ON A DIAGONAL PADE APPROXIMATION IN TWO
COMPLEX VARIABLES

MIHAI PUTINAR

ABSTRACT. A special type diagonal Padé approximation for a class of her-
mitian power series in two variables is related to a canonical strong-operator
topology, finite-rank approximation of cyclic operators. The expected conver-
gence of the process (uniform or in measure) is derived from operator theory
facts.

1. INTRODUCTION

A reconstruction algorithm of planar shapes from their moments [15] has raised
the approximation question which makes the subject of the present note. Although
the situation in [15] is rather special, we consider below a more general setting,
and in this new framework we prove some uniform convergence and convergence in
measure results. Besides well known algebraic and analytic aspects of one dimen-
sional Padé approximation, cf. for instance [2] and [27], we rely on von Neumann’s
theory of spectral sets, some basic properties of compact operators and the theory
of hyponormal operators.

Recently, the algebra, convergence and algorithmic aspects of various Padé ap-
proximation schemes in several variables have received a lot of attention, see [7],
[5] and the excellent survey [6]. The particular question treated in this note can
be classified as an inhomogeneous, equation lattice approach to the Padeé approx-
imation of a structured class of power series in two variables. For this problem
the recent general results (such as those of [5], [7]) certainly apply. However, our
framework is more particular and special from several points of view: the Hilbert
space factorizations of series in two variables we deal with below reduce the Padé
approximation technique to one variable (hence the simplicity of the proofs); due to
the combination of operator theory techniques and approximation theory methods
we obtain non-circular (in general bigger than expected) convergence domains (such
as in Theorem 2.5 or Corollary 2.6); the linear algebra beyond the algorithmic part
of the approximation scheme contained in this note is elementary and resonant to
linear algebra aspects of orthogonal polynomials or numerical quadratures; some
related numerical experiments are commented in [13] and [15].

The interplay between functions and operators we use in this paper is a variation
on the idea of realization theory. A few similar frameworks are by now classical:
[1], [11], [22]. The purpose of this note is to show that, even for the class of all
linear operators, the realization theory link can produce interesting approximation
theory results.

Next we discuss in more detail the contents of the note. The main problem,
equivalent to the convergence of the diagonal Padé table, turns out to be: how
the strong operator topology convergence of a sequence T,, — T of operators is
trasmitted to the local resolvents (Ty—z) 16 — (T'—z) !¢, beyond the boundary
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|z| = ||T||? Classical results, such as Markov’s theorem on the uniform convergence
of the Padé approximants of the Cauchy transform of a positive measure, compactly
supported on the real line, cf. [23] are contained in this setting.
Throughout this note, the object of approximation is a double series:
- b
F(z,w) = Z #a (1)

m,n=0

whose coeflicients satisfy, as a kernel, the positivity condition:
(szm,n * bm+1,n+1)$no,n:0 >0, (2)

where R > 0 is a constant. Under this assumption, the series F' will be convergent
in the polydomain [C \ D(0, R)]?, where C is the one point compactification of the
complex plane and D(0, R) is the disk centered at 0, of radius R.

Standard factorization techniques, as for instance developed in the Appendix of
[25], show then that there exists a unique linear bounded operator T, acting on a
Hilbert space H, and a cyclic vecctor & of T, so that ||T'|| < R and :

F(z,w) =((T = 2) 16, (T —w)'&); 2], |w| > R. 3)

Specifically, there exists a bijection between such series F' and pairs (T, ), mod-
ulo joint unitary equivalence. Relation (2) can equivalently be written on Taylor
coefficients as :

bmn = <Tm£: T"£>7 m,n Z 0. (4)

Thus, our problem is similar to a polarized, two-variable version of the well un-
derstood approximation by rational functions of transfer functions in linear control
theory, see for instance [11] and the references cited there. Contrary to these stud-
ies, which put emphasis on the unitary dilation of a contractive operator T" and
then on the analysis of a continued fraction decomposition (known as the Schur
algorithm) of the associated characteristic function, below we focus directly on a
cyclic operator T and its localized resolvent (T' — z)~!£. Even this apparently less
structured approach will prove to have certain advantages.

Assume that the Hilbert space H = \/,—,T"¢ has finite dimension equal to d,
or equivalently that the (d + 1) x (d + 1) Gramm matrix (bmn)‘fn’nzo is degenerate,
of rank d. Then the function F is rational, of the form:

F(z,w) = Lﬂ,
P(z)P(w)
where Q(z,w) is a polynomial of degree d — 1 in each variable, and P(z) is a monic

polynomial of degree d. Moreover, in this case a unique additive structure of @ is
known (cf. [17]):

(5)

-1
Q(2,m) = Y crqr(2)gr(w),
k=0

where ¢ are monic polynomails of a single complex variable, of degree k, and
cp >0, 0 <k <d-—1. The realization problem (which rational functions F'(z,Z)
arise as norms of local resolvents of matrices T') is also discussed in [17].

