distribution uT ∈ D′(C) satisfying

trace[p(T, T ∗), q(T, T ∗)] = uT (
∂(p, q)

∂(z, z)
),

see [34]. The distribution uT exists in any number of variables (that is for tuples
of self-adjoint operators subject to a trace class multi-commutator condition)
and it is known as the Helton-Howe functional.

Dimension two is special because of a theorem of J. D. Pincus which asserts
that uT = 1

π
gT dA, that is uT is given by an integrable function function gT ,

called the principal function of the operator T , see [51,8]. In particular, the
moments of the function gT have a simple Hilbert space interpretation:

mk
∫

zm−1zk−1gT (z)dA =

trace[T ∗k, Tm], k, m ≥ 1.

In general, the principal function can be regarded as a generalized Fredholm
index of T : when the left hand side is well defined, we have

ind(T − λ) = −gT (λ).

Moreover gT enjoys the functoriality properties of the index, and it is obviously
invariant under trace class perturbations of T .

A simple, yet non-trivial, example can be constructed as follows. Let Ω be
a planar domain bounded by a smooth Jordan curve Γ. Let H2(Γ) be the
closure of complex polynomials in the space L2(Γ, ds), where ds stands for the
arc length measure along Γ (the so-called Hardy space attached to Γ). The
elements of H2(Γ) extend analytically to Ω. The multiplication operator by
the complex variable, Tzf = zf, f ∈ H2(Γ), is obviously linear and bounded.
The regularity assumption on Γ implies that the commutator [Tz, T

∗
z ] is trace

class. Moreover, the associated principal function is the characteristic function
of Ω, so that the trace formula above becomes:

trace[p(Tz, T
∗
z ), q(Tz, T

∗
z )] =

1

π

∫
Ω

(
∂(p, q)

∂(z, z)
)dA, p, q ∈ C[z, z].

See for details [46,81].
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7 A matrix model for quadrature domains

In general, the principal function does not determine the original operator.
The uniqueness is restored when working with the specific class of rank-one
self- commutator operators. To be more specific we assume that T ∈ L(H) is
irreducible (i.e. T is not a direct sum of two operators) and satisfies

[T ∗, T ]h = ξ〈h, ξ〉, h ∈ H,

where the vector ξ is fixed. Then the associated principal function gT becomes
a complete unitary invariant for T . Moreover, any measurable function of
compact support and having real values between [0, 1] can be the principal
function of such an operator, see [51]. In this case the spectrum σ(T ) of T is
equal to the closed support of gT , and many other refined spectral properties
of T can be read from gT , see again for details [46,81].

Besides the trace formula, a canonical determinant formula (going back to the
works of Pincus and Larry Brown [51,7]) holds in this case:

det[(T − z)(T ∗ − z)(T − z)−1(T ∗ − z)−1] =

1− ‖(T ∗ − z)−1ξ‖2 =

exp[
−1

π

∫
C

gT (w)dA(w)

(w − z)(w − z)
], z /∈ σ(T ). (11)

In conclusion, we have a constructive correspondence between all measurable
functions of compact support gT : C −→ [0, 1] and all irreducible operators
T with rank-one self-commutator. The class of (characteristic functions) of
quadrature domains stands aside in this correspondence.

Theorem 7.1 ([55]) Let T be an irreducible operator with rank-one self-
commutator [T ∗, T ] = ξ〈·, ξ〉 and principal function gT . Then gT is the char-
acteristic function of a quadrature domain Ω if and only if the linear span∨

k≥0 T ∗kξ is finite dimensional.

This result offers an efficient characterization of quadrature domains in terms
of a finite set of their moments (see the reconstruction section below) and it
opens a new link between quadrature domains and linear algebra. We only
describe a few results in this direction. For more details see [23,24,55,56].

In the conditions of the above Theorem, let H0 =
∨

k≥0 T ∗kξ and let p denote
the orthogonal projection of the Hilbert space H (where T acts) onto H0.
Denote C0 = pTp (the compression of T to the d-dimensional space H0) and
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D2
0 = [T ∗, T ]. Then the operator T has a two block-diagonal structure:

T =



C0 0 0 0 . . .

