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Abstract. The convolution in Rn with |x|−n is a very singular
operator. Endowed with a proper normalization, and regarded as a
limit of Riesz potentials, it is equal to Dirac’s distribution δ. However,
a different normalization turns the non-linear operator:

Ef = exp(
−2

|Sn−1|
|x|−n ∗ f),

into a remarkable transformation. Its long history (in one dimension)
and some of its recent applications in higher dimensions make the
subject of this exposition. A classical extremal problem studied by A.
A. Markov is related to the operation E in one real variable. Later,
the theory of the spectral shift of self-adjoint perturbations was also
based on E. In the case of two real variables, the transform E has ap-
peared in operator theory, as a determinantal-characteristic function
of certain close to normal operators. The interpretation of E in com-
plex coordinates reveals a rich structure, specific only to the plane
setting. By exploiting an inverse spectral function problem for hy-
ponormal operators, applications of this exponential transform to im-
age reconstruction, potential theory and fluid mechanics have recently
been discovered. In any number of dimensions, the transformation E,
applied to characteristic functions of domains Ω, can be regarded as
the geometric mean of the distance function to the boundary. This
interpretation has a series of unexpected geometric and analytic con-
sequences. For instance, for a convex algebraic Ω, it turns out that the
operation E is instrumental in converting finite external data (such as
field measurements or tomographic pictures) into an equation of the
boundary.

§1. Introduction

Riesz potentials, that is convolution operators with fractional powers of
the distance to a point in Rn, are related to several inverse problems of
mathematical physics and geometry. The Newtonian potential in Rn, n ≥
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3, is the best example. Riesz himself used these operators for writing the
solution of the Cauchy problem for the wave equation in closed from. The
modern theory of the Radon transform is based, both theoretically and
numerically, on Riesz potentials. A common feature of the latter example
is a uniqueness property of Riesz potentials Iα(µ) of compactly supported
measures µ. Namely, except for a discrete set of orders α, the germ of
Iα(µ)(x) at a point x = x0 external to the support of µ determines µ. As
noted by Riesz, this determination passes through the sequence of power
moments of the measure. The present article is devoted to some specific,
constructive aspects of this reconstruction process.

An extremal moment problem of A.A. Markov, for volumes in Rn

carrying a shade function, offers the ground of exactly converting finitely
many moments into the original measure. Roughly speaking, only the
semi-algebraic sets given by a single polynomial inequality qualify for this
exact reconstruction. The theoretical basis for Markov’s problem was put
more than half a century ago by Akhiezer and Krein [5].

In dimension n = 1 the relevant phenomena were discovered by
Markov. Nowadays, due to the modern language of function theory and
functional analysis, Markov’s results can be organized around three differ-
ent representations (additive, multiplicative and Hilbert space theoretic)
of the Cauchy transforms of positive measures of compact support on the
real line (see Proposition 4.1). The best rational approximation of these
Cauchy transforms, also known as the Padé approximation, can conve-
niently be interpreted in terms of their Hilbert space representation (see
Section 5).

Fortunately, the next dimension n = 2 also has specific, non-trivial
results. They are mainly due to the progress in the theory of hyponor-
mal operators, and separately because of the rich theory of functions of
a complex variable. The reconstruction algorithm of an area from its
moments again involves a renormalization of the Riesz potential at the
critical exponent α = 0; the algorithm is exact on quadrature domains, a
remarkable class of planar domains which has appeared at the crossroads
of several branches of mathematics and physics (see Section 7). Some
recent numerical experiments support this algorithm.

By considering a similar renormalized potential, and its exponential,
in dimensions n ≥ 3, a series of interesting geometric and analytic facts
were recently discovered. They are briefly enumerated in Section 9. Al-
tough much remains to be done, the global picture in Rn, n ≥ 3, is
promising for applications.

The statements included in this article have at most a sketch of a
proof. We have tried to give accurate references to all assertions and to
guide the reader through the essential bibliography for the many indepen-
dent theories alluded to.
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§2. Riesz potentials

In this section we recall some basic properties of Riesz potentials, cf. [29],
[36], [59]. Let α < n be a fixed parameter and denote:

Iα(x) =
Γ(n−α

2 )
2απn/2Γ(α

2 )
1

|x|n−α
.

This is a locally integrable function in Rn, which can be regarded as a
tempered distribution Iα ∈ S ′. The apparently complicated coefficient
was chosen so that the Fourier transform (with the correct normalization)
is simply:

Îα(ξ) =
1
|ξ|α

.

The map α 7→ Iα ∈ S ′(Rn) extends meromorphically to the whole complex
plane, with poles only at α = n, n + 2, n + 4, . . . . The Fourier transform
image of the functions Iα immediately reveals the identities:

−∆Iα = Iα−2,

Iα ∗ Iβ = Iα+β ,

I0 = δ,

whenever the values α = n, n + 2, . . . do not occur.
Thus, Iα is a semigroup with respect to convolution, which, for n > 2,

interpolates in an analytic scale Dirac’s delta distribution and the funda-
mental solution I2 for the Laplace operator ∆: ∆I2 = −δ.

For a Radon measure µ of, say, compact support in R, the potential

Iµ
α = Iα ∗ µ, α < n,

is well defined. It is a continuous function on Rn, even real analytic outside
the support of µ. For n > 2 and α = 2 we recover the usual Newtonian
potential of the measure µ:

Uµ(x) = Iµ
2 (x) =

1
(n− 2)|Sn−1|

∫
dµ(y)

|y − x|n−2
.

The case n = 1 corresponds to the classical integrals

Iµ
α(x) = const.

∫ ∞

−∞
|y − x|α−1dµ(y),

already present in the works of Liouville and Riemann.
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The two large articles of Marcel Riesz [48], [49], where he has intro-
duced the functions Iα and the convolution operators (i.e. the potentials)
defined by them, contain a detailed extension of the Newtonian poten-
tial theory to this new setting and applications of the same functions to
solving in close form the Cauchy problem for the wave equation. Later
on, both ideas have flourished, cf. [31], [36]. For classical analysis, the
Riesz potentials Iα are regarded as fractional integration operators and
they appear in the study of the degrees of smoothness of real functions,
see [59].

For this article, two uniqueness principles discovered by Riesz are
relevant, see Sections 10, 11 of Chapter III in [48].

Theorem (Riesz). Let n > 2 and let µ be a Radon measure with com-
pact support in Rn. Assume that α is not congruent to 2 or n modulo
2. If Iµ

α(x) is identically zero on a connected component of Rn \ supp(µ),
then the measure µ is zero.

The second uniqueness principle asserts essentially the same thing
under the assumption that the germ at infinity of Iµ

α(x) vanishes. Both
proofs rely on the observation that repeated differentiation of Iµ

α(x) and
evaluation at a fixed point of Rn \ supp(µ) determines the moments:

aσ(µ) =
∫

xσdµ(x), σ ∈ Nn.

Above we have adopted the multi-index notation: xσ = xσ1
1 ...xσn

n , |σ| =
σ1 + σ2 + . . . + σn, σk ∈ N. The orders α = 2, 4, . . . have to be excluded,
because of the known non-uniqueness phenomenon for Newtonian poten-
tials:

Uµ(x) = Uν(x), |x| > R,

does not imply in general that µ = ν. For instance µ can be a point mass
at x = 0 and ν a uniformly distributed mass on a ball centered at x = 0,
yet they are not distinguished by their external Newtonian potentials ( a
fact already known to Newton).