The interest for these functions lies in the fact that the ” generalized lemniscates”:

Q(z,2)

N ={z€C; ==
P(z)P(z)

> const.},
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approximate every planar domain, and for special pairs of polynomials P, (Q, the
above series F' contains in finite form all the moments of €, see [15]. Then solving
the moment problem is equivalent, exactly as in the one variable case [23], to
approximating the series F' by a sequence of naturally chosen Padé quotients.

In our situations we will select the diagonal approximants Fy(z,w) of the form
(5), which corresponds in the Hilbert space picture to taking the orthogonal pro-
jection w4 of H onto VZ;(I) T*¢. Specifically, we will show that:

Fd(zaw) = ((ﬂ-dTﬂ'd - z)_lga (WdTﬂ'd - w)_lg); |Z|, |’LU| > R.

To put everything in one sentence, the approximation F,, — F will reflect,
under various additional conditions, the fact that so — limg_,oo 7gT7g = T and
S0 — limd_mo 7TdT*7Td =T*.

The contents is the following. Section 2 contains the approximation scheme and
the proofs of its uniform convergence ouside the close numerical range of the oper-
ator T, respectively ouside the closed numerical range of a compact perturbation
T + K, union possibly with a discrete set. Theorem 2.9 shows how general con-
vergence in measure arguments in the theory of the univariate Padé table can be
adapted to our Hilbert space framework. Section 3 contains a few examples of nu-
merical series, obtained as double Cauchy transforms of various measures in C, and
the corresponding convergence results. Section 4 is a return to the original problem
of shape reconstruction from moments, [15]. Finally, in Section 5 we investigate the
stability of the proposed approximation algorithm in terms of the Taylor coefficients
of the original function F'.

The author thanks the referee for valuable bibliographical references.

2. THE GENERAL APPROXIMATION SCHEME

This section contains a review of known facts about the interplay between diago-
nal Padé approximation and finite-rank truncations of Hilbert space operators, see
for instance [2]. Then some convergence results are derived from this connection.

Given a subset A C Z2, the notation F(z,w) = 0 mod(A) means that the series
F does contain only monomials z™w"™ with (m,n) € A.

For every positive integer d we define the set:

Ag = {(-m, —n); max(m,n) >d+1, or m=n=d+1}.
Exactly as in the classical theory of the Padé table, or its multidimensional ana-

logues, see [2], [3], [6], [30], we start with the following simple algebraic fact.

Proposition 2.1. Assume, with d > 1 fized, that the coefficients of the series (1)
satisfy:

det(bmn)?n,nzo 7é 0. (6)

Then there exists a unique pair of polynomials pg(2), qa—1(2, W), with the properties
that deg(pq) = d, pg is monic, qg—1 is of degree d — 1 in each variable, and:
F(Z,E) _ Qd—l(zaw)
p(2)p(w)
Note that a naive counting of real parameters in the complex symmetric matrix
bmn indexed over (m,n),0 < m,n < d,m + n < 2d, and respecively the free
coefficients in pg and g4 1 leads to equality: (d+ 1)? — 1 = d? + 2d.

=0 mod(Ayg), (7
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Proof. Condition (7) is equivalent to the fact that the Laurent series

pa(2)pa(w)F(2,W) — qq—1(2, W) possibly contains monomials of the form z~'w~1,
or z~™ w1 max(m,n) > 1.

Let us write pg(2) = 2%+ ¢4_12971 + ... + ¢, with ¢; € C, and ¢q-1(2,@) =
Zi;io ap 2@, with ag = @z € C. We also put ¢g = 1 for the consistency of the
coming formulae. Written on coefficients, condition (7) becomes:

aw= Y cGbii ki1, 0<klI<d-1, )
i>k+1,>1+1
and, for k=—1and j > 1+ 1:

0= Zcibi’j,lflc_j.
1,3
A descending induction in [ leads then to :
d
D ebij=0, 0<j<d 9)
=0

Turning now to the Hilbert space factorization (4) of the coefficient matrix by,
we obtain from (9):

(pa(T)§,T7€) =0, 0<j<d. (10)
Since the Gramm matrix of the vectors &, T¢, ... , T was supposed to be nondegen-
erate, there exists exactly one polynomial py fulfilling the orthogonality conditions

(10).

Once the polynomial pg found, the coefficient matrix ay; of the polynomial g4_1
is determined by the relations (8). This shows the existence and uniqueness of the
pair (pg,qq—1) as in the statement. a

The Hilbert space proof of Proposition 2.1 reduces the search of the polynomial
paq to a variational problem for a quadratic form, as follows.

Corollary 2.2. With the notation above, the coefficients of the polynomial py(z) =
cqgz® + cq_12% 4+ ...+ co, cq =1, satisfy:

d d
min Y vibi ¥ = Y, cibyG, (11)
1,j=0 4,j=0

where the minimum is taken among all systems of complex numbers
Y0, Y15+ 5 Vd—15 Yd = 1.
As it is expected, and known to experts, if the determinant (6) is 0, then a

solution of the congruence (7) still exists, but it may not be unique.

