
ON HERMITIAN POLYNOMIAL OPTIMIZATION

MIHAI PUTINAR

Abstract. We compare three levels of algebraic certificates for eval-
uating the maximum modulus of a complex analytic polynomial, on a
compact semi-algebraic set. They are obtained as translations of some
recently discovered inequalities in operator theory. Although they can
be stated in purely algebraic terms, the only known proofs for these
decompositions have a transcendental character.

1. Introduction

Let z = (z1, ..., zd) be the complex coordinates in Cd. Then real coordi-
nates of the underlying space R2d are denoted by x = (x1, ..., x2d), where
zk = xk + ixd+k. We will work in the polynomial algebra R[x], and consider
there the convex hulls:

Σ2 = co{p2; p ∈ R[x]},
and

Σ2
h = co{|q|2; q ∈ C[z]}.

It is easy to see that the cone of hermitian positive squares Σ2
h is a proper

subset of Σ2. Indeed, remark that
∂

∂zk

∂

∂zk
|q|2 ≥ 0, q ∈ C[z],

while the same Laplace operator has negative values on (yk − x2
k)

2. Note
that both sets Σ2,Σ2

h are multiplicatively closed and that Σ2 is a module
over Σ2

h.
The theme of the present note is the following algebraic counterpart

(sometimes called a certificate) for a polynomial optimization problem: let

S = {x ∈ R2d; p1(x) ≥ 0, ..., pm(x) ≥ 0}
be a compact basic semialgebraic set, and let p be a positive polynomial on
S. Under what conditions can one decompose p as:

p ∈ Σ2
h + p1Σ2

h + ... + pmΣ2
h, (1)

or
p ∈ Σ2 + p1Σ2

h + ... + pmΣ2
h, (2)
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or
p ∈ Σ2 + p1Σ2 + ... + pmΣ2? (3)

The latter decomposition (with respect to the so-called quadratic module re-
spresenting the right hand term) is well understood today in purely algebraic
terms, [18]. The middle one also holds under quite general assumptions, but
the only available proof relies on the theory of subnormal tuples of operators
(see [8, 20] and Section 4 below).

The first type decomposition is the strongest (with respect to a smaller
set), and in general it requires additional bounds for the given polynomial
p. It is our aim to present a series of cases (some of them of discovered only
in the last couple of years) when (1) holds; they all require some functional
analytic proofs and it would be interesting and desirable to have a unifying
algebraic explanation for these phenomena. Decomposition (3) is currently
used in optimization theory [17].

This note was completed while the author has benefited of excellent work-
ing conditions as a visitor of the University of Konstanz, Germany. He
warmly thanks Alexander Prestel, Claus Scheiderer and their research group
for hospitality.

2. Preliminaries

This section contains the main ingredient used to establish the corre-
spondence between norm estimates of matrices and the structure of positive
polynomials. Second, we collect here a few recent results about the (joint)
numerical range and some related von Neumann type inequalities.

2.1. Cassier’s lemma. Let C[z]n and R[x]n be the finite dimensional spaces
of polynomials of degree less than or equal to n. Let C = Σ2

h + p1Σ2
h + ... +

pmΣ2
h be the convex cone associated to some real polynomials p1, ..., pm, and

denote Cn = C ∩R[x]n. From the identity

|zα + zβ |2 − |zα − zβ |2 = 4zαzβ, |α|, |β| ≤ n,

we deduce C2n − C2n = R[x]2n; hence the cone C2n has interior points.
We can regard C as the cone of positive elements in an order structure

on the polynomial algebra. In analogy with the established algebraic ter-
minology (see [18]] the cone C will be called archimedian if 1 ∈ intC2n for
every (large enough) integer n. This is equivalent to asserting that for ev-
ery element f ∈ R[x]2n there exists a large integer N with the property
N − f ∈ C.