The main theme of this survey is to show how Riesz potentials can be
instrumental in reconstructing a (positive, compactly supported) measure
µ from its moments

a(µ) = (aσ(µ))σ∈Nn .

This is in itself a fundamental problem, whose importance was well rec-
ognized by both mathematicians and their more applied customers.

To illustrate the ubiquity of the Riesz potentials in reconstruction
problems we reproduce (e.g. from Chapter II of [38]) the well-known
inversion formula for the Radon transform, see also [28], [29]. If one defines
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the Radon transform of a function f by:

(Rf)(ω, s) =
∫
〈x,ω〉=s

f(x)dx, f ∈ S(Rn),

and its adjoint by

(R]
ωg)(x) = g(〈x, ω〉), g ∈ S(R), ‖ω‖ = 1,

then, for α < n,
f = cI−α ∗R]Iα−n+1 ∗ 5Rf,

where c is a universal constant and ∗ denotes convolution.
Let µ be a Radon measure with compact support in Rn. The object

of interest throughout this article is the transformation:

Eµ(x) = exp(− 2
|Sn−1|

∫
dµ(y)
|y − x|n

), x ∈ supp(µ)c. (2.1)

As an application of the proof of Riesz’ uniqueness theorem, the germ at
infinity of the real analytic function Eµ determines µ.

The most interesting example for us will be a uniformly distributed
mass on a bounded domain Ω ⊂ Rn. In this case we simply write:

EΩ(x) = exp(− 2
|Sn−1|

∫
Ω

dy

|y − x|n
), x ∈ Ωc. (2.2)

We will see later that, although the integral (2.2) produces a loga-
rithmic singularity in x when this variable tends from outside to a smooth
portion of the boundary ∂Ω , the exponential restores the smoothness in
x, even up to real analyticity.

This article is devoted to some constructive aspects of the determi-
nation Eµ 7→ µ.

§3. The abstract L problem of moments

The classical L-problem of moments offers a good theoretical motivation
for applying the exponential transform (2.1) to reconstructing extremal
measures µ from their moments, or equivalently, from the germ at infinity
of Eµ. The material below is classical and can be found in the monographs
[5], [32], [35]. We present only a simplified version of the abstract L-
problem.

Let K be a compact subset of Rn with interior points and let A ⊂ Nn

be a finite subset of multi-indices. We are interested in the set ΣA of
moment sequences a(f) = (aσ(f))σ∈A:

aσ(f) =
∫

K

xσf(x)dx, σ ∈ A,



6 MP

of all measurable functions f : K −→ [0, 1]. Regarded as a subset of R|A|,
ΣA is a compact convex set. An L1−L∞ duality argument (known as the
abstract L-problem of moments) shows that every extremal point of ΣA

is a characteristic function of the form:

χ{p<γ},

where we denote:

{p < γ} = {x ∈ K; p(x) < γ}.

Above γ is a real constant and p is an A-polynomial with real coefficients,
that is p(x) =

∑
σ∈A cσxσ. For proofs the reader can consult [5] pp.

175-204, or [32], or [35].
As a consequence, the above description of the extremal points in the

moment set ΣA implies the following remarkable uniqueness theorem.

Theorem (Akhiezer and Krein). For each characteristic function χ
of a level set in K of an A-polynomial there exists exactly one class of
functions f in L∞(K) satisfying a(f) = a(χ). For a non-extremal point
a(f) ∈ ΣA there are infinitely many non-equivalent classes in L∞(K)
having the same A-moments.

Let us consider a simple example:

K = {(x, y); x2 + y2 ≤ 1} ⊂ R2,

and

Ω+ = {(x, y) ∈ K; x > 0, y > 0}, Ω− = {(x, y) ∈ K; x < 0, y < 0}.

The reader can prove by elementary means that the sets Ω± cannot be
defined in the unit ball K by a single polynomial inequality. On the other
hand, the set

Ω = Ω+ ∪ Ω− = {(x, y); xy > 0},

is defined by a single equation of degree two.
Thus, no matter how the finite set of indices A ⊂ N2 is chosen, there

is a continuum fs, s ∈ R, of essentially distinct measurable functions
fs : K −→ [0, 1] possessing the same A-moments:∫

K

xσ1yσ2fs(x, y)dxdy =
∫

Ω+

xσ1yσ2dxdy, s ∈ R, σ ∈ A.

On the contrary, if the set of indices A contains (0, 0) and (1, 1), then
for every measurable function f : K −→ [0, 1] satisfying∫

K

xσ1yσ2f(x, y)dxdy =
∫

Ω

xσ1yσ2dxdy, σ ∈ A,
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we infer by Akhiezer and Krein’s Theorem that f = χΩ, almost every-
where.

On a more theoretical side, we can interpret Akhiezer and Krein’s
Theorem in terms of geometric tomography, see [18]. Fix a unit vector
ω ∈ Rn, ‖ω‖ = 1, and let us consider the parallel Radon transform of a
function f : K −→ [0, 1], along the direction ω:

(Rf)(ω, s) =
∫
〈x,ω〉=s

f(x)dx.

Accordingly, the k-th moment in the variable s of the Radon transform is,
for a sufficiently large constant M :

∫ M

−M

(Rf)(ω, s)skds =
∫

K

〈x, ω〉kf(x)dx =

∑
|σ|=k

|σ|!
σ!

∫
K

xσωσf(x)dx =
∑
|σ|=k

|σ|!
σ!

ωσaσ(f). (3.1)

Since there are N(n, d) = Cn
n+d linearly independent polynomials in

n variables of degree less than or equal to d, a Vandermonde determinant
argument shows, via the above formula, that the same number of different
parallel projections of the ”shade” function f : K −→ [0, 1], determine,
via a matrix inversion, all moments:

aσ(f), |σ| ≤ d.

And of course, the converse holds, by formula (3.1). These transformations
are known and currently used in image processing, see for instance [19]
and [27] and the references cited there.

In conclusion, Akhiezer and Krein’s Theorem asserts then that in the
measurement process

f 7→ ((Rf)(ωj , s))
N(n,d)
j=1 7→ (aσ(f))|σ|≤d

only black and white pictures, delimited by a single algebraic equation of
degree less than or equal to d, can be exactly reconstructed. Even when
these uniqueness conditions are met, the details of the reconstruction from
moments are delicate. We shall see some examples in the next sections.
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§4. Markov’s extremal problem and the phase shift

By going back to the source and dropping a few levels of generality, we
recall Markov’s original moment problem and some of its modern inter-
pretations. Again, this material is well exposed in the monographs [5] and
[35].

Let us consider, for a fixed positive integer n, the L-moment problem
on the line:

ak = ak(f) =
∫
R

tkf(t)dt, 0 ≤ k ≤ 2n,

where the unknown function f is measurable, admits all moments up to
degree 2n and satisfies:

0 ≤ f ≤ L, a.e..

As noted by Markov, the next formal series transform is necessary in
solving this question:

exp[
1
L

(
a0

z
+

a1

z2
+ . . .

a2n

z2n+1
)] = 1 +

b0

z
+

b1

z2
+ . . . . (4.1)

Remark that, although the series under the exponential is finite, the re-
sulting one might be infinite.