Let us introduce a few new notations. Assume that the series (1) is given with
the factorization (3), and fix a positive integer d. We denote H; = z;é Tk¢
and 7g will be the orthogonal projection of H onto Hy. The compressed operator
Ty = ngTwg will be regarded also as a linear transformation of H; into itself.

Proposition 2.3. With the above notation, the approrimant in Proposition 2.1 is:
dd—1 Zam _ _
W18 (o, oyt (Ta - w) ), (12
pa(2)pa(w)
where pq is the minimal polynomial of the operator Ty € L(Hy).
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Proof. It suffices to remark that
Tie =Tk, k<d, (13)

and:
Td¢ = nqT% = mapa(T)€ — ma(pa(T) — T?) =

(T* = pa(T))€ = (T§ — pa(Ta))&,
whence pqg(Ty)€ = 0. Since the operator Ty is cyclic and of rank d (by the determi-
nant condition (6)), we conclude that py is the minimal polynomial of Ty.
Since pqg(2)pa(w){(Ty — 2)~ 1€, (Ty — w)~1€) is a polynomial in both variables,
relations (7) and (13) yield:

qa—1(2,W) = pa(2)pa(w){(Ta — 2) '€, (Tg — w)~1E),
and the proof is complete. O

Throughout this paper, the above canonical rational approximants will be de-

noted:
Fa(ey) = (Ta - 2) 7', (Ty - w)~g) = 210
pa(2)pa(w)

We record below a few simple consequences of Proposition 2.3. The spectrum
of a linear operator A will be denoted by o(A), while its numerical range will be
W(A) = {{Az,z); ||z|| = 1}. Recall that o(T") C W(T') and that, by a theorem of
Hausdorf, W(T) is a convex set.

Corollary 2.4. In the above conditions, we have:
a). |Tall < IT; so—limgoTa =T, so—limgoTy =T*

b). The operator Ty € L(Hy) is cyclic, with d points (counting multiplicities) in
its spectrum and it satisfies the quadrature identity:

(P(Ta)¢, Q(Ta)8) u, = (P(T)&, Q(T)E) u, (14)
for any pair of polynomials P,Q € C[z], deg(P) < d, deg(Q) <d-1.

¢). o(Ty) C W(T).

We leave the standard proof to the reader.

A difficult and fundamental question of approximation theory is the location of
a(Ty), or equivalently of the zero set of the ”orthogonal” polynomial pg. Along
these lines, inclusion c¢) above is a generalization of Fejér’s classical theorem which
asserts that a complex orthogonal polynomial has its zeroes contained in the convex
hull of the support of the underlying measure (in C), see [12].

At this point, several convergence results are easily available. The notations and
non-vanishing assumption are those of Proposition 2.1.

Theorem 2.5. The sequence of rational functions Fy(z,@) converges uniformly to
F(z,w), on compact subsets of [C\ W (T)]?.

Proof. Let a € C\W(T) and let L(z) = R(az+ ) be areal linear functional which

separates the compact convex set W (T) from a: L(a) < 0 < L(z), z € W(T). Let
€ > 0 be small, so that L(a + z) < 0 for all |z] < e.
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The operators aT + 8 and aT; + 3 have their numerical range contained in the
right half-plane C , hence, in virtue of von Neumann’s inequality (cf. [25] §154),

(@S + B8 — (az + B)) || < dist(az + 8,Cy) !,

where S=T or S=T4, d>1,and |z —a| <e.
There exists therefore a constant C' with the property that:

I(S—2)"Y<C; S=TorS=Ty d>1, |z—a|<e

Then, whenever |z — a| < min(e, C), the familiar Neumann series expansion:
oo
(S—2)'=(-a-(z=a) =) (z-a)"(S—a) "},
n=0
converges uniformly in the operator norm topology.
On the other hand,

(Ty—a) ' = (T—a) ' =Ty—a) (T -T)(T —a)™"

converges strongly to zero, and hence (Ty — a) ™ converges strongly to (T' — a) ™™
for every n > 1.

In conclusion, s0—limg_,eo ((Tg—2) ' — (T —2)~!) = 0, uniformly in z belonging
to an open ball centered at a. |

Often, the Padé approximation of a meromorphic function f holds beyond the
radius of convergence, outside the poles of f, up to an inner essential barrier, see for
instance [23] or [5]. The next corollary of Theorem 2.5 illustrates such a situation.
Some functional examples will be considered in the next sections.

Corollary 2.6. Let K € L(H) be a compact operator and let W =
W(T + K). Then o(T)\W is a discrete set in C\W and the sequence Fy converges
uniformly to F, on compact subsets of [C\ (W U (T))]?.

Proof. The fact that o(T) \ W is a discrete set belongs to general perturbation
theory, see [18].

Let a € C\ (W Uo(T)). Then the operator T' — a is invertible, and so are
T+ K —a, Ty+ K4—a; moreover, according to the preceding proof, so—limg_, o (Ty+
Kij—a)'=(T+K -a)™t.