For instance, assume either that there exists M > 0 such that

M − |x|2 = c1p1 + ... + cmpm,

for some non-negative constants c1, ..., cm, or that there exists a positive
constant M such that, for every k, 1 ≤ k ≤ d, M − xk and xk + M both
have such linear representations with non-negative coefficients. Then C is
archimedian, see [3] for a proof.
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The following technical but fundamental lemma was for the first time used
by Cassier [3] in the derivation of some weighted sums of squares decomposi-
tions. Its essence and theoretical importance were recognized a long time be-
fore him by Eidelheit and Kakutani [10, 14] (we thank Markus Schweighofer
for this information). The lemma was and will be used in conjunction with
a Gelfand-Naimark-Segal construction and a proof by contradiction of the
existence of the representation (1).

Lemma 2.1. Let C = Σ2
h + p1Σ2

h + ... + pmΣ2
h be an archimedian cone and

assume that the polynomial p ∈ R[x] does not belong to C. Then there exists
a linear functional L : R[x] −→ R, such that L(1) > 0 and

L(p) ≤ 0 ≤ L(c), c ∈ C.

Proof. We include the proof for completeness, see [3] for the original. Start
with a degree 2n larger than that of p and the assumption that p does
not belong to C2n. Since {p} is disjoint of intC2n, Minkowski’s separation
theorem implies the existence of a linear functional L2n : R[x]2n −→ R,
such that

L2n(p) ≤ 0 < L2n(c), c ∈ intC2n.

In particular L2n(1) > 0 and L2n is non-negative of C2n.
Next we extend L2n to a functional L2n+2 : R[x]2n+2 −→ R satisfying

L2n+2(p) = L2n(p) and being non-negative on C2n+2. This is done as follows:
choose first, in view of Minkowski’s theorem, a functional L′ on R[x]2n+2

separating ker L2n from intC2n+2, after checking that these convex sets are
disjoint. Since L′(1) > 0, we can find a positive constant α such that
αL′(1) = L2n(1). Then L2n+2 = αL′ will have the desired properties. �

2.2. Numerical ranges. Let T ∈ L(H) be a linear bounded operator act-
ing on a complex Hilbert space H. The numerical range of T is the set

W (T ) = {〈Tu, u〉; ‖u‖ = 1}.
By a classical theorem of Hausdorff this is a convex set, which contains in its
closure the spectrum σ(T ) of T and is contained in the disk centered at zero,
of radius ‖T‖. For instance, denoting by J2 the Jordan cell of dimension 2,
one has σ(J2) = {0}, wile W (J2) = {z; |z| ≤ 1/2} and ‖J2‖ = 1. In general,
the numerical range is easier to estimate than the spectrum, see for instance
[25].

Let U be an open neighborhood of the spectrum σ(T ) and let F be a
complex analytic function defined on U . Then one can define a multiplicative
functional calculus, after Riesz and Dunford:

f(T ) =
∫

γ
(z − T )−1 dz

2πi
,

where γ is a system of rectifiable curves surrounding σ(T ) inside U . The
continuity of this calculus is expressed as:

‖f(T )‖ ≤ Cγ,T ‖f‖∞,γ , (4)
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where the positive constant Cγ,T increases in general to infinity as soon as
γ approaches the spectrum, see for instance [24]

A remarkable inequality, stronger in general than the preceding one, as-
serts:

‖p(T )‖ ≤ ‖p‖∞,rD, p ∈ C[z], (5)

where r = ‖T‖ and D stands for the open unit disk. This estimate is due
to von Neumann and it was the source of a rich development in functional
analysis, see [24, 25]. Note that in von-Neumann’s inequality the spectrum
of T can touch the boundary of the disk rD on which one maximizes the
function |p|.

It turns out that a von-Neumann type inequality holds for every linear
operator T , with a uniform bound on the closed numerical range. To be
more specific,

‖p(T )‖ ≤ CW (T )‖p‖∞,W (T ), p ∈ C[z]. (6)

This was recently proved in [7]. The universal constant CW (T ) has a geo-
metric character, revealed a long time ago by studies studies in potential
theory [22]. We will call it the (Carl) Neumann constant of the convex set.
For examples the reader can consult [6, 22].