D1 C1 0 0 . . .

0 D2 C2 0 . . .

0 0 D3 C3 . . .
...

...
. . .


,

where the entries are all d× d matrices, recurrently defined by the system of
equations:  [Ck

∗, Ck] + Dk+1
∗Dk+1 = DkDk

∗

Ck+1
∗Dk+1 = Dk+1Ck

∗, k ≥ 0.

Note that Dk > 0 for all k. This decomposition has an array of consequences:

(1) The spectrum of C0 coincides with the quadrature nodes of Ω;
(2) Ω = {z; ‖(C∗

0 − z)−1ξ‖ > 1} (up to a finite set);
(3) The quadrature identity becomes

∫
Ω

f(z)dA(z) = π〈f(C0)ξ, ξ〉,

for f analytic in a neighborhood of Ω;
(4) The Schwarz function of Ω is

S(z) = z − 〈ξ, (C∗
0 − z)−1ξ〉+ 〈ξ, (T ∗ − z)−1ξ〉,

where z ∈ Ω.

To give the simplest and most important example, let Ω = D be the unit disk
(which is a quadrature domain of order one) . Then the associated operator
is the unilateral shift T = Tz acting on the Hardy space H2(∂D). Denoting
by zn the orthonormal basis of this space we have Tzn = zn+1, n ≥ 0,
and [T ∗, T ] = 1〈·, 1〉 is the projection onto the first coordinate 1 = z0. The
space H0 is one dimensional and C0 = 0. This will propagate to Ck = 0 and
Dk = 1 for all k. Thus the matricial decomposition of T becomes the familiar
realization of the shift as an infinite Jordan block.

17



8 The exponential transform

Let Ω be a bounded planar domain. The above determinantal formula (11)
motivates a closer look at the exponential transform:

EΩ(z, w) = exp[
−1

π

∫
Ω

dA(w)

(w − z)(w − z)
].

It turns out by simple arguments that EΩ is well defined and separately con-
tinuous everywhere on C2, provided the convention exp(−∞) = 0 is adopted.
This transform can be regarded as a limit Riesz potential ([61,62]) and it can
be extended canonically to any number of variables ([26,58]). At the level of
distributions, the following remarkable equation holds:

|z − w|2 ∂2

∂z∂w
EΩ(z, w) = −E(z, w)χΩ(z)χΩ(w).

This, together with the positive definiteness of the kernel 1 − EΩ(z, w), pro-
vides an alternate route of computing the linear data (T of the preceding
section) associated to Ω and all related fine invariants, see for details [25].
The exponential transform was used as a technical tool in the proof of the
regularity of certain two dimensional free boundaries [23].

The following result, a consequence of Theorem 7.1, is relevant for the present
note.

Theorem 8.1 ([55]) The bounded planar domain Ω is a quadrature domain
if and only if the germ of EΩ at infinity is rational, of the form EΩ(z, w) =

Q(z,w)

P (z)P (w)
. In this case, choosing an irreducible representation, Q(z, z) = 0 is

the defining equation of ∂Ω and P (z) is the monic polynomial vanishing at the
quadrature nodes of Ω.

For instance, if Ω = D is the unit disk, then

ED(z, w) =
zw − 1

zw
.

In view of the linear algebra realization outlined in the preceding section
we obtain more information about the defining equation of the quadrature
domain. For instance:

Q(z, w)

P (z)P (w)
= 1− 〈(C∗

0 − w)−1ξ, (C∗
0 − z)−1ξ〉,
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which yields

Q(z, z) = |P (z)|2 −
d−1∑
k=0

|Qk(z)|2,

where Qk is a polynomial of degree k in z, see [24].

Assuming that the quadrature nodes {a1, ..., ad} are simple we have P (z) =
(z−a1)...(z−ad) and consequently a simple fraction decomposition is available:

EΩ(z, w) = 1−
d∑

j,k=1

hjk

(z − aj)(w − ak)
,

where the matrix

hjk = − Q(aj, ak)

P ′(aj)P ′(ak)
,

is positive semi-definite.