Since K is a compact operator we have limg_,, Ky = K, and,
limg oo (Ty + Kqg—a) 'K = (T + K — a) "' K, where both limits are taken in the
norm topology. Consequently, limg_yoo(Ty + K4 — a) 'Ky = (T + K — a)"'K.
Similarly, because so —limg_,00 T = T*, we obtain: limg—eo Kq(Ty+ Kq—a) 1 =
KT+K-a) L

Next we write

(T-a)'=T+K-a-K)'=
(T+K—a) '[I-K(T+K-a)']1=
[-(T+K-a) 'K (T+K-a)"",
and we infer from this representation that there exists dy with the property that
(T; — a)~! is invertible for all d > do, with inverse:

(Ta—a)' =(Ta+Ki—a) '[I - Ka(Ta+ Kqg—a)~']7! =
[[—(Tyg+Kg—a) 'Ky " (Ty+ Kq—a)™ "
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The latter formulas also give so — limy_,oo(Ty — 2)™! = (T — 2)~!, uniformly in
z, |z — a] < €, for a small, but positive e. Then we continue as in the proof of the
theorem. 0

The particular case T+ K = 0 in the preceding corollary yields the following
result.

Corollary 2.7. Assume that the operator T' is compact. Then Fy converges to F'
uniformly on compact subsets of [C\ o(T)]>.

Corollaries 2.6 and 2.7 illustrate Montessus de Ballore convergence phenomena.
For more details about them we refer to [5], [6].

Let us mention that the analytic function F(z,w) detects the isolated points
of finite multiplicity in the spectrum of T, such are for instance the discrete sets
of points appearing in Corollaries 2.6 and 2.7. Indeed, let F' be analytic in the
punctured bidisk [D(a,€) \ {a}]?, and assume that there exists a positive integer n
so that, for all w € D(a,¢) \ {a},

lim (2 — a)" "' F(z,w) = 0.

zZ—a
Then the spectral space of T', corresponding to the isolated component {a} € (T,
is finite dimensional, of dimension not exceeding n + 1. We leave the details to the
reader.

In complete analogy with the classical theory of orthogonal polynomials we derive
below a formula for the remainder in our approximation problem. We will deduce
then from it a weaker, but more general, convergence in measure statement. The
notation is unchanged.

First, remark that, for large values of |z|, we have:

pa(2)(T — 2)7'€ = [pa(2) — pa(T)(T — 2) '€ + pa(T)(T — 2)~'¢ =
[pa(2) — pa(T)|(Ta — 2) " + pa(T)(T — 2) '€ =

pa(2)(Ta — 2) '€ + pa(T)(T — 2) €.
In adition, we note the identity: pa(T)¢ = (1 —7q)T €. All these computations can
be restated in the following lemma.

Lemma 2.8. Let z ¢ o(T) Uo(Ty). Then:

(1 —mg)T%

(-2 Y= @u-n) o= -2) 10

(15)

As expected, the asymptotics of the sequence ||(1 — 74)T%||, d > 1, decides
the rate of convergence of our approximation process. A general, and not very
illuminating, way of computing ||(1 — 74)T%¢|| is to consider the matrix associated

. o & pi(T)E .
to T', with respect to the orthonormal basis el Tor (D) -

ai1 ai2 a13
a1  QA22 (23
T~ | 0 asx as
0 0 a43
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Condition (6) is then equivalent to the fact that ap41,p, # 0 for all p > 1. By keeping
track of the first column in the matrix associated to 7% we immediately obtain:

. (16)

Recall that very similar formulas are known in the theory of orthogonal polynomials,
see [29].

Next we present a typical application of a lemma due to H. Cartan to the con-
vergence in measure of the sequence Fj, which in general is valid beyond the range
of applicability of Theorem 2.5. For full details about this method of proof and its
numerous ramifications, as for instance convergence in capacity rather than planar
measure, we refer to [2] Chapter 6 or to the ferences in [6].

(1 = 7a)T%|| = |aziasz - . - Gat1,a

Theorem 2.9. Let T be an operator with cyclic vector £ satisfying
lim ||(1 - mg)T%||Y? =0
d—oo

and let €,0 be positive numbers.
There exists dyg depending on €,6 with the property that, for every d > doy, there
ezists a measurable set Eq C C of area |E4| < w6% and such that:

(T = 2)7' = (Tu— 2) el < (T = 2) "I, (17)
for all z ¢ o(T) U Ey.

Proof. According to Cartan’s lemma, for each monic polynomial of degree d, in
particular for py, there exists a measurable set E; of area |E4| < 762, such that:

|pa(2)| > 8,z ¢ Ey.

It remains to choose dy with the property that d > do implies ||(1—mq)T%¢||}/¢ <
€. Then Lemma 2.8 yields the desired estimate. O

A polarization of estimate (17) will give the convergence in measure Fy(z,w) —
F(z,w), for z,w ¢ o(T).