The idea behind the proof of (6) is the following. The convex set W (T )
has a rectifiable boundary, along which the form < dz

2πi(z−w) is non-negative
for every inner point w ∈ W (T ). For a polynomial p ∈ C[z] one can define
its ”double layer” transform:

p̃(w) =
∫

∂W (T )
p(z)< dz

2πi(z − w)
.

One remarks, using elementary function theory, that the transform p 7→ p̃
extends continuously and bijectively to the algebra of continuous functions
on ∂W (T ). Finally, one replaces w by T , via a standard limiting process,
and one obtains:

p̃(T ) =
∫

∂W (T )
p(z)ET (dz),

with a positive, operator valued measure ET (dz) = limρ→1< dz
2πi(z − ρT )−1,

(where we assume 0 ∈ W (T ) and ρ < 1). Then we infer

‖p̃(T )‖ ≤ ‖p‖∞,W (T ) ≤ CW (T )‖p̃‖∞,W (T ).

See [22] for details.
In the next section we will translate these inequalities into algebraic form.

2.3. The Fantappiè transform. When passing from one to several com-
plex variables, von Neumann type inequalities become more involved and
more interesting. For instance, we have Ando’s theorem asserting that

‖p(T1, T2)‖ ≤ ‖p‖∞,D2 , p ∈ C[z1, z2], (7)
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whenever T1, T2 ∈ L(H) are commuting, contractive (‖T1‖, ‖T2‖ ≤ 1) linear
operators. It is however surprising that this inequality is not valid in three
or more variables, cf. [1, 12, 25].

Or consider a spherical contractive tuple T = (T1, ..., Td) of commuting
operators: T ∗1 T1 + ... + T ∗d Td ≤ I. Due to the pioneering work of Drury
[9] we know today that there exists an archetypal tuple in this class: the
multiplication operators by the complex variables M = (Mz1 , ...,Mzd

) on
the Hilbert space of analytic functions in the unit ball Bd ⊂ Cd, with
reproducing kernel (1− z.w)−1. In this case, for instance when d = 2,

lim
n→∞

‖(2Mz1Mz2)
n‖ = ∞,

although ‖2z1z2‖∞,B2 = 1. Thus there is no hope to have an inequality of
the type (6), with a universal constant, on the unit ball of Cd, d > 1. This
example will be resumed at the end of the note.

On the other hand there is a way to obtain a crude estimate for p(T )
when T is a spherical contraction. Namely, by repeating the double layer
technique used in proving the single variable estimate on the numerical range
of an operator, one can introduce the Fantappiè transform

p̃(z) =
∫

∂Bd

p(w)dσ(w)
1− z.w

,

of a polynomial p, where dσ denotes the normalized surface measure on the
sphere. This leads to an integral representation, valid for every commutative
d-tuple T fulfilling the joint numerical range condition

|〈T1u, u〉|2 + . . . + |〈Tdu, u〉|2 ≤ 1, ‖u‖ ≤ 1.

We will write in short then, in analogy with the single operator situation,
W (T ) ⊂ Bd. Specifically,

1
2
p̃(T ) +

1
2
p(0) =

∫
∂Bd

p(w)ET (dw),

where ET (dw) = limρ→1<[dσ(w)(1 − ρT.w)−1]. All together, these compu-
tations yield the following estimate:

‖p(T )‖ ≤ ‖Γp‖∞,∂Bd
, p ∈ C[z], W (T ) ⊂ Bd, (8)

where the operator Γ is diagonal on the homogeneous decomposition p =
p0 + p1 + . . . + pn:

Γp = p0 + 2
d!
1!

p1 + . . . + 2
(d + n− 1)!

n!
pn.

Details can be found in [16].
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3. Main results

We turn now to hermitian forms decompositions of the type (1), with the
direct aim at translating into such terms some of the estimates discussed in
the preliminaries. All algebraic decompositions below are similar, although
the nature of the estimates they are based on is different. More important,
however, the pattern of deducing them is the same.

