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Abstract. The sphere S2d−1 naturally embeds into the complex affine space

Cd. We show how the complex variables in Cd simplify the known Striktpos-

itivstellensätze, when the supports are resticted to semi-algebraic subsets of

odd dimensional spheres.
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1. Preliminaries

Let Cd denote complex Euclidean space with Euclidean norm given by |z|2 =∑d
j=1 |zj |2. The unit, odd dimensional sphere

S2d−1 = {z ∈ Cd; |z| = 1}

is a particularly important example of a Cauchy-Riemann (usually abbreviated
CR) manifold. This note will show how one can study problems of polynomial
optimization over semi-algebraic subsets of S2d−1 by using the induced Cauchy-
Riemann structure. Our results can be regarded as multivariate analogues of clas-
sical phenomena about positive trigonometric polynomials, known for a long time
in dimension one (d = 1). They are also related to results concerning proper
holomorphic mappings between balls in different dimensional complex Euclidean
spaces and the geometry of holomorphic vector bundles.

The second author was supported in part by the Institute for Mathematics and its Applications

(Minneapolis) with funds provided by the National Science Foundation. Both authors were par-

tially supported by the National Science Foundation-USA; the first by grant DMS-0500765, the

second by grant DMS-0350911.



2 D’Angelo and Putinar

A polynomial map p : Cd × Cd → C is called Hermitian symmetric if

p(z, w) = p(w, z)

for all z and w. By polarization one can recover a Hermitian symmetric polynomial
from its real values p(z, z). We therefore work on the diagonal (where w = z) and
let H ⊂ C[z, z] denote the space of Hermitian symmetric polynomials on Cd. Note
that H is a real algebra, naturally isomorphic to the polynomial algebra R[x, y],
where z = x + iy ∈ Rd + iRd. Henceforth we will freely identify a Hermitian
symmetric polynomial P (z, z) with its real form p(x, y) = P (x + iy, x− iy).

We denote by Σ2H the convex cone consisting of sums of squares of Hermitian
polynomials. We denote by Σ2

hH the convex cone consisting of polynomials which
are squared norms of (holomorphic) polynomial mappings. Thus R ∈ Σ2

hH if there
exist polynomials pj ∈ C[z] such that

R(z, z) =
m∑

j=1

|pj(z)|2.

See [11] and [1] for various characterizations of Σ2
hH. We have the containment

Σ2
hH ⊂ Σ2H,

simply because

|p|2 = (
p + p

2
)2 + (

p− p

2i
)2 = u2 + v2,

where u and v are the real and imaginary parts of p. The containment is strict as
illustrated by the following two examples.

Example a). In one variable we define a polynomial R by

R(z, z) = (z + z)2 = 4x2.

It is evidently a square but not in Σ2
hH. Note that the zero set of an element in

Σ2
hH must be a complex variety and thus cannot be the imaginary axis.

Example b). In two variables we define R(z, z) = (|z1|2 − |z2|2)2. Again R lies
in Σ2H but not in Σ2

hH. Here one can observe that elements of Σ2
hH must be

plurisubharmonic but that R is not. In 3.3 we will show additionally that R can-
not be written as a squared norm on the unit sphere.
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In this paper we are primarily concerned with optimization on the sphere.
We therefore first let I = I(S2d−1) be the ideal of H consisting of all polynomials
vanishing on S2d−1. We then define

H(S2d−1) = H/I,

and regard it as a space of polynomial functions defined on the sphere. As a matter
of fact, each real-valued polynomial p has a representative in H(S2d−1), when p is
regarded as a function on the sphere.

In analogy with the above notations we denote by Σ2H(S2d−1) the convex
cone consisting of sums of squares of Hermitian polynomials on the sphere. We
denote by Σ2

hH(S2d−1) the convex hull of Hermitian squares:

Σ2
hH(S2d−1) = co{|p(z)|2; p ∈ C[z]} mod I.

Let us pause for a moment and recall a classical one-dimensional result which
is guiding our investigation. We include its elementary proof for convenience.

Lemma 1.1 (Riesz-Fejér). A non-negative trigonometric polynomial is the squared
modulus of a trigonometric polynomial.

Proof. Let p(eiθ) =
∑d

−d cje
ijθ and assume that p(eiθ) ≥ 0, θ ∈ [0, 2π]. Since p

is real-valued c−j = cj for all j. We set z = |z|eiθ and extend p to the rational
function defined by p(z) =

∑d
−d cjz

j . It follows that p(z) = p(1/z); furthermore
its zeros and poles are symmetrical (in the sense of Schwarz) with respect to the
unit circle.

