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Abstract

A non-negative pluriharmonic polynomial <p(z) on the unit ball of Cn

is used as a weight against the rotationally invariant measure on the unit
sphere. The resulting Hardy space carries the canonical n-tuple S of mul-
tiplication by the coordinate functions. By means of compressions of S to
co-analytically invariant subspaces, and known estimates of the numerical
radius of a nilpotent matrix we obtain bounds for the coefficients of p, in
terms of the arithmetic mean and degree of p, and dimension n.

MSC 2000: 42B05, 47A12, 31C10

1 Introduction

The following remarkable inequality was discovered by Fejér in 1910 and later
published in [4, 5].

Theorem 1.1 If h(θ) =
∑k=d

k=−d hkeikθ ≥ 0 for θ ∈ [0, 2π) and h0 = 1, then
|h1| ≤ cos( π

d+2 ).

He also showed that the trigonometric polynomial that achieves equality in
the above theorem is unique up to the argument of h1. For example, when d = 2,
the unique trigonometric polynomial such that |h1| = cos(π

4 ) and arg h1 = π
4 is

given by

h(θ) = −1
4
ie−i2θ +

(
1− i

2

)
e−iθ + 1 +

(
1 + i

2

)
eiθ +

1
4
iei2θ

= <[1 + (1 + i)z +
1
2
iz2].

(1)
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For an analytic polynomial p(z) = 1+p1z+. . .+pdz
d that satisfies <p(z) ≥ 0

for z ∈ ∂D, Fejér’s inequality becomes:

|p1| ≤ 2 cos
(

π

d + 2

)
. (2)

When inequality (2) is generalized to all coefficients pk, it is known as the
Egerváry-Szász inequality: If p(z) = 1 + p1z + . . . + pdz

d satisfies <p(z) ≥ 0 for
z ∈ ∂D, then

|pk| ≤ 2 cos
(

π

b d
k c+2

)
. (3)

for 1 ≤ k ≤ d. See [3].
The original treatment of (2) was elementary and very elegant. Fejér’s main

tool was the factorization (known today as Riesz-Fejér’s Theorem): h(θ) =
|Q(eiθ)|2, where Q(z) is an analytic polynomial of degree equal to the degree of
h. See also [9], pp 77-82.

A natural connection between Fejér’s inequality and the numerical radius of
a nilpotent matrix was recently established by Haagerup and de la Harpe [6].
They proved, using solely elementary methods (positive definite kernels) that:

If T is a bounded linear operator on a Hilbert space H satisfying T d+1 = 0
and ‖T‖ = 1, then

w(T ) = sup |{< Tξ, ξ > | ‖ξ‖ = 1}| ≤ cos
(

π

d + 2

)
. (4)

The extremal operator is shown to be a truncated shift (Jordan block), with
an appropriate choice for the vector ξ. Furthermore, the authors of [6] point
out that the two inequalities, for a positive trigonometric polynomial, and for
a nilpotent operator, are equivalent. The numerical quantity w(T ) is known as
the numerical radius of the operator T ; see for instance [7].

The aim of the present note is to report a series of extensions of Fejér’s
and Egerváry-Szász’ inequalities to bounded domains of Cn. We will not leave
the comfortable assumption of circular symmetry (of Reinhardt domains) which
turns all monomials into mutually orthogonal vectors, with respect, say, to a
Hardy space or Bergman space metric. Since a non-negative pluriharmonic
polynomial <p(z) on such a domain cannot in general be represented as a sum
of squares of analytic polynomials with bounded degree, Fejér’s original proof
cannot be adapted to this new framework. Fortunately, the Hilbert space ap-
proach of [6] is better suited, and this is the path we follow. For simplicity,
we state and prove all of our results on the ball, but the reader will find no
additional difficulties in adapting the proofs to any Reinhardt domain, with a
rotationally invariant measure, or simply the volume measure instead of σ.
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A few years ago Badea and Cassier [2] investigated operator radii and some
generalizations of the Egerváry-Szász inequality in one variable. In addition,
Popescu [10] has recently and independently obtained several inequalities of
Haagerup-de la Harpe type. These results yielded a multivariable operator-
valued Fejér-Egerváry-Szász inequality. The authors thank the referee for sev-
eral helpful comments and especially for bringing to our attention the works of
Badea, Cassier and Popescu.

2 Fejér Inequalities on the Ball in Cn

Fix a positive integer n. Let B denote the ball in Cn of radius 1 and center 0.
Let I denote the collection of all multiindices of length n. If α = (α1, . . . , αn) is
a multi-index of nonnegative integers and z = (z1, . . . , zn) ∈ Cn, then we follow
standard notations: |α| = α1 + . . . + αn, α! = α1! . . . αn!, and zα = zα1

1 . . . zαn
n .

The terminology α ≥ β means that αk ≥ βk for k = 1, . . . , n, while α > β
implies α ≥ β but α 6= β.

Fix a polynomial p of n variables which satisfies <p(z) ≥ 0 for z ∈ ∂B.
Assume p has Taylor’s series p(z) = 1 +

∑
0<|α|≤d pαzα. To obtain a collection

of estimates generalizing Fejér’s inequalities to polynomials with real part on
the unit ball in Cn, we will apply the numerical range bound (4) to a subspace
of the Hilbert space L2(µ), where dµ(z) = <p(z)dσ(z) and the measure σ is
normalized Lebesgue measure on the sphere ∂B. Let H2 denote the standard
Hardy space H2(σ) on the unit ball; similarly H2(µ) will be the closure in L2(µ)
of all complex analytic polynomials.