3.1. One complex variable. Note that the definition of the archimedian
cone Σ2

h + p1Σ2
h + ... + pmΣ2

h is dependent on the choice of the defining
polynomials p1, ..., pm. Without changing the compact supporting set S =
{x; pj(x) ≥ 0, 1 ≤ j ≤ m} one can add to the system pm+1(x) = R2−‖x‖2,
with large R, so that S is unchanged and the new cone is archimedian.

Theorem 3.1. Let S = {x ∈ R2; lj(x) ≥ 0, 1 ≤ j ≤ m} be a convex com-
pact polygon defined by the real affine functions lj and let CS be Neumann’s
constant associated to S. Then for every R > CS and polynomial p ∈ C[z]
one has:

R2‖p‖2
∞,S − |p(z)|2 ∈ Σ2

h + l1Σ2
h + ... + lmΣ2

h. (9)

Proof. First we will check that the associated cone of hermitian polynomials
is archimedian. Denote lj(x) = aj .x − bj , with aj ∈ R2 and bj ∈ R. Since
the set S defined by the inequalities aj .x ≤ bj is compact, the convex cone
generated by the vectors aj is the whole space. Otherwise, the polar would
be non-empty, hence there would exist a vector v such that tv ∈ S for all
t > 0. Therefore for every every coordinate xk, k = 1, 2, there exists a
positive constant Rk such that

Rk − xk =
∑

j

cjlj + c0, xk + Rk =
∑

djlj + d0,

with non-negative coefficients c0, c1, ..., d0, ..., dm. This shows that the cone
Σ2

h + l1Σ2
h + ... + lmΣ2

h is archimedian.
Assume by contradiction that q(z, z) = M2‖p‖2

∞,S − |p(z)|2 does not
belong to the right hand side cone C. According to Cassier’s lemma, one
can find a linear functional L, with the separation property L(q) ≤ 0 ≤
L(c), c ∈ C. In addition L(1) > 0. The polynomial algebra C[z] is then
endowed with a positive semidefinite sesquilinear form

〈f, g〉 = L(fg).

Let H denote the associated Hilbert space, i.e. the completion of the quo-
tient C[z]/{h;L(hh) = 0}. Since the cone C is archimedian, the multipli-
cation operator Mz by the complex variable is bounded with respect to L,
hence it extends and remains bounded on H:

R2‖h‖2 − ‖Mzh‖2 = L((R2 − |z|2)hh) ≥ 0, h ∈ C[z].

Moreover, the numerical range of Mz is contained in S, that is

〈Mzh, h〉 ∈ S, ‖h‖ = 1.
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Indeed, writing the defining functions in complex form lj(x) = <(αjz)− bj

one finds, for a unit vector h,

<[αj〈Mzh, h〉]− bj = 〈(<(αjMz)− bj)h, h〉 = L(lj |h|2) ≥ 0.

To finish the proof we invoke inequality (6). It applies to the operator Mz

and gives ‖p(Mz)‖ ≤ Cs‖p‖∞,S , and in particular

L(|p|2) = 〈p, p〉 = 〈p(Mz)1, p(Mz)1〉 ≤ [Cs‖p‖∞,S ]2L(1).

On the other hand, L(1) > 0,

L(R2 − |p|2) ≤ 0,

and the constant R was supposed bigger than CS‖p‖∞,S , a contradiction.
�

A couple of remarks are in order. First what happens if one works with
an archimedian cone C = Σ2

h + p1Σ2
h + ... + pmΣ2

h defined by higher degree
polynomials? Then the above statement holds true, with

R > sup
<pj(T )≥0

‖p(T )‖, (10)

where the supremum is taken among all linear operators T acting on a
Hilbert space. They are automatically bounded since, by Archimedes axiom,
ρ2 − |z|2 ∈ C, for some large ρ. Then one can invoke von Neumann’s
inequality:

sup
<pj(T )≥0

‖p(T )‖ ≤ sup
T ∗T≤ρ2

‖p(T )‖ ≤ ‖p‖∞,ρD.

However, in general there is very little information about the supremum in
(10). This would requires functoriality transforms for the numerical range
of a linear operator, and there are very few positive results in this direction,
see [22] and the references cited there.