The following theorem is classical, see for instance [5] pp. 77-82.
Its present form was refined by Akhiezer and Krein; partial similar at-
tempts are due, among others, to Boas, Ghizzetti, Hausdorff, Kantorovich,
Verblunsky and Widder, see [5], [35].

Theorem (Markov). Let a0, a1, . . . , a2n be a sequence of real numbers
and let b0, b1, . . . be its exponential L-transform. Then there is an inte-
grable function f, 0 ≤ f ≤ L, possessing the moments ak(f) = ak, 0 ≤
k ≤ 2n, if and only if the Hankel matrix (bk+l)n

k,l=0 is non-negative defi-
nite. Moreover, the solution f is unique if and only if det(bk+l)n

k,l=0 = 0.
In this case the function f/L is the characteristic function of a union of
at most n bounded intervals.

The reader will recognize above a concrete validation of the abstract
moment problem discussed in the previous section.

In order to better understand the nature of the L-problem, we inter-
pret below the exponential transform from two different and complemen-
tary points of view. For simplicity we take the constant L to be equal to
1 and consider only compactly supported originals f , due to the fact that
the extremal solutions have anyway compact support. Let µ be a positive
Borel measure on R, with compact support. Its Cauchy transform

F (z) = 1−
∫
R

dµ(t)
t− z

,
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provides an analytic function on C \ R which is also regular at infinity,
and has the normalizing value 1 there. The power expansion, for large
values of |z|, yields the generating moment series of the measure µ:

F (z) = 1 +
b0(µ)

z
+

b1(µ)
z2

+
b2(µ)
z3

+ . . . .

On the other hand,

ImF (z) = −Imz

∫
dµ(t)
|t− z|2

,

whence
ImF (z) Imz < 0, z ∈ C \R.

Thus the main branch of the logarithm logF (z) exists in the upper half-
plane and its imaginary part, equal to the argument of F (z), is bounded
from below by −π and from above by 0. According to Fatou’s theorem,
the non-tangential boundary limits

f(t) = lim
ε→0

−1
π

Im logF (t + iε),

exist and produce a measurable function with values in the interval [0, 1].
According to Riesz-Herglotz formula for the upper-half plane, we obtain:

logF (z) = −
∫
R

f(t)dt

t− z
, z ∈ C \R.

Or equivalently,

F (z) = exp(−
∫
R

f(t)dt

t− z
).

One step further, let us consider the Lebesgue space L2(µ) and the
bounded self-adjoint operator A = Mt of multiplication by the real vari-
able. The vector ξ = 1 corresponding to the constant function 1 is A-
cyclic, and according to the spectral theorem:∫

R

dµ(t)
t− z

= 〈(A− z)−1ξ, ξ〉, z ∈ C \R.

As a matter of fact an arbitrary function F which is analytic on
the Riemann sphere minus a compact real segment, and which maps the
upper/lower half-plane into the opposite half-plane has one of the above
forms. These functions are known in rational approximation theory as
Markov functions. See for instance [6].

In short, putting together the above comments we can state the fol-
lowing result.
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Proposition 4.1. The canonical representations:

F (z) = 1−
∫
R

dµ(t)
t− z

=

exp(−
∫
R

f(t)dt

t− z
) =

1− 〈(A− z)−1ξ, ξ〉

establish constructive equivalences between the following classes:

a). Markov’s functions F(z);
b). Positive Borel measures µ of compact support on R;
c). Functions f ∈ L∞comp(R) of compact support, 0 ≤ f ≤ 1;
d). Pairs (A, ξ) of bounded self-adjoint operators with a cyclic

vector ξ.

The extremal solutions correspond, in each case exactly, to:

a). Rational Markov functions F ;
b). Finitely many point masses µ;
c). Characteristic functions f of finitely many intervals;
d). Pairs (A, ξ) acting on a finite dimensional Hilbert space.

For a complete proof see for instance Chapter VIII of [37] and the
references cited there.

The above dictionary is remarkable in many ways. Each of its terms
has intrinsic values. They were long ago recognized in moment problems,
rational approximation theory or perturbation theory of self-adjoint oper-
ators.

For instance, when studying the change of the spectrum under a rank-
one perturbation A 7→ B = A − ξ〈·, ξ〉 one encounters the perturbation
determinant:

∆A,B(z) = det[(A− ξ〈·, ξ〉 − z)(A− z)−1] = 1− 〈(A− z)−1ξ, ξ〉.

The above exponential representation leads to the phase-shift function
fA,B(t) = f(t):

∆A,B(z) = exp(−
∫
R

fA,B(t)dt

t− z
).

The phase shift of, in general, a trace-class perturbation of a self-adjoint
operator has certain invariance properties; it reflects by fine qualitative
properties the nature of change in the spectrum. The theory of pertur-
bation determinants and of the phase shift is nowadays well developed,
mainly for its applications to quantum physics, see [34] and [57].
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The reader will recognize above an analytic continuation in the com-
plex plane of the real exponential transform

F (x) = Ef (x) = exp(−
∫
R

f(t)dt

|t− x|
),

assuming for instance that x < M and the function f is supported by
[M,∞).

To give the simplest, yet essential, example, we consider a positive
number r and the various representations of the function:

F (z) = 1 +
r

z
=

z + r

z
=

1−
∫
R

rdδ0(t)
t− z

=

exp[−
∫ 0

−r

dt

t− z
] =

det[(−r − z)(−z)−1].

In this case the underlying Hilbert space has dimension one and the two
self-adjoint operators are A = 0 and A− ξ〈·, ξ〉 = −r.

§5. The reconstruction algorithm in one real variable

Returning to our main theme, and as a direct continuation of the previous
section, we are interested in the exact reconstruction of the original f :
R −→ [0, 1] from a finite set of its moments, or equivalently, from a Taylor
polynomial of Ef at infinity. The algorithm described in this section is the
diagonal Padé approximation of the exponential transform of the moment
sequence. Its convergence, even beyond the real axis, is assured by a
classical theorem of Markov.

Let a0, a1, . . . , a2n be a sequence of real numbers with the property
that its exponential transform:

exp[
1
L

(
a0

z
+

a1

z2
+ . . .

a2n

z2n+1
)] = 1 +

b0

z
+

b1

z2
+ . . . ,

produces a non-negative Hankel matrix (bk+l)n
k,l=0.

According to Markov’s Theorem (see Section 4), there exists at least
one bounded self-adjoint operator A ∈ L(H), with a cyclic vector ξ, such
that:

exp[
1
L

(
a0

z
+

a1

z2
+ . . .

a2n

z2n+1
)] =
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1 +
〈ξ, ξ〉

z
+
〈Aξ, ξ〉

z2
+ . . .

〈A2nξ, ξ〉
z2n+1

+ O(
1

z2n+2
).