Write zdp(z) = q(z). Then q is a polynomial of degree 2d whose modulus |q|
satisfies |q| = |p| = p on the unit circle. In view of the mentioned symmetry one
finds

q(z) = czν
∏
j

(z − λj)2
∏
k

(z − µk)(z − 1/µk),

where c is a constant, |λj | = 1 and 0 < |µk| < 1.
Evaluating on the circle and using |ζ2| = |ζ|2 we obtain

p(eiθ) = |p(eiθ)| = |q(eiθ| =

|c|
∏
j

|eiθ − λj |2
∏
k

|eiθ − µk|2

|µk|2
,

and hence p is the squared modulus of a trigonometric polynomial. �
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This fundamental lemma has deeply influenced twentieth century functional
analysis. For instance the Riesz-Fejér Lemma is equivalent to the spectral theorem
for unitary operators; see [28].

When invoking duality, the above is not less interesting. It was in this form
that Riesz-Fejér Lemma was first generalized to an arbitrary dimension.

Lemma 1.2. Let L ∈ H(S2d−1)′ be a linear functional which is non-negative on
Σ2

hH(S2d−1). Then L is represented by a positive Borel measure supported on the
sphere.

The proof has implicitly appeared in the works of Ito [16], Yoshino [31], Lubin
[21] and Athavale [3], all dealing with subnormality criteria for commuting tuples
of bounded linear operators. Without aiming at completeness, here is the main
idea.

Proof. (Sketch) Let L be a non-negative functional on Σ2
hH(S2d−1). Fix a poly-

nomial p ∈ C[z] and consider the functional

f(r2
1, ..., r

2
d) 7→ L(f |p(z)|2), f ∈ R[r2

1, ..., r
2
d],

where r2
j = |zj |2. Since

1− |zj |2 =
∑
k 6=j

|zk|2,

L(
∏
j

[(1− r2
j )nj r

2mj

j ]|p|2) ≥ 0, nj ,mj ≥ 0.

By a classical result of Haviland, see for instance [2], there exists a positive Borel
measure µ|p|2 on the simplex ∆ defined by

∆ = {(r2
1, ..., r

2
d); r2

1 + ... + r2
d = 1},

with the property

L(f |p(z)|2) =
∫

∆

fdµ|p|2 .

The total mass of µ|p|2 is L(|p|2).
By polarization, one can define complex valued measures by

L(fpq) =
∫

∆

fdµpq, f ∈ R[r2
1, ..., r

2
d], p, q ∈ C[z],

so that the sesqui-linear kernel (p, q) 7→ µpq is positive semi-definite.
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In short, the functional L can be extended to the linear space of functions
(on the sphere) of the form

F (r, z) =
∑
|α|≤n

cα(r)zα,

where cα(r) are bounded, Borel measurable functions on the simplex ∆. The ex-
tended functional L̃ still satisfies

L̃(|F (r, z)|2) ≥ 0.

Next we pass to polar coordinates zj = rjωj , |ωj | = 1 and remark that
multiplication by ωj satisfies the isometric condition

L̃(|ωjF (r, z)|2) = L̃(|F (r, z)|2).

Thus, we can further extend the functional L̃ to all polynomials in r and ω, ω, so
that

L̃(|ω−1
j F (r, z)|2) = L̃(|F (r, z)|2)

and

L̃(|p(r, ω, ω)|2) ≥ 0.

We refer to [31] or [29] for the details how this extension is constructed. By
rewriting the latter positivity condition we have in particular

L̃(|h(z, z)|2) ≥ 0, h ∈ C[z, z],

whence, by the Stone-Weierstrass Theorem and the Riesz Representation Theorem,
the functional L̃ is represented by a positive Borel measure, supported on the
sphere.