Second, what happens if a compact set is defined by a non-archimedian
cone? For instance, the elements of

C = Σ2
h − |z|4Σ2

h

are simultaneously non-negative only at z = 0. Let J2 be the Jordan block
of dimension 2. Then tJ2 has norm t, for every t > 0, in spite of the fact
that p(tJ2, tJ

∗
2 ) ≥ 0 for all p ∈ C. Choosing by convention to put all adjoins

in the monomials of p to the left of the powers of tJ2. Algebraically, this
amounts to the fact that there exists no universal constant R, so that

R2‖z‖2
∞,{0} − |z|

2 ∈ Σ2
h − |z|4Σ2

h.

Indeed, this would mean

−|z|2 =
∑

|fj(z)|2 − |z|4
∑

|gk(z)|2,

with fj , gk all complex analytic. But then fj(0) = 0 for all j, hence one can
divide by z and find:

−1 =
∑

|f ′j(0)|2,
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a contradiction.

3.2. The ball and polydisk. In general, in the case of several complex
variables, the weighted hermitian sums of squares cannot detect the largest
value of the modulus of a complex polynomial. To find the sharp bounds
which still yield such a decomposition requires a rather sophisticated func-
tional analytic machinery, see for instance [1]. If we are seeking merely some
(crude) estimates in this direction, then the Fantappiè transform technique
can help. We discuss below only two applications.

Theorem 3.2. Let p = p0 + ... + pn ∈ C[z], z ∈ Cd, be a polynomial
decomposed into its homogeneous parts. If

R > ‖p0 + 2
d!
1!

p1 + . . . + 2
(d + n− 1)!

n!
pn‖∞,Bn ,

then
R2 − |p(z)|2 ∈ Σ2

h + (1− ‖z‖2)Σ2
h.

Proof. The proof can be modeled after that of Theorem 3.1 : arguing by
contradiction, we separate the left hand side polynomial from the (obvi-
ously archimedian) hermitian cone by the functional L. The tuple M of
multiplication operators with the complex coordinates has then the joint
numerical range contained in the closed unit ball. Indeed, for a unit vector
h ∈ C[z], L(|h|2) = 1, Cauchy-Schwarz inequality gives:∑

j

|L(Mzj |h|2)|2 ≤
∑

j

L(|Mzjh|2) = L(‖z‖2|h|2) ≤ L(|h|2) = 1.

Then one invokes inquality (8). �

A similar proof can be adapted to the case of the polydisk. We use a
proper normalization and work on ∆ =

∏d
1

1√
d
D, so that the distinguished

boundary of ∆ lies on the unit sphere. The dual (polar) domain is ∆∗ =
{w ∈ Cd;

∑
j |wj | ≤

√
d}. It is a Reinhardt domain, and the transform

p̃(z) =
∫

∆∗

p(w)dω(w)
1− z.w

,

is still diagonalized by the monomials. Above ω is the unit volume measure
on ∆∗. Then

∫
∆∗

p(w)dω(w) = p(0) and, as before, the map Γ(p̃ + p(0)) =
2p is invertible, see [16] for details. With these conventions we have the
following result.

Proposition 3.3. For a polynomial p ∈ C[z] and constant R > ‖Γp‖∞,∆∗

the decomposition

R2 − |p(z)|2 = Σ2
h + (1− d|z1|2)Σ2

h + ... + (1− d|zd|2)Σ2
h,

holds.
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The case d = 2 stands aside, due to Ando’s theorem. We state it in a
form comparable to the other decompositions discussed in this note. The
proof is very similar to that of Theorem 3.1 and will be omitted.

Proposition 3.4. In dimension d = 2, let p ∈ C[z] and R > ‖p‖∞,D2.
Then

R2 − |p(z)|2 = Σ2
h + (1− |z1|2)Σ2

h + (1− |z2|2)Σ2
h.

This remarkable fact, well noted and exploited in modern operator theory,
has no known algebraic proof, see also the article [5].

4. Subnormal tuples

So far we were concerned with a weighted sum of hermitian squares. For
the sake of completeness we reproduce below a known result for the mixed
decomposition (type (2) in the introduction).