Let k < n and Hk be the Hilbert subspace spanned by the vectors
ξ, Aξ, . . . , Ak−1ξ. Suppose that dimHk = k, which is equivalent to saying
that det(bi+j)k−1

i,j=0 6= 0. Let πk be the orthogonal projection of H onto
Hk and let Ak = πkAπk. Then

〈Ai+j
k ξ, ξ〉 = 〈Ai

kξ,Aj
kξ〉 =

〈Aiξ,Ajξ〉 = 〈Ai+jξ, ξ〉,

whenever 0 ≤ i, j ≤ k − 1. In other terms, for large values of |z|:

〈(A− z)−1ξ, ξ〉 = 〈(Ak − z)−1ξ, ξ〉+ O(
1

z2k+1
). (5.1)

By construction, the vector ξ remains cyclic for the matrix Ak ∈
L(Hk). Let qk(z) be the minimal polynomial of Ak, that is the monic
polynomial of degree k which annihilates Ak. In particular,

qk(z)〈(Ak − z)−1ξ, ξ〉 = 〈(qk(z)− qk(Ak))(Ak − z)−1ξ, ξ〉 = pk−1(z)

is a polynomial of degree k − 1.
The two observations yield:

qk(z)〈(A− z)−1ξ, ξ〉 =

qk(z)〈(Ak − z)−1ξ, ξ〉+ O(
1

zk+1
) =

pk−1(z) + O(
1

zk+1
).

The resulting rational function Rk(z) = pk−1(z)
qk(z) is characterized by

the property:

1 +
b0

z
+

b1

z2
+ . . . = 1 + Rk(z) + O(

1
z2k+1

); (5.2)

it is known as the Padé approximation of order (k − 1, k), of the given
series.

A basic observation is now in order: since b0, b1, . . . , b2k+1 is the power
moment sequence of a positive measure, qk is the associated orthogonal
polynomial of degree k and pk is a second order orthogonal polynomial of
degree k−1. In particular their roots are simple and interlaced. We prove
only the first assertion, the second one being of a similar nature, see for
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instance [4]. Indeed, let µ be the spectral measure of A localized at the
vector ξ, exactly as in Proposition 4.1. Then, for j < k,∫

R

tjqk(t)dt = 〈Ajξ, qk(A)ξ〉 = 〈Aj
kξ, qk(Ak)ξ〉 = 0.

Assume now that we are in the extremal case det(bi+j)n
i,j=0 = 0 and

that n is the smallest integer with this property, that is det(bi+j)n−1
i,j=0 6= 0.

Since
bi+j = 〈Aiξ,Ajξ〉,

this means that the vectors ξ, Aξ, . . . , Anξ are linearly dependent. Or
equivalently that Hn = H and consequently An = A.

According to the dictionary established by Proposition 4.1, this is
another proof that the extremal case of the truncated moment 1-problem
with data a0, a1, . . . , a2n admits a single solution. The unique function
f : R −→ [0, 1] with this string of moments will then satisfy:

exp(−
∫
R

f(t)dt

t− z
) = 1 + Rn(z) =

1−
n∑

i=1

ri

ai − z
=

det[(A− ξ〈·, ξ〉 − z)(A− z)−1] =
n∏

i=1

bi − z

ai − z
,

where the spectrum of the matrix A is {a1, . . . , an}, that of the perturbed
matrix B = A − ξ〈·, ξ〉 is b1, . . . , bn and ri are positive numbers. Again,
one can easily prove that b1 < a1 < b2 < a2 < . . . < bn < an. By the last
example considered in Section 4, we infer:

f =
n∑

i=1

χ[bi,ai],

or equivalently

f =
1
2
[1− sign

pk−1 + qk

qk
].

The above computations can therefore be put into a (robust) recon-
struction algorithm of all extremal functions f . The Hilbert space method
outlined above has other benefits, too. We illustrate them with a proof of
another celebrated result due to A. A. Markov, and related to the conver-
gence of the mentioned algorithm, in the case of non-extremal functions.
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Theorem (Markov). Let µ be a positive measure, compactly supported
on the real line and let F (z) =

∫
R

(t− z)−1dµ(t) be its Cauchy transform.
Then the diagonal Padé approximation Rn(z) = pn−1(z)/qn(z) converges
to F (z) uniformly on compact subsets of C \R.

Proof: Let A be the multiplication operator with the real variable on
the Lebesgue space H = L2(µ) and let ξ = 1 be its cyclic vector. The
subspace generated by ξ, Aξ, ..., An−1ξ will be denoted as before by Hn

and the corresponding compression of A by An = πnAπn.
If there exists an integer n such that H = Hn, then the discussion

preceding the theorem shows that F = Rn and we have nothing else to
prove. Assume the contrary, that is the measure µ is not finite atomic.

Let p(t) be a polynomial function, regarded as an element of H. Then

(A−An)p(t) = tp(t)− (πnAπn)p(t) = tp(t)− tp(t) = 0

provided that deg(p) < n. Since ‖An‖ ≤ ‖A‖ for all n, and by Weierstrass
Theorem, the polynomials are dense in H, we deduce:

lim
n→∞

‖(A−An)h‖ = 0, h ∈ H.

Fix a point a ∈ C \R and a vector h ∈ H. Then

lim
n→∞

‖[(A− a)−1 − (An − a)−1]h‖ =

lim
n→∞

‖(An − a)−1(A−An)(A− a)−1h‖ ≤

lim
n→∞

1
|Im a|

‖(A−An)(A− a)−1h‖ = 0.

A repeated use of the same argument shows that, for every k ≥ 0,

lim
n→∞

‖[(A− a)−k − (An − a)−k]h‖ = 0.

Choose a radius r < |Im a| ≤ ‖(An − a)−1‖−1, so that the Neumann
series

(An − z)−1 = (An − a− (z − a))−1 =
∞∑

k=0

(z − a)k(An − a)−k−1

converges uniformly and absolutely, in n and z, in the disk |z − a| ≤ r.
Consequently, for a fixed vector h ∈ H,

lim
n→∞

‖(An − z)−1h− (A− z)−1h‖ = 0,

uniformly in z, |z − a| ≤ r. In particular,

lim
n→∞

Rn(z) = 〈(An − z)−1ξ, ξ〉 = lim
n→∞

〈(An − z)−1ξ, ξ〉 =

〈(A− z)−1ξ, ξ〉 = F (z),

uniformly in z, |z − a| ≤ r.

Details and a generalization of the above operator theory approach
to Markov theorem can be found in [46]. See also Section 8 below.
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§6. The exponential transform in two dimensions

The case of two real variables is special, partly due to the existence of a
complex variable in R2 . Let g : C −→ [0, 1] be a measurable function and
let dA(ζ) stand for the Lebesgue area measure. The exponential transform
becomes, in complex variable notation:

Eg(z) = exp(− 1
π

∫
C

g(ζ)dA(ζ)
|ζ − z|2

), z ∈ C \ supp(g).

This expression invites to consider a polarization in z:

Eg(z, w) = exp(− 1
π

∫
C

g(ζ)dA(ζ)
(ζ − z)(ζ − w)

), z, w ∈ C \ supp(g). (6.1)

The resulting function Eg(z, w) is analytic in z and antianalytic in w,
outside the support of the function g. Note that the integral converges for
every pair (z, w) ∈ C2 except the diagonal z = w. Moreover, assuming by
convention exp(−∞) = 0, a simple application of Fatou’s Theorem reveals
that the function Eg(z, w) extends to the whole C2 and it is separately
continuous there. Details about these and other similar computations are
contained in [23].

As before, the exponential transform contains, in its power expansion
at infinity, the moments

amn = amn(g) =
∫
C

zmzng(z)dA(z), m, n ≥ 0.