To construct examples of operators as in the theorem above, pick a subdiagonal
sequence in the preceding matricial decomposition of T so that

. 1/d
lim |a21a32 .. .ad+1,d| / — 0.
d—o0

For the rest choose independently the upper triangular elements of 7', including by
convention among them the diagonal. Since we can regard T as a perturbation of
an upper triangular matrix D by a compact subdiagonal, the essential spectrum
of T will be equal to the essential spectrum of D, see [18], and hence it can be
arbitrary.

3. SUBNORMAL OPERATORS

If T is a subnormal operator, then the abstract Hilbert space objects described
in the preceding section have a function theoretic counterpart which is a slight
generalization of the classical Padé approximation framework. The present section
contains a couple of examples of this kind.

1. Let T = T* be a selfadjoint operator with cyclic vector £&. Then the spectral
theorem gives the realization T = M, of T as the multiplication operator with the
variable 2 € R, on the Hilbert space H = L?(u), where pu is a positive, compactly
supported Borel measure on R.. In this representation £ = 1, the function identically
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equal to 1. Therefore, the function (1) to be approximated from its germ at infinity
is:

F(z,w):/ft%, 2w ¢ R. (18)

Assume that the closed support of p is contained in a compact interval:

supp(p) C [a,b]. Then o(T) = supp(u) C [a,b] and moreover, the very definition
of the numerical range yields: W(T') C [a,b]. Note that in this situation,

bmn = <Tm§a Tné-) = <Tm+n£7 §>7

hence byp = by, whenever m—+mn = m'+n'. Therefore py is the monic orthogonal
polynomial of degree d with respect to the measure u, and our approximant, when
evaluated at infinity in one variable, coincides with the classical [n — 1,n] Padé
approximant:

lim EFd(Z,w) = _<(Td - Z)_1£,£>,

and w—00 )
(T=2)768 ~(T-27'60 = Y .
k=2d

Thus Theorem 2.5 generalizes Markov’s theorem, see [23], §68.

Next we consider a simple example which illustrates Corollary 2.6. Besides
the measure u supported by the real line, let us consider a finite atomic, positive
measure v, supported by C \ R. Let us denote supp(v) = {a1,as,... ,a,} and
v; = v({a;}). The Hilbert space H = L*(u + v) = L?*(u) ® L%(v) still carries
T = M, as a linear bounded operator with cyclic vector £ = 1. Accordingly,

F(z, @) = / ) +zn:—""
’ rR(E—2)(t-w) % (ai—2)(a —W)
By considering the operator M, on H as a direct sum of M, on L?(u) and the
finite rank perturbation M, on L?(v), Corollary 2.6 states that F,; converges uni-
formly to F' on compact subsets of the complex plane which avoid the set [a, b] U
{a1,az,...,a,}. Again, letting w = 0o and normalizing the functions by the factor
w, we obtain that the sequence of rational functions ((Ty — 2)~1&, &) converges in
the same domain to the function:
dp(t) <~ v
/R i—z Z a;—z

i=1

Actually in the above example we can take n = oo, with the only necessary
additional assumptions:

o
lim a; =0, E v; < 00.
i—00 1

=

For classical approximation results of this type we refer to [2], Part I and the
references cited there.

2. The case when T is subnormal is very similar. Let p be a positive Borel
measure compactly supported by the complex plane and let H = P%(u) be the
closure in L?(u) of the space C[z] of complex polynomials. The multiplication
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operator T' = M, is then the typical cyclic subnormal operator, with cyclic vector
& =1, see [4]. The function F' is this time:

) = dp(<)
SR N

but WFy(z,W)|w=co may fail to be a [d — 1,d] approximant of WF'(2,W)|y=c0- In
any case,
— — — — —
WFy(2,0)|w=co — WF (2,0)|w=c0 = sy
k=d+1
The closed numerical range W (M) can in this case be identified with the closed
convex hull of supp(u):

W =W(M;) = co supp(p)-

The convergence in Theorem 2.5 and its corollary holds then ouside W, respectively
W union a discrete set.
We leave the details to the interested reader.

4. EXTREMAL HYPONORMAL OPERATORS

In this section we return to the original approximation problem of [15]. Let us
remind first the specific form of the function F' in this situation. The terminology
will be borrowed freely from [15] and [24], except a switch from an operator to its
adjoint, respectively from z to Z, which we hope will cause no serious confusion to
the reader.

Let 2 be a bounded planar domain, and let T € L(M) be the unique hyponor-
mal operator of rank-one self-commutator [To*,Tq] = £ ® £, having its principal
function equal to the characteristic function of Q. Then o(Tn) =  and the es-
sential spectrum of Tq is the boundary of the domain, see [20]. Let, as before
H =\, To™"€ and recall that H can be a proper closed subspace of M, see
[24]. To be consistent with our previous paragraphs we denote T' = To*|H, and we
regard T' as a linear continuous operator on H, with cyclic vector &.

Then there exists a positive definite kernel H(z,w), analytic and integrable in
z € (1, anti-analytic and integrable in w € Q and such that our series F' has the
representations, for large values of |z|, |w|:

= b
Fem) = Y ot = (T —2)7' (T —w) ') =

m,n=0

R Ry
/ HuvdA (u)dA(v)

(u—2)(v—w)

)

see [24], [16]. All integrals above are taken w1th respect to the area measure dA.