Theorem 4.1. Let S = {z ∈ Cd; |pj(z)| ≤ 1, 1 ≤ j ≤ m} be a compact semi-
algebraic set, where pj are complex polynomials. Assume that the associated
hermitian cone C = Σ2 + (1− |pj |2)Σ2

h + ... + (1− |pm|2)Σ2
h is archimedian.

Then for every real polynomial p ∈ R[x] which is strictly positive on S we
have p ∈ C.

Proof. We merely sketch the main steps in the proof. For details see [21].
As before, in view of Cassier’s lemma, we separate p from the cone C by a
functional L. And define the Hilbert space, separated completion H of C[z].
The tuple M of multipliers by the complex coordinates is commutative and
bounded on H.

The fact that L(h2) ≥ 0 for every real polynomial h implies that M is a
subnormal tuple. That is there exists a larger Hilbert space H ⊂ K and a
commutative normal tuple N , acting there, such that N |H = M . Moreover,
one knows that, choosing N minimal will assure that the joint spectra satisfy
the inclusion σ(N) ⊂ σ(M).

On the other hand, the spectral mapping theorem for the joint spectrum
implies σ(M) ⊂ S. Therefore, putting all adjoins M∗ to the left of the
powers of M , we get

0 ≥ L(p) = 〈p(M,M∗)1, 1〉 = 〈p(N,N∗)1, 1〉 =
∫

S
p(x)〈EN (dx)1, 1〉,

where EN denotes the spectral measure of the normal system N . But this is
a contradiction because 〈EN (dx)1, 1〉 is a non-trivial positive measure and
the polynomial p was supposed to be strictly positive on S. �

Again, an algebraic proof and explanation of Theorem 4.1 are missing.
Most of the results discussed above also hold for pluriharmonic polyno-

mails <p(z), p ∈ C[z]. This is due to the fact that the semi-spectral measure
measure ET appearing in the Fanttapiè or double layer potential transforms
is non-negative. We refer to [16, 22] for details.
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Example. To finish we go back for an example to Drury [9] and look at
the polynomial 2z1z2 on the unit ball of C2. As mentioned before, the norm
of high powers of this monomial, on the Hilbert space with reproducing
kernel (1− z.w)−1, can be bounded from below (using Stirling’s formula):

‖2n(z1z2)n‖2 ≥ 22n n!2

(2n)!
≈ π

2
√

n.

On the other hand, the Fantappiè transform method gives, for any commut-
ing tuple T with the joint numerical range in the unit ball:

‖2n(T1T2)n‖ ≤ 2
(2n + 1)!

(2n)!
‖2n(z1z2)n‖∞,B2 = 4n + 2.

Thus, for R2 ≤ π
2

√
n, the polynomial R2 − 4n(|z1z2|)2n does not belong

to Σ2
h + (1− ‖z‖2)Σ2

h, while for R2 > (4n + 2)2 it does. On the other hand,
in view of Theorem 4.1,

ρ2 − 4n(|z1z2|)2n ∈ Σ2 + (1− ‖z‖2)Σ2
h

whenever ρ > 1.

5. Final remarks

The results exposed above reveal a sensible difference between optimizing
the modulus of a complex polynomial with respect to symmetric, hermitian
or mixed weighted sums of squares, cf. decompositions (1)-(3). The last
decade has known a lot of activity, oriented towards theoretical or very
practical aims, around positivity certificates based on real symmetric forms
of the form (3), see [17, 19].

On the other hand hermitian forms, and complex Hilbert space methods,
form the skeleton for most of the modern functional analysis. And beyond,
to cite for instance the classical polynomial root separation criteria of Schur
and Takagi, see [15].

The sums of squares structure of positive hermitian polynomials goes back
at least to Quillen’s 1968 article [23]. On a more recent date such structures
have recurrently appeared in the geometric aspects of the theory of functions
of several complex variables, see for instance [4].

Not unrelated to the topics of the present note, and the operator theory
background, are the recent studies of sums of squares in a free *-algebra
[13].
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