According to Riesz Theorem these data determine g. We will denote the
resulting series by:

exp[
−1
π

∞∑
m,n=0

amn

zn+1wm+1 ] = 1−
∞∑

m,n=0

bmn

zn+1wm+1 . (6.2)

The exponential transform of a uniformly distributed mass on a disk
is simple, and in some sense special, this being the building block for
more complicated domains. A direct elementary computation leads to the
following formulas for the unit disk D, cf. [23]:

ED(z, w) =


1− 1

zw , z, w ∈ D
c
,

1− z
w , z ∈ D, w ∈ D

c
,

1− w
z , w ∈ D, z ∈ D

c
,

|z−w|2
1−zw , z, w ∈ D.
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Remark that ED(z) = ED(z, z) is a rational function and its value for
|z| > 1 is 1 − 1

|z|2 . The coefficients bmn of the exponential transform are
in this case particularly simple: b00 = 1 and all other values are zero.

Once more, an additional structure of the exponential transform in
two variables comes from operator theory. More specifically, for every
measurable function g : C −→ [0, 1] of compact support there exists a
unique irreducible, linear bounded operator T ∈ L(H) acting on a Hilbert
space H, with rank-one self-commutator [T ∗, T ] = ξ ⊗ ξ = ξ〈·, ξ〉, which
factors Eg as follows:

Eg(z, w) = 1− 〈(T ∗ − w)−1ξ, (T ∗ − z)−1ξ〉, z, w ∈ supp(g)c. (6.3)

As a matter of fact, with a proper extension of the definition of lo-
calized resolvent (T ∗ − w)−1ξ the above formula makes sense on the
whole C2. The function g is called the principal function of the op-
erator T . It was introduced in a seminal paper of J. D. Pincus [40],
and has been studied by many researchers among whom we cite: Berger,
Carey, Clancey, Helton, Howe, Xia; the monographs [37] and [63] treat var-
ious aspects of this theory. The bijective correspondence between classes
g ∈ L∞comp(C), 0 ≤ g ≤ 1 and irreducible operators T with rank-one
self-commutator was exploited in [44], [45] for solving the L-problem of
moments in two variables.

For the aims of this article, the analogy between the principal function
and the phase shift is worth mentioning in more detail. More precisely,
if B = A − ξ ⊗ ξ is a rank-one perturbation of a bounded self-adjoint
operator A ∈ L(H), then for every polynomial p(z), Krein’s trace formula
holds:

tr[p(B)− p(A)] =
∫
R

p′(t)fA,B(t)dt,

where fA,B is the corresponding phase-shift function, [34].
For an operator T possessing rank-one self-commutator [T ∗, T ] = ξ⊗ξ

and principal function g one can define a non-commutative functional
calculus p(T ∗, T ) with polynomials p(w, z) by putting all powers of T ∗ to
the left of those of T , in each monomial. Then for an arbitrary pair of
polynomials p(z, z), q(z, z) a similar trace formula holds:

tr[p(T ∗, T ), q(T ∗, T )] =
1
π

∫
C

(
∂p

∂z

∂q

∂z
− ∂p

∂z

∂q

∂z
)g(z)dA(z).

This trace formula was discovered by Helton and Howe [30] and it was the
source of modern advances in the cohomology theory of operator algebras.

To draw a conclusion from this comparison, the principal function of
a hyponormal operator is a two dimensional analogue of the phase shift of
a perturbation of self-adjoint operators. In both cases the inverse spectral
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problem f 7→ (A, ξ), respectively g 7→ T , solves Markov’s L-problem of
power moments, in dimensions 1, respectively 2.

Let g : C −→ [0, 1] be a measurable function and let Eg(z, w) be its
polarized exponential transform. We retain from the above discussion the
fact that the kernel:

1− Eg(z, w), z, w ∈ C,

is positive definite. Therefore the distribution Hg(z, w) = − ∂
∂z

∂
∂wEg(z, w)

has compact support and it is positive definite, in the sense:∫
C2

Hg(z, w)φ(z)φ(w)dA(z)dA(w) ≥ 0, φ ∈ C∞(C).

If g is the characteristic function of a bounded domain Ω ⊂ C, then it is
elementary to see that the distribution HΩ(z, w) = Hg(z, w) is given on
Ω× Ω by a smooth, jointly integrable function which is analytic in z ∈ Ω
and antianalytic in w ∈ Ω, see [23].

In particular, this gives the useful representation:

EΩ(z, w) = 1− 1
π2

∫
Ω2

HΩ(u, v)dA(u)dA(v)
(u− z)(v − w)

, z, w ∈ Ω
c
, (6.4)

where the kernel HΩ is positive definite in Ω× Ω.
The example of the disk considered in this section suggests that the

exterior exponential transform of a bounded domain EΩ(z, w) may extend
analytically in each variable inside Ω. This is true whenever ∂Ω is real
analytic smooth. In this case there exists an analytic function S defined
in a neighborhood of ∂Ω, with the property:

S(z) = z, z ∈ ∂Ω.

The anticonformal local reflection with respect to ∂Ω is then the map
z 7→ S(z); for this reason S(z) is called the Schwarz function of the real
analytic curve ∂Ω, see [58]. Let ω be a relatively compact subdomain of
Ω, with smooth boundary, too, and such that the Schwarz function S(z)
is defined on a neighborhood of Ω \ ω. A formal use of Stokes’ Theorem
in (6.4) yields:

1− EΩ(z, w) =
1

4π2

∫
∂Ω

∫
∂Ω

HΩ(u, v)
udu

u− z

vdv

v − w
=

1
4π2

∫
∂ω

∫
∂ω

HΩ(u, v)
udu

u− z

vdv

v − w
. (6.5)
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But the latter integral is analytic/antianalytic for z, w ∈ ωc. A little
more work with the above Cauchy integrals leads to the following remark-
able formula for the analytic extension of EΩ(z, w) from z, w ∈ Ω

c
to

z, w ∈ ωc, see [26]:

F (z, w) =
{

E(z, w), z, w ∈ Ωc,
(z − S(w))(S(z)− w)HΩ(z, w), z, w ∈ Ω \ ω.

The study outlined above of the analytic continuation phenomenon of the
exponential transform EΩ(z, w) led to a proof of a priori regularity of
boundaries of domains which admit analytic continuation of their Cauchy
transform, [23]. The most general result of this type was obtained by
different means by Sakai [54], [55] . We simply state the theorem.

Theorem(Sakai). Let Ω be a bounded planar domain with the property
that its Cauchy transform

χ̂Ω(z) =
−1
π

∫
Ω

dA(w)
w − z

, z ∈ Ω
c

extends analytically across ∂Ω. Then the boundary ∂Ω is real analytic.

Moreover, Sakai has classified in [55] the possible singular points of
the boundary of such a domain. For instance angles not equal to 0 or π
cannot occur on the boundary.

§7. Extremal domains in two variables

If we would infer from the one-variable picture a good class of extremal
domains for Markov’s L-problem in two variables we would choose the
disjoint unions of disks, as immediate analogs of disjoint unions of inter-
vals, cf. Proposition 4.1. In reality, the nature of the complex plane is
more complicated, but again, fortunately for our subject, another corre-
spondence with an external area of function theory can be established.

A bounded domain Ω of the complex plane is called a quadrature
domain if there exists a finite set of points a1, a2, . . . , ad ∈ Ω, and real
weights c1, c2, . . . , cd, with the property:∫

Ω

f(z)dA(z) = c1f(a1) + c2f(a2) + . . . + cdf(ad), f ∈ AL1(Ω), (7.1)

where the latter denotes the space of all integrable analytic functions in
Ω. In case some of the above points coincide, a derivative of f can corre-
spondingly be evaluated.