9 A reconstruction algorithm

At this stage we can return, with more information and better tools, to
Markov’s moment problem.

Let (amn)d
m,n=0 be a finite moment sequence of a measurable function of com-

pact support g : C −→ [0, 1]:

amn =
∫
C

znzmg(z) dArea(z).

Let us consider its formal exponential transform:

exp[
−1

π

d∑
m,n=0

amn

zn+1wm+1
] = 1−

∞∑
m,n=0

bmn

zn+1wm+1
.

A characterization of all sequences (bmn) which can occur in this process is
readily available from the operator theory interpretation, see [46]. Moreover,
Theorem (7.1) gives a simple characterization of g = χΩ, where Ω is a quadra-
ture domain. We put this information into the form of a recovery algorithm:

(1) Assume that det(bmn)d
m,n=0 = 0 and that d is the minimal integer with

this property, that is det(bmn)d−1
m,n=0 6= 0. Solve the system:

d∑
m=0

bmncm = 0, 0 ≤ n ≤ d,
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with the normalization cd = 1.
(2) Consider the polynomial P (z) = cdz

d + cd−1z
d−1 + . . . + c0 and isolate

from the following product the polynomial part Q:

P (z)P (w)
d∑

m,n=0

bmn

zn+1wm+1
=

Q(z, w) + O(
1

z
,

1

w
).

(3) The function g equals, up to a null set, the characteristic function of the
quadrature domain Ω = {z ∈ C; Q(z, z) < 0}.

In the case of more general domains, but still finitely many moment data, one
replaces the second step by a variational problem:

Find (c0 = 1, c1, ..., cd) which minimizes the Hermitian form

d∑
m=0

bmncmcn.

Then the equation Q(z, z) < 0 approximates Ω.

Step three of the algorithm is a two dimensional analogue of a diagonal Padé
approximation scheme, see for details [57]. An analysis of the convergence of
the algorithm is contained in [22], while some applications to image processing
are discussed in [22,15]. It is worth mentioning that standard tomographic data
can be translated into finitely many moments, and viceversa, see [15].

10 Examples

10.1 Reconstruction of a disk

Start with the data:

a00 = πr2, a01 = a10 = πar2, a11 = π|a|2r2 + πr4,

where r > 0 and a ∈ C. Its exponential transform is:

exp[− r2

zz
− ar2

z2z
− ar2

zz2
− |a|2r2 + r4

z2z2
] =

1− r2

zz
− ar2

z2z
− ar2

zz2
− |a|2r2 + r4/2

z2z2
+

1

2

z4

z2z2
+ . . . ,
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so that

b00 = r2, b01 = b10 = ar2, b11 = |a|2r2.

The determinant of the associated matrix vanishes:

det(bij)
1
i,j=0 = |a|2r4 − |a|2r4 = 0

and the vector (−a, 1)T is annihilated by this matrix. Therefore

P (z) = z − a,

and

(z − a)(w − a)[1− r2

zz
− ar2

z2z
− ar2

zz2
− |a|2r2

z2z2
+ . . .] =

(z − a)(w − a)− r2 + O(
1

z
,

1

w
).

Thus the domain with the prescribed moments is the disk of equation |z −
a|2 − r2 < 0.

10.2 Quadrature domains with a double node

Let z = w2 + bw be the conformal mapping of the disk |w| < 1, where b ≥ 2.
Then z describes a quadrature domain Ω of order 2, whose boundary has the
equation:

Q(z, z) = |z|4 − (2 + b2)|z|2 − b2z − b2z + 1− b2 = 0.

The Schwarz function of Ω has a double pole at z = 0, whence the associated
2× 2-matrix C0 (see Section 7) is nilpotent. Moreover, we know that:

|z|4‖(C∗
0 − z)−1ξ‖2 = |z|4 − P (z, z).