Recall that the monomials {zα}α∈I are orthogonal with respect to dσ, and
that for all α ∈ I

‖zα‖2H2 =
∫

∂B
|zα|2 dσ(z) =

α!(n− 1)!
(|α|+ n− 1)!

.

Using these facts, it is easy to show that the coefficients pα of p are encoded
in the moments of the new scalar product:

∫
∂B

zαzβdµ(z) =


pβ−α

2 ‖zβ‖2H2 if β > α and |β − α| ≤ d,
pα−β

2 ‖zα‖2H2 if α > β and |α− β| ≤ d,
‖zα‖2H2 if β = α,
0 otherwise.

(5)

See [1, 8] for more properties of positive measures like µ.
Define the analytically invariant subspaceNd ⊆ H2(µ) byNd = span{zα}|α|>d;

letMd = N⊥
d ,and let Pd denote the orthogonal projection from H2(µ) ontoMd.

Set εj to denote the multiindex of length n which is 1 in the jth coordinate and
0 in all other coordinates. Define a multiplication operator on Md by

Sjf = Pd(zjf) for all f ∈Md.
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Note that a polynomial f ∈ span{zα}|α|≤d may not be orthogonal to Nd. How-
ever, its class [f ] modulo Nd can be identified with Pdf , which obviously belongs
to Md.

Define the operator n-tuple S = (S1, . . . , Sn). By definition, the powers of
the n-tuple S satisfy

Sγ [zβ ] =

{
[zγ+β ] whenever |γ + β| ≤ d,
0 whenever |γ + β| ≥ d + 1.

We conclude that Sγ = 0 if |γ| ≥ d + 1 and that (Sα)b
d
|α| c+1 = 0. Therefore

the numerical radius of Sα has the following upper bound:

w

(
Sα

‖Sα‖

)
≤ rα (6)

for all |α| ≤ d, where rα = cos
(

π
b d
|α| c+2

)
. Computing the norm of Sα may not

be an easy task. In this direction we state an immediate estimate.

Proposition 2.1 Assume p is a polynomial of total degree d. If 0 ≤ |α| ≤ d
and {j1, . . . , jm} are the indices for which αjk

6= 0 , then the norm ‖Sα‖ on Md

satisfies

‖Sα‖ ≤ Πm
k=1

(
αjk

|α|

)αjk
2

. (7)

Proof: The operator Sα is the compression of multiplication by zα onto
Md; therefore the norm of Sα is bounded above by the supremum of |zα| on
the sphere ∂B. Define xjk

= |zjk
| for k = 1, . . . ,m. A Lagrange multiplier

argument which maximizes the function f(x1, . . . , xn) = x
αj1
j1

. . . x
αjm
jm

subject
to the constraint x2

1 + . . . + x2
n = 1 yields the maximum on the right side of

inequality (7). �
Remark: Equality will not generally hold in (7).
The following result contains Fejér type inequalities on the ball of Cn.

Theorem 2.2 Let p(z) =
∑

|α|≤d pαzα be a polynomial which satisfies p(0) = 1
and <p(z) ≥ 0 for z ∈ ∂B. Then for any multiindex α with |α| ≤ d,

|pα| ≤
2‖Sα‖
‖zα‖2H2

cos
(

π

b d
|α| c+2

)
.

Proof: Note that the constant functions are in Md, in particular 1 = Pd1 =
1. By equation (5), |α| ≤ d implies pα

2 ‖z
α‖2H2 =

∫
∂B zα dµ =< Sα1,1 >L2(µ) .

Next, equation (6) shows that | < Sα1,1 >L2(µ) | ≤ rα‖Sα‖, from which the
theorem follows. �

Substituting the maximum from Proposition 2.1 into the theorem above
yields a concrete inequality; however, it will not be sharp in general. For n = 1
we have 2‖Sα‖/‖zα‖2H2 ≤ 2‖zα‖∞/‖zα‖2H2 ≤ 2; hence we return to the classical
inequalities (2) and (3). Note that the case |α| = 1 is special, due to the next
simple observation.
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Corollary 2.3 If the polynomial p(z) = 1 + c1z1 + c2z2 + . . . + cnzn + O(|z|2)
has non-negative real part on the unit ball, then

[|c1|2 + . . . + |cn|2]1/2 ≤ 2 cos
(

π

d + 2

)
.

Proof: By a unitary change of variables we can assume c2 = c3 = . . . =
cn = 0. Then Fejér’s inequality applies to the polynomial of a single vari-
able p(z1, 0, . . . , 0), of degree d′ ≤ d. Consequently |c1| ≤ 2 cos

(
π

d′+2

)
≤

2 cos
(

π
d+2

)
. �

Unlike the one variable case, the polynomials for which equality holds in the
above corollary are not unique. For example, if n = 2, then equality holds for
the continuous family

pt(z1, z2) = 1 + (1 + i)z1 +
1
2
iz2

1 + tz2
2

where t ∈ [0, 1
2 ). A Lagrange multiplier argument is again needed for proving

<pt ≥ 0 on the ball.
Given an operator-valued multivariable trigonometric polynomial, Popescu’s

result [10] provides a bound on the euclidean norm of the vector of coefficients
corresponding to powers with fixed total degree k; that is, it generalizes Corol-
lary 2.3 to operator-valued functions and to any degree less than or equal to the
degree of the polynomial.

A detailed analysis of the extremal cases in Theorem 2.2 will be included in
a separate article.
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J. d’Analyse Math, to appear.
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