For example a disk is a quadrature domain, by Gauss Mean Value
Theorem: ∫

D(a,r)

f(z)dA(z) = πr2f(a), f ∈ AL1(D(a, r)).
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The class of quadrature domains was introduced by Aharonov and
Shapiro [2] in connection with an extremal problem in conformal map-
ping; separately and about the same time, Davis [13] and Sakai [52], [53]
have studied the same class of planar domains. Later on the subject of
quadrature domains has flourished due to other remarkable links with
holomorphic partial differential equations [58], Riemann surfaces, poten-
tial theory [52], [20], [22], fluid mechanics [58] and operator theory [44],
[64], [65], [66].

Before continuing our investigation of the exponential transform we
list a few simple properties of quadrature domains. A fine reference, con-
taining many insights and historical remarks, is Shapiro’s book [58].

Let Ω be a quadrature domain satisfying (7.1). Then its Cauchy
transform is rational:

−1
π

∫
Ω

dA(w)
w − z

=
d∑

i=1

ci

ai − z
, z ∈ Ω

c
. (7.2)

Thus, according to Sakai’s Theorem, the boundary of Ω is real analytic.
Actually, much more is known: the boundary of Ω is real algebraic, given
by an irreducible equation of a special form:

Q(z, w) = pd(z)pd(w)−
d−1∑
j=0

pj(z)pj(w), (7.2)

where
pd(z) = (z − a1)(z − a2) . . . (z − ad),

and pj(z) is a polynomial of degree j for all j, 0 ≤ j < d. For proofs see
[20] and [24].

The function

S(z) = z − χ̂Ω(z) +
d∑

i=1

ci

ai − z
, z ∈ Ω,

is the Schwarz function of the boundary of Ω. Indeed, S is continuous on
Ω, equal to z on ∂Ω (by (7.2)) and it is analytic on Ω \ {a1, . . . , ad}.

Conversely, if a domain admits a Schwarz function S for its boundary,
and S is meromorphic inside, then it is a quadrature domain [58].

A bounded simply connected region is a quadrature domain if and
only if it is the image of the unit disk by a rational conformal map, [2], [58].
Thus the cardioid is a quadrature domain with a double node. Quadrature
domains with three distinct nodes can be multiply connected.

Among the non-connected quadrature domains we recognize all dis-
joint unions of disks. Note that these are sufficient to exhaust in area
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measure any planar domain. An even stronger result holds: quadrature
domains are dense among all planar domains, with respect to the Haus-
dorff metric, see [20].

Let Ω be a bounded planar domain with moments

amn = amn(Ω) =
∫

Ω

zmzndA(z), m, n ≥ 0.

The exponential transform (6.2) produces the sequence of numbers bmn =
bmn(Ω), m, n ≥ 0. In virtue of the factorization (6.3),

bmn = 〈T ∗mξ, T ∗nξ〉, m, n ≥ 0.

Hence the matrix (bmn)∞m,n=0 turns out to be non-negative definite. The
following result identifies a part of the extremal solutions of the L-problem
of moments as the class of quadrature domains.

Theorem (7.1). A bounded planar domain Ω is a quadrature domain if
and only if there exists a positive integer d ≥ 1 with the property

det(bmn(Ω))d
m,n=0 = 0.

For a proof see [44]. The vanishing condition in the statement is equiv-
alent to the fact that the span Hd of the vectors ξ, T ∗ξ, T ∗2ξ, . . . is finite
dimensional (in the Hilbert space where the associated hyponormal oper-
ator T acts). Thus, if Ω is a quadrature domain with corresponding hy-
ponormal operator T , and Td is the compression of T to the d-dimensional
subspace Hd, then:

EΩ(z, w) = 1− 〈(T ∗
d − w)−1ξ, (T ∗

d − z)−1ξ〉, z, w ∈ Ω
c
.

In particular this proves that the exponential transform of a quadrature
domain is a rational function. As a matter of fact a more precise statement
can easily be deduced.

Corollary (7.2). Let Ω be a quadrature domain with data (7.1). Then

EΩ(z, w) =
Q(z, w)

P (z)P (w)
, z, w ∈ Ω

c
.

Thus the exponential transform of a quadrature domain contains ex-
plicitly the irreducible polynomial Q which defines the boundary and the
polynomial P which vanishes at the quadrature nodes. By putting to-
gether all these remarks we obtain a strikingly similar picture to that of a
single variable (see Proposition 4.1). More specifically, if Ω is a quadrature
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domain with d nodes, with data (7.1) and associated hyponormal operator
T , then:

EΩ(z, w) =
Q(z, w)

P (z)P (w)
=

1− 〈(T ∗
d − w)−1ξ, (T ∗

d − z)−1ξ〉 =

1
π2

d∑
i,j=1

HΩ(ai, aj)
ci

ai − z

cj

aj − w
, z, w ∈ Ω

c
.

In particular we infer, assuming that all nodes are simple:

−π2 Q(ai, aj)
P ′(ai)P ′(aj)

= cicjHΩ(ai, aj), 1 ≤ i, j ≤ d.

For details see [23], [24], [25], [26].
The interplay between these additive, multiplicative and Hilbert space

decompositions of the exponential transform gives an exact reconstruction
algorithm of a quadrature domain from its moments. The next section will
be devoted to this algorithm.

Before ending the present section we consider a simple illustration
of the above formulas. Let Ω = ∪d

i=1D(ai, ri) be a union of d pairwise
disjoint disks. This is a quadrature domain with data:

P (z) = (z − a1) . . . (z − ad),

Q(z, w) = [(z − a1)(w − a1)− r2
1] . . . [(z − ad)(w − ad)− r2

d].

The associated matrix Td is also computable, involving a sequence of
square roots of matrices, but we do not need here its precise form. Whence
the exponential transform is, for large values of |z|, |w|:

EΩ(z, w) =
d∏

i=1

[1− r2
i

(z − ai)(w − ai)
] =

1 +
d∑

i,j=1

Q(ai, aj)
P ′(ai)P ′(aj)

ri

ai − z

rj

aj − w
.

The essential positive definiteness (6.3) of the exponential transform
of an arbitrary domain can be deduced, via an approximation argument,
from the positivity of the matrix (−Q(ai, aj))d

i,j=1, where Q is the defining
equation of a disjoint union of disks. We note that (−Q(ai, aj))d

i,j=1 ≥ 0
is only a necessary condition for the disks D(ai, ri), 1 ≤ i ≤ d, to be
disjoint. Exact computations for d = 2 immediately show that this matrix
can remain positive definite even the two disks overlap a little. However,
if two disks overlap, then, by adding an external disk, even far away, this
prevents the new 3× 3 matrix to be positive definite.
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§8. Applications to shape reconstruction

In complete analogy with the analysis and approximation of Markov func-
tions we explain below how one can use the fine structure of the expo-
nential transform of a planar domain for its reconstruction from a finite
segment of its moments.

Let (amn)d
m,n=0 be the moment sequence of a measurable function of

compact support g : C −→ [0, 1] and let us consider its formal exponential
transform:

exp[
−1
π

d∑
m,n=0

amn

zn+1wm+1 ] = 1−
∞∑

m,n=0

bmn

zn+1wm+1 . (8.1)

A characterization of all sequences (bmn) which can occur in this
process is discussed in Chapter XII of [37] or [44].