Therefore

‖(C∗
0 + z)ξ‖2 = (2 + b2)|z|2 + b2z + b2z + b2 − 1,

or equivalently: ‖ξ‖2 = 2 + b2, 〈C∗
0ξ, ξ〉 = b2 and ‖C∗

0ξ‖2 = b2 − 1.

Consequently the linear data of the quadrature domain Ω are:

C∗
0 =

 0 b2−1
(b2−2)1/2

0 0

 , ξ =

 b2

(b2−1)1/2

( b2−2
b2−1

)1/2

 .
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10.3 Quadrature domains with two distinct nodes

Assume that the nodes are fixed at ±1. Hence P (z) = z2 − 1. The defining
equation of the quadrature domain Ω of order two with these nodes is:

Q(z, z) = (|z + 1|2 − r2)(|z − 1|2 − r2)− c,

where r is a positive constant and c ≥ 0 is chosen so that either Ω is a union
of two disjoint open disks (in which case c = 0), or Q(0, 0) = 0, see [18]. A
short computation yields:

Q(z, z) = z2z2 − 2rzz − z2 − z2 + α(r),

where

α(r) =

 (1− r2)2, r < 1

0, r ≥ 1.

One step further, we can identify the linear data from the identity:

|P (z)|2(1− ‖(C∗
0 − z)−1ξ‖2) = Q(z, z). (12)

Consequently,

ξ =


√

2r

0

 , C∗
0 =

 0
√

2r√
1−α(r)√

1−α(r)√
2r

0

 .

This simple computation illustrates the fact that, although the process is affine
in r, the linear data of the growing domains have discontinuous derivatives at
the exact moment when the connectivity changes.

10.4 Three points, non-simply connected quadrature domains and the non-
uniqueness phenomenon

Quadrature domains (for analytic functions) with at most two nodes, as in the
above examples, are uniquely determined by their quadrature data and are
simply connected. For three nodes and more it is no longer so. The following
example, taken from [18], with three nodes and symmetry under rotations by
2π/3, illustrates the general situation quite well. More details on the present
example are given in [18], and similar examples with more nodes are studied
in [10].
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Let the quadrature nodes and weights be aj = ωj and cj = πr2 respectively
(j = 1, 2, 3), where ω = e2πi/3 and where r > 0 is a parameter. Considering first
the strongest form of quadrature property, namely for subharmonic functions,
as in (1), (2), the situation is in principle easy: Ω is for any given r > 0
uniquely determined up to nullsets and can be viewed as a swept out version
of the quadrature measure µ =

∑3
j=1 cjδaj

or as the union of the discs B(aj, r)
with (possible) multiple coverings smashed out.

For 0 < r ≤
√

3
2

the above discs are disjoint, hence Ω = ∪3
j=1B(aj, r). For r

larger than
√

3
2

but smaller than a certain critical value r0 (which seems to be
difficult to determine explicitly) Ω is doubly connected with a hole containing
the origin, while for r ≥ r0 the hole will be filled in so that Ω is a simply
connected domain. The above quadrature domains (or open sets) are actually
uniquely determined even within nullsets, except in the case r = r0 when both
Ω and Ω \ {0} satisfy (1).

Consider next the general class of quadrature domains for analytic functions
(algebraic domains). For 0 < r ≤

√
3

2
only the disjoint discs qualify, as before.

However, for any r >
√

3
2

there is a whole one-parameter family of domains Ω
satisfying (5) for analytic ϕ. These are defined by the polynomials

Q(z, z) = z3z3 − z3 − z3 − 3r2z2z2− (13)

3τ(τ 3 − 2r2τ + 1)zz + τ 3(2τ 3 − 3r2τ + 1),

where τ > 0 is a free parameter, independent of the quadrature data. When
completed as to nullsets, the quadrature domains in question are more pre-
cisely

Ω(r, τ) = intclos{z ∈ C : Q(z, z) < 0}.