The representing measure is unique by the Stone-Weierstrass Theorem. �

2. A Striktpositivstellensatz

We now turn to the basic question considered in this paper. We are given a finite set
of real polynomials in 2d variables p, q1, ..., qr, or equivalently, Hermitian symmetric
polynomials in d complex variables. We suppose that p(z, z) is strictly positive on
the subset of S2d−1 where each qj is nonnegative. Can we write p as a weighted
sum of squared norms with qi as weights, as the real affine Striktpositivstellensatz
(see for instance [22]) suggests? The answer is yes, and we can offer at least two
different reasons why it is so.
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Theorem 2.1. Let p, q1, ..., qr ∈ R[x, y], where x + iy = z ∈ Cd. If

(|z| = 1, qi(z, z) ≥ 0, 1 ≤ i ≤ r) ⇒ (p(z, z) > 0),

then

p ∈ Σ2
h + q1Σ2

h + ... + qrΣ2
h + I(S2d−1).

First we discuss the history of such Hermitian squares decompositions, in the
case where there are no constraints. A Hermitian symmetric polynomial p is called
bihomogeneous of degree (m,m) if

p(λz, λz) = |λ|2mp(z, z)

for all complex numbers λ and all z ∈ Cd. The values of a bihomogeneous poly-
nomial are determined by its values on the sphere. When p is bihomogeneous and
strictly positive on the sphere, Quillen [27] proved that there is an integer k and
a homogeneous polynomial vector-valued mapping h(z) such that

|z|2kp(z, z) = |h(z)|2.

This result was discovered independently by the first author and Catlin [6] in
conjunction with the first author’s work on proper mappings between balls in
different dimensions. The proof in [6] uses the Bergman projection and some facts
about compact operators, and it generalizes to provide an isometric imbedding
theorem for certain holomorphic vector bundles [7].

It is worth noting that the integer k and the number of components of h can
be arbitrarily large, even for polynomials p of total degree four in two variables.
The result naturally fits into the phenomena encoded into the old or recent Posi-
tivestellensätze, see for instance [22]. For the specific case of Hermitian polynomials
on spheres see [8] for considerable discussion and generalizations.

Using a process of bihomogenization, Catlin and the first author (see [6], [8]
and [9]) proved that if p is arbitrary (not necessarily bihomogeneous) and strictly
positive on the sphere, then p agrees with a squared norm on the sphere; in other
words, p ∈ Σ2

h + I(S2d−1). Thus Theorem 1 holds when there are no constraints.
Our proof of Theorem 1 first considers the case of no constraints, but we approach
this case in a completely different manner.

Strict positivity is required for these results. The polynomial (|z1|2 − |z2|2)2

is bihomogeneous and nonnegative everywhere, but there is no element in Σ2
h

agreeing with it on the sphere. See Example 3.3 below.
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Proof. (of Theorem 1) Suppose first that no qi’s are present and assume by con-
tradiction that p /∈ Σ2

h, all regarded as elements of H(S2d−1). Since the constant
function 1 belongs to the algebraic interior of the convex cone H(S2d−1), the
separation lemma due to Eidelheit-Kakutani [12, 17] provides a linear functional
L ∈ H(S2d−1)′, satisfying both L(1) > 0 and

L(p) ≤ 0 ≤ L|Σ2
h
.

According to Lemma 2, there exists a positive Borel measure µ, supported on the
unit sphere, which represents L. Therefore

0 ≥ L(p) =
∫

pdµ > 0,

a contradiction.
The proof of the general case is similar, with the difference that we have to

prove that the support of the measure µ is contained in the non-negativity set
defined by the functions qi. To this aim, fix an index i, and remark that∫

qi|p|2dµ ≥ 0

for all p ∈ C[z]. Now, by the first case, every positive polynomial P (z, z) is in the
convex hull of the Hermitian squares, whence∫

qiP (z, z)dµ ≥ 0

whenever P (z, z) > 0 on the sphere, that is whenever P (z, z) ≥ 0 on the sphere.
In view of Stone-Weierstrass Theorem, every continuous functions f on the sphere
can be uniformly approximated by real polynomials. In particular, we infer∫

qif
2dµ ≥ 0, f ∈ C(S2d−1).

But this inequality holds only if the support of µ is contained in the non-negativity
set qi(z, z) ≥ 0. �

3. Examples

3.1. Optimization on the closed disk

The following simple example shows that Hermitian sums of squares do not suffice
as positivity certificates on more general semi-algebraic sets. Specifically, let

P (z, z) = 1− 4
3
|z|2 + a|z|4,
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with 1
3 < a. Note that

P (z, z) = (1− 2
3
|z|2)2 + (a− 4

9
)|z|4,

and hence P ∈ Σ2H when a ≥ 4
9 . Hence we assume 1

3 < a < 4
9 . The polynomial

1 − 4
3 t + at2 is decreasing for 0 < t < 1 when a < 2

3 ; therefore |z| ≤ 1 implies
P (z, z) ≥ 1 + a− 4

3 > 0.
On the other hand,

P /∈ Σ2
h + (1− |z|2)Σ2

h.