Further on, assume that Q is a generalized quadrature domain, in the sense that
there exists a signed measure p, supported by a compact subset w of Q ( or even
Q) with the property:

/ fdA = / fdp, fe ALY(R), (19)
Q w



ON A DIAGONAL PADE APPROXIMATION IN TWO COMPLEX VARIABLES 11

where AL'(Q) is the space of all integrable, analytic functions in 2. The domain
Q is called a quadrature domain if a representation formula (19) exists with w
reduced to a finite set and p possibly replaced by a distribution. It is known
that quadrature domains are very rigid, for instance their boundary is given by an
irreducible polynomial equation. For details see [28].

The main result of [24] asserts that Q is a quadrature domain if and only if
dim(H) < oc; that means, in our previous notation, that there exists d > 1 with
the property Fyir = F for all £ > 0. Thus, quadrature domains correspond, in the
above framework, ezactly to the case when the Padé approximation scheme Fg — F
becomes stationary for large d. This fact was further exploited in [13] and [15].

Returning to a generalized quadrature domain €2, we remark that the represen-
tations of F' can be analytically continued in the explicit form:

Fe,m) = / / A(undp(wdp(v) o, (20)

(u—2)(© —-w)

By passing to the single variable, Hilbert space valued picture we can factor the
kernel H as H(u,7) = (h(u),h(v)), where h : @ — H is an integrable, analytic
function. By reading formula (20) on its first factor we find:

- te= Mg, (21)

We recall that in this case the boundary of € is real analytic, see [16].

The only interesting case is when w # ; then the mere existence and the
properties of the analytic continuation of the localized resolvent (T' — z)~1¢ have
far reaching consequences. We state below one of them. For a comprehensive
account of the notion of capacity we refer for instance to [14] or [26].

Lemma 4.1. Assume that Q is a generalized quadrature domain (19) which is not
a quadrature domain. Then the "orthogonal” polynomials py satisfy:

limsup [lpa(T)€[[ /4 < e, (22)
where ¢ = cap(w) is the capacity of the support of the quadrature measure p.

Proof. The fact that € is not a quadrature domain is equivalent to condition (6),
see [24].

It is known, [14], that there exists a sequence of monic polynomials rg4,
deg(rq) = d, with the property ¢ = limg_, o ||rd||(1x/>f£,

By its very definition, the polynomial p; satisfies the minimality condition
[lpa(TYEl < [|Ira(T)E|]- On the other hand, the explicit analytic extension formula
(21) gives, via the Riesz-Dunford functional calculus:

Ira(T)E|l = ||27r/ ra(w)h(u)dp(u)|| < Cflrallco,w;

where C = 271/ so.w||1- O

Returning now to the remainder estimates of Theorem 2.9 we can state the
following approximation result.

Theorem 4.2. Let §) be a generalized quadrature domain, whose quadrature mea-
sure is supported by a compact set w of capacity zero.
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Let €,6 be fized positive numbers and let K be a compact subset of C\ w. Then
there exists dg € N, depending on all these parameters, so that for every d > dy
there exists a measurable set E; of area |E4| < w82, with the property:

T —2)"6—(Ta—2)" "¢l <e, z€K\E,.

By an abuse of notation we have denoted above by (T — z)7¢ the analytic
continuation (21) of that function on points z €  \ w.

Proof. If Q is a quadrature domain, then there exists dy such that (T — z)71¢ =
(Td — Z)_lf for d > dp.

Let Q be a domain as in the statement which is not a quadrature domain. We
can assume after a rescaling that  C D(0,1/2). Then the spectrum of the operator
T is contained in the closed disk D(0,1/2), and being a hyponormal operator, its
spectral radius coincides with its norm, so ||T'|| < 1/2. On the other hand the
polynomial p; is monic and has roots a;,1 < i < d, inside the same disk, hence

d
llpa(T)II < TTUTN + flaill) < 1.

i=1
Fix a point z; € K. Since the underlying Hilbert space is spanned by T"¢, with

n > 0, there exists an open neighbourhood U; of z; and a polynomial r;(z) with
the property:

(T =27 —ri(T)Ell < 5, z€ Ui

Choose a finite open covering K C U2, U;.
Accordingly, we can estimate the numerator in the remainder formula (15) as
follows:

N o

llpa(T)(T = 2) 7€l < % + lrs (D) lllpa(THEN, 2 € Us.

Let p = maxi, ||ri(T)]|.
In virtue of the preceding lemma there exists dy so that the second term is
majorized by:

ed?
lpa(T)Ell < 2 d > do.

And from this point on we can repeat the proof of Theorem 2.9 .

O

Outside the set €2, Theorem 4.2 is actually covered by Theorem 2.9. The point
is that the convergence in Theorem 4.2 holds, in measure, on Q \ w. Examples of
generalized quadrature domains with a positive representing measure supported by
a set of capacity zero can easily be constructed by an outward balayage process,
see [28] and the references cited there.