In view of the remarks outlined in the previous section we have the
following algorithm (of identification of a quadrature domain from its mo-
ments).

1. Assume that det(bmn)d
m,n=0 = 0 and that d is the minimal integer

with this property, that is det(bmn)d−1
m,n=0 6= 0. Solve the system:

d∑
m=0

bmncm = 0, 0 ≤ n ≤ d,

with the normalization cd = 1.

2. Consider the polynomial P (z) = cdz
d + cd−1z

d−1 + . . . + c0 and
isolate from the following product the polynomial part Q:

P (z)P (w)
d∑

m,n=0

bmn

zn+1wm+1 = Q(z, w) + O(
1
z
,

1
w

).

3. The function g equals, up to a null set, the characteristic function
of the quadrature domain Ω = {z ∈ C; Q(z, z) < 0}.

The analogy with the one variable algorithm presented in Section 5
is now transparent. Again we exemplify by a simple case.

Start with the data:

a00 = πr2, a01 = a10 = πar2, a11 = π|a|2r2 + πr4, (8.2)
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where r > 0 and a ∈ C. Its exponential transform is:

exp[− r2

zz
− ar2

z2z
− ar2

zz2 −
|a|2r2 + r4

z2z2 ] =

1− r2

zz
− ar2

z2z
− ar2

zz2 −
|a|2r2 + r4/2

z2z2 +
1
2

z4

z2z2 + . . . ,

so that
b00 = r2, b01 = b10 = ar2, b11 = |a|2r2.

The determinant of the associated matrix vanishes:

det(bij)1i,j=0 = |a|2r4 − |a|2r4 = 0

and the vector (−a, 1)T is annihilated by this matrix. Therefore

P (z) = z − a,

and

(z − a)(w − a)[1− r2

zz
− ar2

z2z
− ar2

zz2 −
|a|2r2

z2z2 + . . .] =

(z − a)(w − a)− r2 + O(
1
z
,

1
w

).

Thus the domain with the prescribed moments (8.2) is the disk of equation
|z − a|2 − r2 < 0.

The above algorithm applies as well to non-quadrature domains. The
convergence of the Padé type approximation is more involved and requires
an analysis of the representations (6.3) and (6.4). We sketch only the main
idea, more details being contained in [46].

Let A be a bounded, linear operator with cyclic vector ξ, acting on a
Hilbert space H. The series

1−〈(A− z)−1ξ, (A−w)−1ξ〉 = 1−
∞∑

i,j=0

bij

zi+1wj+1
, |z|, |w| > ‖A‖, (8.3)

is convergent and has the structure (6.3) of an exponential transform of a
function g ∈ L∞comp(C), 0 ≤ g ≤ 1. Let Hd be the finite dimensional vector
subspace of H generated by ξ, Aξ, . . . , Ad−1ξ and let πd be the orthogonal
projection onto Hd. We will assume that dimHd = d for all d ≥ 1, that
is the operator A does not have finite rank. Let Ad = πdAπd be the
compression of A to Hd.
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Lemma (8.1). With the above notation, the minimal polynomial pd(z) =
zd + cd−1z

d−1 + . . . + c0 of the matrix Ad satisfies

min
d∑

i,j=0

γibijγj =
d∑

i,j=0

cibijcj ,

where the minimum is taken among all sequences of complex numbers
γ0, . . . , γd−1, γd = 1.

Next we find that there exists a polynomial qd−1(z, w) of degree d−1
in each variable, satisfying

pd(z)pd(w)[
∞∑

i,j=0

bij

zi+1wj+1
] =

qd−1(z, w) +
βdd

zd+1wd+1
+

∑
max(i,j)>d

βij

zi+1wj+1
, (8.4)

with some constants βij .
That this is a right analogue of the diagonal Padé approximant one

can see from the identification:

qd−1(z, w)
pd(z)pd(w)

= 〈(Ad − z)−1ξ, (Ad − w)−1ξ〉.

This is in complete analogy again with the computations performed in
Section 5.

We recall that the numerical range of the operator A is the set
W (A) = {〈Ax, x〉; ‖x‖ = 1}. By a classical result of Hausdorff and
Toeplitz, the numerical range W (A) is a convex set which contains in its
closure the spectrum of A. In virtue of von-Neumann’s inequality ([47]):

‖(A− z)−1‖ ≤ 1
dist(z,W (A))

, z ∈ W (A)
c
,

we deduce as in Section 5 above that, for every vector x ∈ H:

lim
d→∞

‖(Ad − z)−1x− (A− z)−1x‖ = 0,

uniformly on compact subsets of C \ W (A). This leads to the following
generalization of Markov’s Theorem.
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Theorem (8.2). The diagonal Padé approximation 1 − qd−1(z,w)

pd(z)pd(w)
con-

verges uniformly to the series (8.3), on every compact set which is disjoint
of the closed numerical range of the operator A.

When working with the moments of a characteristic function g = χΩ

of a domain with smooth, real analytic boundary, the above convergence
can be extended in general across ∂Ω. The rate of convergence turns out
to be exponential and depending on the logarithmic capacity of the set
ω up to which the Schwarz function of ∂Ω analytically extends(cf. (6.5))
and the distance to this set. More details can be found in [46].

A series of numerical experiments [19], [27] have validated the above
reconstruction algorithm. For domains with corners the numerical evi-
dence is at this point stronger than the theoretical results.

§9. The exponential transform in n dimensions

The generalization of the exponential transform and its related recon-
struction algorithms from one and two variables to more than two vari-
ables can be considered still in an incipient stage. So far it is known that
the exponential transform of a bounded domain in Rn is sub-harmonic
(it behaves like the equilibrium potential) and has a controlled decay to
zero on smooth portions of the boundary. On simple domains, such as
quadratic domains and polyhedra it is very close to the better studied low
dimensional cases. Although the positivity properties of the exponential
transform in Rn do not lack, a successful Hilbert space factorization (as
for n = 1, 2) is not known in general. The present section summarizes
some recent results proved in [26].

Let Ω ⊂ Rn, n ≥ 1, be a bounded domain with smooth boundary.
We denote by |Sn−1| the (n− 1)-volume of the unit sphere in Rn, so that
|S0| = 2 by convention. The associated exponential transform is:

EΩ(x) = exp[
−2

|Sn−1|

∫
Ω

dy

|y − x|n
].

Assuming as before exp(−∞) = 0, EΩ(x) is a continuous function on
x ∈ Rn, and EΩ(∞) = 1. According to Riesz Theorem, the germ at
infinity of EΩ determines Ω.

A few geometric interpretations are available from the very definition
of EΩ. Indeed, let n ≥ 2 and let dθ(x) stand for the solid angle form in
Rn (see for instance [16]). Then

EΩ(x) = exp[
−2

|Sn−1|

∫
∂Ω

log|x− y|dθ(y − x)], x ∈ Ω
c
. (9.1)

Thus EΩ(x) can be interpreted as the geometric mean of the distance
function |x−y|, y ∈ ∂Ω, with respect to the solid angle measure dθ(y−x).
For a proof see Proposition 3.1 of [26].
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This formula suggests a companion inner exponential transform, ex-
actly as we have encountered in the two dimensional case. Specifically:

HΩ(x) = exp[
−2

|Sn−1|

∫
∂Ω

log|x− y|dθ(y − x)], x ∈ Ω.