To see that P is not in this set, we apply the hereditary calculus. See [1] for details.
We replace z with a contractive operator T and replace z with T ∗. We follow the
usual convention of putting all T ∗’s to the left of the powers of T . If P were in
this set, we would obtain

‖T‖ ≤ 1 ⇒ p(T, T ) ≥ 0.

In particular let T be the 2×2 Jordan block with 1 above the diagonal. We obtain a
contradiction by computing that P (T, T ∗) is the diagonal matrix with eigenvalues
1 and − 1

3 .
On the other hand, the larger convex cone Σ2 + (1 − |z|2)Σ2

h is appropriate
in this case, see [24, 26].

3.2. Squared norms

Recall that Σ2
hH denotes the convex cone consisting of polynomials which are

squared norms of (holomorphic) polynomial mappings. In all dimensions the zero
set of an element in Σ2

hH must be a complex variety.
Suppose R(z, z) ≥ 0 for all z. Even in one dimension we cannot conclude

that R ∈ Σ2
hH. We noted earlier, where x = Re(z), the example

R(z, z) = (z + z)2 = 4x2.

The zero set of R is the imaginary axis, which has no complex structure. In one
dimension of course, the zero set of an element in Σ2

hH must be either all of C or
a finite set.

Things are more complicated and interesting in higher dimensions. Consider
the following example from [8]. Define a Hermitian bihomogeneous polynomial in
three variables by

p(z, z) = (|z1z2|2 − |z3|4)2 + |z1|8.
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This polynomial p is nonnegative for all z, and its zero set is the complex plane
given by z1 = z3 = 0 with z2 arbitrary. Yet p is not a sum of squared moduli;
even more striking is that p cannot be written as the quotient |a(z)|2

|b(z)|2 where a and
b are sums of squared moduli. See [10] for additional information on this example
and several tests for deciding whether a non-negative polynomial R can be written
as a quotient of squared norms. See [30] for a necessary and sufficient condition
involving the zeroes of R.

We give an additional example in one dimension. Define p by

p(z, z) = 1 + bz2 + bz2 + c|z|2 + |z|4.

The condition for being a quotient of squared norms is that one of the following
three statements holds:

c > 2|b|2 − 2,

b = 0, c > −2,

|b| = 1, c = 0.

The condition for being nonnegative is simpler: c ≥ 2|b| − 2.

3.3. Proof of Example b).

We claimed earlier that the polynomial (|z1|2− |z2|2)2 is bihomogeneous and non-
negative everywhere, but there is no element in Σ2

h agreeing with it on the sphere.

Proof. Put R(z, z) = (|z1|2 − |z2|2)2, and let V (R) denote its zero set. We note
that V (R) ∩ S2n−1 is the torus T defined by |z1|2 = |z2|2 = 1

2 . Suppose for some
polynomial mapping z → P (z) we have R = |P |2 on the unit sphere. Note first
that the zero set of |P |2 is a complex variety. We have |P (z)|2 = 0 for z ∈ T . We
claim that P is identically zero. For each fixed z2 with |z2| = 1, the vector-valued
polynomial mapping z1 → P (z1, z2) vanishes on the circle |z1|2 = 1

2 and hence
vanishes identically. Since z2 was an arbitrary point with |z2|2 = 1

2 we conclude
that the mapping (z1, z2) → P (z1, z2) vanishes whenever z1 ∈ C and z2 lies on
a circle. By symmetry it also vanishes with the roles of the variables switched. It
follows that the zero set of P (which is a complex variety) is at least three real
dimensions, and hence P vanishes identically. Since R does not vanish identically
on the sphere we obtain a contradiction. �



10 D’Angelo and Putinar

3.4. Example

There exist non-negative polynomials R such that R is not in Σ2
hH, yet there is

a positive integer N for which RN ∈ Σ2
hH. The bihomogeneous polynomial Rλ

given by
Rλ(z, z) = (|z1|2 + |z2|2)4 − λ|z1z2|4

satisfies this property whenever λ < 8. See [30]. For λ < 16, Rλ > 0 on the sphere.
By Theorem 1 it agrees with a squared norm on the sphere.
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