Example 4.3. (A smooth, real analytic, convex domain).

As concerns the practical matters of [15], let us consider the ideal situation of
a convex bounded domain 2 with smooth real analytic boundary. With the above
notation, there exists a relatively compact subdomain w C 2 such that:

Q\w={2€C\w; [|(T-2)7"¢>1},
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see [15]. Since, according to Theorem 2.5, the sequence of rational approximants
(Ty — 2) 1€ converges uniformly to (7' — 2) 1€ for points z ¢ €, it is legitimate to
approximate the boundary I' of 2 by the sets

Ta(e) = {z € C\; |[(Ty—2)7t¢]| =1 —€}, e>0.

Indeed, for a fixed € > 0, when d tends to oo, T'4(€) converges in the Hausdorff
topology to

T(e)={z€C\w; (T-2)""¢=1-¢}, 0<e<l,

and the latter converges to I as € decreases to 0, due to the local uniform continuity
of the function ||(Ty — 2)~Y¢||, z ¢ w.
The numerical experiments recorded in [15] validate the above explanation.

We close this section by a simple example, showing that the analytic continuation
configuration of the series F'(z,w) can be quite independent of the boundary |z| =
|lw| = R = ||T|| arising from condition (2).

Example 4.4. (The ellipse).

Let 0 < r < 1 be a fixed real number and let U € L(H) be the unilateral shift
Ul(en) = eny1, where eg,e1,..., is an orthonormal basis of the Hilbert space H.
Then [U*,U] = ep ® ey, so that U = Tp is the hyponormal operator associated as
before to the unit disk D.

We consider the linear combination U + rU*, so that:

[U* +rU,U+7U*] = (1 —1r%)ep @ ep.

A simple inductive argument shows that eg is a cyclic vector for U + rU*, as well
as for its adjoint. On the other hand, the functoriality property of the principal
function, see [20] §X.3.11, shows that this operator is associated to an ellipse, in
the following precise sense: U + rU* = T, where:

x

E={(eC; (=z+7Z, |2| <1} ={z+1iy; (m)2+(1€1“)2<1}'

Thus, in our notation, we consider the operator T' = Ty = U* + rU, with cyclic
vector eg and corresponding power series:

(T — 2)"teo, (T —w)teg) = F(z,).

As a co-hyponormal operator with spectrum equal to the ellipse E, T has spectral
radius equal to its norm: R = ||T'|| = 1 4+ r. Thus, a priori, the preceding series is
convergent for min{|z|, |w|} > 1+ r.

In reality, see [16], the series converges for z,w ¢ [—24/r,24/r], the straight
line segment joining the foci of the ellipse. Actually , even an explicit analytic
continuation of this double series is given in [16].

As a second byproduct of these computations we can explicitly find the polyno-
mials pg in the approximation process. Indeed, the space Hy is generated by the
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vectors T*ey, k < d, hence, by induction Hy = \/z;(lJ er. Thus the matrix T} is:

01 0 ... 0

r 0 1 0

0 r O 0
T, =

00 0 ... 1

00 ... r 0

Up to a normalization we can then identify, via the three term recurrence relation,
the characteristic polynomial pg(2) = det(z — Ty) with a Chebyshev polynomial of

the second kind: .

2yr

Indeed, pgt1(z) = zp4(z) — rps—1(z), with the initial data p;(2) = 2,
p2(2) = 22 —r, while Ugy1(2) = 2U4(2) —Uq_1(2), and Uy (2) = 2z, Us(z) = 422 —1,
see [10].

In particular this shows that the zeroes of the polynomials py are located on the
straight line segment joining the two foci of the ellipse E. In view of represeantation
(21) and the known estimate fil |Uq(z)|dz < 2 one can prove as in [15] that the
analytic extensions of the functions Fy(z,w) converge locally and uniformly to the
analytic extension of F'(z,w), as soon as

z,w € {¢ € C; dist(¢,[-2vT,2V/r]) > V/r}.

We do not expand here this argument, but refer to [15] for details.

pa(2) =1PUs(—=), d>1.

5. STABILITY QUESTIONS

In this section we discuss the continuous dependence of the pair of polynomials
(pd,qa—1) as functions of the Taylor coefficients by, of the original series (1). For
a fixed degree d, and under the non-degeneration assumption (6), simple linear
algebra arguments give an explicit, real analytic dependence of (pg,gq—_1) on the
entries by, m,n < d. We analyze then a case when the dependence is uniformly
continuous with respect to d.

First some additional notation. Fix a degree d > 1, and normalize the series
F(z,%) so that the constant R in (2) is equal to one, or equivalently the associated
operator T is a contraction: ||T|| < 1. The standard orthonormal basis of 1?(IN)
will be denoted by e;, i > 1. We regard then the matrix (b,,,) as acting on I2(N);
it will be convenient to denote:

Bq = (bmn)gz,nzm
and regard it as an operator acting on the space spanned by eg,e1,...,eq. We
assume that condition (6) holds, that is det B4 # 0. Therefore By is an invertible,
positive (d + 1) x (d + 1) matrix. In general, for a matrix A, we denote by A;; its
entries.
With these preparations we can state the explicit form of the coefficients of the
”orthogonal” polynomial pg(z) = 24 + ¢4 1291 +... + co.