Note that, for n ≥ 3, the Newtonian potential of the volume Ω and
its associated field have very similar formulas:

UΩ(x) =
1

2(n− 2)|Sn−1|

∫
∂Ω

|x− y|2dθ(y − x),

and
∇UΩ(x) =

1
|Sn−1|

∫
∂Ω

(x− y)dθ(y − x), x 6∈ ∂Ω.

These quantities can also be expressed in close form in terms of the
spherical means of the domain Ω.

Note also, on the easy remarks side, that EΩ depends multiplicatively
of Ω. That is, if Ω1 and Ω2 are two disjoint domains and Ω = Ω1 ∪ Ω2 ,
then

EΩ(x) = EΩ1(x)EΩ2(x), x ∈ Ωc,

while
HΩ(x) = HΩ1(x)EΩ2(x), x ∈ Ω1.

A few examples are available by direct computation (see Section 4 of
[26]). For instance, in the case of a half-space H = {xn < 0} we obtain:

exp[
−2

|Sn−1|

∫
∂H

log|x− y|dθ(y − x)] =
{

anxn, xn > 0,
−(anxn)−1, xn < 0.

The above constant an depends only on n. Of course the integral in the
exponential transform of the half-space H is divergent. The above bound-
ary integrals being relevant only after a truncation of the corresponding
volume integrals at infinity.

With a similar normalization one finds the dimensionless formula:

E{a<xn<b}(x) =

{
xn−b
xn−a , xn > b,
xn−a
xn−b , xn < a.

In general the exponential transform is well behaved with respect to cylin-
ders:

EΩ×Rm(x, y) = EΩ(x).

The above explicit formulas for the exponential transform of a region
bounded by hyperplanes can be put into a more invariant form, at least
for convex polyhedra. The ridge of a convex polyhedron Ω is the set of
all interior points with the property that the distance to ∂Ω is attained at
two or more distinct points. For instance the ridge of a triangle is formed
by its bisectors.
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Proposition (9.1). Let Ω be a convex polyhedron with ridge R. The
exponential transform EΩ can be analytically continued from the exterior
of Ω to R, by the explicit formula:

F (x) =
{

EΩ(x), x ∈ Ωc,
−a2

ndist(x, ∂Ω)2HΩ(x), x ∈ Ω \R.

Note that this real analytic extension vanishes of the first order on the
facets of Ω, exactly as the analysis of a single hyperplane has shown. This
observation might be useful for reconstructing (numerically) a polyhedron
from some external data.

Continuing the list of examples, a quadratic surface reveals a very
simple interior transform. Indeed, assume that Ω = {x ∈ Rn; q(x) < 0},
where q is a quadratic polynomial with positive definite leading homoge-
neous part (so that Ω is bounded). Then there exists a negative constant
C with the property:

HΩ(x) =
C

q(x)
, x ∈ Ω.

As for the unit ball, the following inductive formula holds, this time
for the exterior transform:

E1(r) =
r − 1
r + 1

, E2(r) = 1− 1
r2

,

En(r) = En−2(r)exp[
2

(n− 2)rn−2
], n ≥ 3,

where the simplified notation was used: r = |x|, En(r) = E{|x|<1}(r).
Thus, E3(r) = r−1

r+1exp[ 2r ] is no more a rational function.
As for the decay rate of the exponential transform towards the bound-

ary of the domain, the following general result can be proved.

Proposition (9.2). Let Ω be a bounded domain in Rn with C2 smooth
boundary. There are positive constants C1, C2 depending on the geometry
of the domain, such that:

C1dist(x,Ω) ≤ EΩ(x) ≤ C2dist(x,Ω),

for x exterior and close to Ω.

We have seen that, in two dimensions, the function 1 − EΩ can be
polarized and is positive definite. Unfortunately this strong positivity does
not hold in higher dimensions. Instead, one can only prove the following
result.
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Theorem (9.3). Let Ω ⊂ Rn, n ≥ 3, be a bounded domain. Then:

∆(1− EΩ(x))(n−2)/n ≥ 0, x ∈ Ω
c
.

The proof of the subharmonicity of 1 − E can be found in [26]. The
above stronger result is due to Tkachev [61]. It shows that the function
1−E is similar to the equilibrium potential u of the set Ω, normalized to
be equal to 1 on ∂Ω.

Indeed, for large values of |x|:

u(x) =
cap(Ω)

(n− 2)|Sn−1|
1

|x|n−2
+ O(

1
|x|n−1

),

where ”cap” stands for the Newtonian capacity, while

1− EΩ(x) =
2|Ω|
|Sn−1|

1
|x|n

+ O(
1

|x|n+1
),

where |Ω| is the volume of Ω.
The fractional power of 1−EΩ makes the two asymptotics at infinity

comparable. Assuming that the boundary of Ω is smooth, we also know
that both u and 1−EΩ tend to 1 towards ∂Ω. Due to the subharmonicity
of (1− EΩ(x))(n−2)/n we obtain the estimate

(1− EΩ(x))(n−2)/n ≤ u(x), x ∈ Ωc.

By comparing the leading terms at infinity we find:

[
2|Ω|
|Sn−1|

](n−2)/n ≤ cap(Ω)
(n− 2)|Sn−1|

.

An approximation of an arbitrary domain by inner domains with smooth
boundary leads to the following inequality.

Corollary (9.4). Let Ω ⊂ Rn, n ≥ 3, be a bounded domain satisfying
Ω = intΩ. Then

(n− 2)2(n−2)/n|Sn−1|2/n|Ω|(n−2)/2 ≤ cap(Ω).

This inequality is an analogue of Ahlfors and Beurling estimate of the
logarithmic capacity of a planar domain Ω ⊂ R2:

π−1/2|Ω|1/2 ≤ cap(Ω),

see [36], [26].
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Riesz transform 31

29. Helgason, S., Groups and Geometric Analysis, Academic Press, San
Diego, 1984.

30. Helton, J.W. and Howe, R., Traces of commutators of integral oper-
ators, Acta Math. 135 (1975), 271–305.

31. John, F., Plane Waves and Spherical Means Applied to Partial Dif-
ferential Equations, Interscince Publishers, Inc., New York, 1955.

32. Karlin,S., and Studden, W.J., Tchebycheff Systems, with Applications
in Analysis and Statistics, Interscience, New York, 1966.

33. Kato, T., Perturbation theory for linear operators, Springer Verlag,
Berlin, 1995.

34. Krein, M. G., On a trace formula in perturbation theory (in Russian),
Mat. Sbornik 33(1953), 597-626.

35. Krein, M.G. and Nudelman, A.A., Markov Moment Problems and
Extremal Problems, Translations of Math. Monographs, vol. 50, Amer.
Math. Soc., Providence, RI, 1977.

36. Landkof, N.S., Foundations of Modern Potential Theory, Springer-
Verlag,, Berlin-Heidelberg, 1972

37. Martin, M. and Putinar, M., Lectures on Hyponormal Operators, Birk-
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46. Putinar, M., On a diagonal Padé approximation in two complex vari-
ables, Numer. Math. 93(2002), 131-152.



32 MP

47. Riesz, F. and Sz.-Nagy, B., Functional analysis, Dover Publ., New
York, 1990.
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