The interpretation of the parameter τ is that on each radius {z = tωj+ 1
2 :

t > 0}, j = 1, 2, 3, there is exactly one singular point of the algebraic curve
Q(z, z) = 0, and τ = |z| for that point. This singular point is either a cusp
on ∂Ω or an isolated point of Q(z, z) = 0, a so-called special point. Special
points are those points a ∈ Ω for which the quadrature identity (5) admits the
(integrable) meromorphic function ϕ(z) = 1

z−a
. Equivalently, Ω \ {a} remains

to be a quadrature domain for integrable analytic functions.

For
√

3
2

< r < 2−
1
6 the quadrature domains for analytic functions are exactly

the domains Ω(r, τ) (with possible removal of special points) for τ in an interval
τ1(r) ≤ τ ≤ τ2(r), where τ1(r), τ2(r) satisfy 0 < τ1(r) < 1

2
< τ2(r), and more

precisely can be defined as the positive zeros of the polynomial 4τ 3−4r2τ +1.
(see [18] for further explanations and proofs). The domains Ω(r, τ) are doubly
connected with a hole containing the origin. When τ increases the hole shrinks
and both boundary components move towards the origin. For τ = τ2(r) there
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are three cusps on the outer boundary component which stop further shrinking
of the hole, and for τ = τ1(r) there are three cusps on the inner boundary
component which stop the expansion of the hole.

For exactly one parameter value, τ = τsubh(r), Ω(r, τ) is a quadrature domain
for subharmonic functions (and so also for harmonic functions). This τsubh(r)
can be determined implicitly by evaluating the quadrature identity (5) for
ϕ(z) = log |z|, which gives the equation∫

Ω(r,τsubh(r))

log |z| dA(z) = 0.

For r =
√

3
2

, τ1(r) = τ2(r) = 1
2
, and as r increases, τ1(r) decreases and τ2(r)

increases. What happens when r = 2−
1
6 is that for Ω(r, τ2(r)), i.e., for the

domain with cusps on the outer component, the hole has shrunk to a point
(the origin). Hence, for r = 2−

1
6 , Ω(r, τ2(r)) is simply connected, while Ω(r, τ)

for τ1(r) ≤ τ < τ2(r) remain doubly connected.

For all
√

3
2

< r ≤ 2−
1
6 , τ1(r) < τsubh(r) < τ2(r) because a subharmonic quadra-

ture domain cannot have the type of cusps which appear for τ = τ1(r), τ2(r)
(see [68], [69]). It follows that the critical value r = r0, when Ω(r, τsubh(r))

becomes simply connected, is larger that 2−
1
6 .

For r ≥ 2−
1
6 the quadrature domains for analytic functions are the domains

Ω(r, τ) (with possible deletion of special points), with τ in an interval τ1(r) ≤
τ ≤ τ3(r). Here τ1(r) is the same as before (i.e., corresponds to cusps on the
inner boundary), while τ3(r) is the value of τ for which the hole at the origin

degenerates to just the origin itself (which for r > 2−
1
6 occurs before cusps

have developed on the outer boundary). The origin then is a special point,
and one concludes from (13) that τ = τ3(r) is the smallest positive zero of the

polynomial 2τ 3 − 3r2τ + 1. For r = 2−
1
6 , τ3(r) = τ2(r) = 2−

2
3 .

For 2−
1
6 ≤ r < r0 we have τ1(r) < τsubh(r) < τ3(r), while for r ≥ r0,

τsubh(r) = τ3(r). Since Ω(r, τ3(r)) is simply connected and is a quadrature
domain for analytic functions it is also a quadrature domain for harmonic
functions. It follows that in the interval 2−

1
6 ≤ r < r0 there are (for each r)

two different quadrature domains for harmonic functions, namely Ω(r, τsubh(r))
and Ω(r, τ3(r)) (doubly respectively simply connected).

In summary, we have for each r >
√

3
2

a one-parameter family of algebraic do-
mains Ω(r, τ), for exactly one parameter value (τ = τsubh(r)) this is a quadra-
ture domain for subharmonic functions, and for each r in a certain interval
(2−

1
6 ≤ r < r0) there are two different quadrature domains for harmonic

functions (Ω(r, τsubh(r)) and Ω(r, τ3(r))).
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