Proposition 5.1. Assume that det Bq # 0. Then:
(Bgka

R 0<k<d. 23
(By")aa - (23)

Cp =
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Proof. We will work in the Hilbert subspace K of [2(N), generated by eg, e1,. .. ,€q.
According to Corollary 2.2, we have to find the vector ¢ € K, cq = {c,e4) = 1, which
minimizes the quotient:

2% >(Bgyc,c) =L, x4#0.

This in turn is equivalent to maximizing the quantity:

((eq ® eq)z, T)
(Bd.??, .73)

By denoting y = v/Bgz, we have to find the unit vector /Bgc/||v/Bgc|| which

maximizes
(\/Bi'(ea®ea)\/By'y,y) = ((\/ By ea ® \/ By 'ea)y,y)-

But this vector is necessarily a scalar multiple of Bd_led. Therefore, ¢ is a

<Lt

multiple of B;'e4. The assumption ¢; = 1 yields then the result. O

The above explicit formulas for the coefficients ¢ have the following immediate
consequence.

Corollary 5.2. Assume that 0 < v < By, d > 1, for a constant y. Then for each
€ > 0 there exists § > 0, so that for any d > 1 and any other matriz B satisfying
relation (2) (with R = 1) and ||Bq — By|| < 0, the coefficients of the associated
polynomials pq,pg satisfy:

d—1

Z |Ck — 6k|2 S 62.

k=0

Unfortunately, Corollary 5.2 is not applicable to the examples considered in
Section 4, because, according to formula (20):

bmn://umE"H(u,E)dA(u)dA(v).
oo

On the other hand, our normalization assumption ||T’|| < 1 implies Q@ C D(0,1), so
by Lebesgue dominated convergence theorem we find
limy, o0 bnp = 0, which contradicts the lower bound assumption in the statement
of Corollary 5.2.

However, there are many simple examples of operators T which fulfil the lower
bound condition in Corollary 5.2. For instance, any weighted shift

T(ex) = Arert1, k>0,

whose weights satisfy |A\¢| <1, k> 1, and [];—, |A\| > ¢ > 0, is such an example.
Indeed, in this case by, = 0 for m # n, and b,, = A1 ... A,. Incidentally, we
remark that this is a one-dimensional situation, in the radial direction:

— - bnn
F(z,2) = Z e
n=0

A specialization of the main results of Section 2 for this class of series is then
within reach in purely function theoretic terms. For instance, one easily cheks that
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the approximants of F'(z,Z) are exactly the partial Taylor series at infinity:
4 p
F, d(z ,E) = Z ﬁ:
n=0

with pa(z) = 2%, d > 1.

For such series, the uniformity in d asserted by Corollary 5.2 becomes easy to
verify.

Speaking about weighted shifts, we end this section with a few remarks arising
from studying such an operator.

Example 5.3. (The annulus).

Let 0 < r < 1 be a fixed real number, and let A = {z € C; r < |z| < 1} be the
annulus of radii r, 1. In the light of Section 4 above, the corresponding hyponormal
operator T4 € L(M), of rank-one self-commutator [T}, T4] = £ ® £ and principal
function equal to the characteristic function of A has spectrum equal to A. In
particular ||T4|| = 1. We set as before T = T4 |H, where H = \/;°  Ti"¢.

The associated power series (3) is in this case:

1—|z]72 1—r?
F zZ)=1-— = =
(2,2) 1—7r2z]72 |22 —1r2
1— 2 1— 2\,.2 1— 2\,.4
LN okl P ek 0L USSR N
|2|2 |2 |2[6

see [16].

But this immediately yields (T"¢,T™¢) = 0 if n # m, and [|T™¢|> = (1 —
r2)r?" n > 0. Consequently we are led to the identification & = v/1 — r2eq, and
Te, =rent1,n > 0, where e,,, n > 0, is an orthonormal basis of the Hilbert space
H.

Thus T = rU is a multiple of the unilateral shift U. In particular, ||T]| = r <
1 = ||T4||- This shows that the space H = \/,_, T4"£ is properly contained in the
original Hilbert space M where T4 acts. Second, we remark that the spectrum of
T (i.e. the disk rD ) is different from the spectrum of T4 ( the closed annulus A).

In conclusion, if we want to reconstruct the annulus A with the aid of its mo-
ments, as explained in [15], the sequence of approximants Fy(z,%Z) — 1 will stably
converge to the defining equation F(z,%Z) — 1 of the outer boundary, on compact
subsets of C \ rD, but not beyond the circle |z| = r.

To make such an approximation work for the inner boundary |z| = r we must
first change the coordinate from z to 1/z, then analytically extend the germ at
infinity of the local resolvent of 77} _,, and then repeat the same process.
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