Practice Problems - Solutions

These problems were written to be doable without a calculator.

1. Given that $\log (7)=0.8451$ and $\log (2)=0.3010$, calculate the following:
(a) $\log (28)$
(b) $\log (0.0049)$
(c) $\operatorname{antilog}(3.3010)$
(d) antilog(-1.1549)

Solution:

(a) $\log (28)=\log (7 \cdot 2 \cdot 2)=\log (7)+\log (2)+\log (2)=0.8451+0.3010+0.3010=1.4471$
(b) $\log (0.0049)=\log \left(49 \cdot 10^{-4}\right)=\log (49)+\log \left(10^{-4}\right)=\log \left(7^{2}\right)-4=2 \log (7)-4=2(.8451)-4=$ -2.3098
(c) $\operatorname{antilog}(3.3010)=10^{3.3010}=10^{3+0.3010}=10^{3} \cdot 10^{0.3010}=1000 \cdot 2=2000$
(d) $\operatorname{antilog}(-1.1549)=10^{-1.1549}=10^{-2+0.8451}=10^{-2} \cdot 10^{0.8451}=0.01 \cdot 7=0.07$
2. Suppose a colony of bacteria is growing exponentially. Currently the colony is 6 times as large as it was 5 days ago. What is the doubling time (you may leave logs in your answer)?

Solution:

Recall that the doubling formula is given by $A(t)=A_{0} \cdot 2^{\frac{t}{k}}$. The fact that after 5 days the colony is 6 times as large implies that when $t=5, A(5)=6 A_{0}$.
So $6 A_{0}=A_{0} \cdot 2^{\frac{5}{k}}$. We then want to solve for k :

$$
\begin{aligned}
6 A_{0} & =A_{0} \cdot 2^{\frac{5}{k}} \\
\Rightarrow 6 & =2^{\frac{5}{k}} \\
\Rightarrow \log (6) & =\log \left(2^{\frac{5}{k}}\right) \\
\Rightarrow \log (6) & =\frac{5}{k} \log (2) \\
\Rightarrow k & =\frac{5 \log (2)}{\log (6)}
\end{aligned}
$$

3. Solve for t :
$A \times B^{t}=\frac{C}{D^{t-2}}$

Solution:

$$
\begin{aligned}
A \times B^{t} & =\frac{C}{D^{t-2}} \\
\Rightarrow A \times B^{t} & =C \times D^{-(t-2)} \\
\Rightarrow A \times B^{t} & =C \times D^{-t+2} \\
\Rightarrow \log \left(A \times B^{t}\right) & =\log \left(C \times D^{-t+2}\right) \\
\Rightarrow \log (A)+\log \left(B^{t}\right) & =\log (C)+\log \left(D^{-t+2}\right) \\
\Rightarrow \log (A)+t \log (B) & =\log (C)+(-t+2) \log (D) \\
\Rightarrow \log (A)+t \log (B) & =\log (C)+-t \log (D)+2 \log (D) \\
\Rightarrow t \log (B)+t \log (D) & =\log (C)+2 \log (D)-\log (A) \\
\Rightarrow t(\log (B)+\log (D)) & =\log (C)+2 \log (D)-\log (A) \\
\Rightarrow t & =\frac{\log (C)+2 \log (D)-\log (A)}{\log (B)+\log (D)}
\end{aligned}
$$

4. Solve for x :
$2 \log (x+2)=\log (x+2)+1$
Be careful that your solutions for x don't make any of the above logs undefined!

Solution:

$$
\begin{aligned}
2 \log (x+2) & =\log (x+2)+1 \\
\Rightarrow \log \left((x+2)^{2}\right) & =\log (x+2)+1 \\
\Rightarrow 10^{\log \left((x+2)^{2}\right)} & =10^{\log (x+2)+1} \\
\Rightarrow(x+2)^{2} & =10^{\log (x+2)} \times 10^{1} \\
\Rightarrow x^{2}+4 x+4 & =(x+2) \times 10 \\
\Rightarrow x^{2}+4 x+4 & =10 x+20 \\
\Rightarrow x^{2}-6 x-16 & =0 \\
\Rightarrow(x-8)(x+2) & =0
\end{aligned}
$$

Thus $x=-2,8$. However, $x=-2$ would mean the above logs are undefined, since $\log (x+2)=$ $\log (0)$. Thus the only legal solution is $x=8$.
5. Andy invests $\$ 100$ in an account that gains interest at a rate of 3% a year. Bob invests $\$ 50$ in an account that gains interest at a rate of 2% every half a year. How many years would it take until Bob's account has the same amount of money as Andy?

Solution:

Let $A(t)$ represent the amount in Andy's account after t years. Then as Andy starts with $\$ 100$ and gains interest at 3% a year, we get that $A(t)=100 \times(1.03)^{t}$, since gaining 3% interest is the same as multiplying by 1.03 .

Similarly, let $B(t)$ be the amount in Bob's account after t years. Since Bob's money gains interest every half a year, we get that $B(t)=50 \times(1.02)^{2 t}$. One way to think of this is that, for every year that Andy's money gains 3% interest, Bob's money gains 2% interest twice.

To find out when Bob and Andy have the same amount of money, we set $A(t)=B(t)$ and solve for t :

$$
\begin{aligned}
A(t) & =B(t) \\
\Rightarrow 100(1.03)^{t} & =50(1.02)^{2 t} \\
\Rightarrow 2(1.03)^{t} & =(1.02)^{2 t} \\
\Rightarrow \log \left(2(1.03)^{t}\right) & =\log \left(1.02^{2 t}\right) \\
\Rightarrow \log (2)+\log \left(1.03^{t}\right) & =\log \left(1.02^{2 t}\right) \\
\Rightarrow \log (2)+t \log (1.03) & =2 t \log (1.02) \\
\Rightarrow 2 t \log (1.02)-t \log (1.03) & =\log (2) \\
\Rightarrow t(2 \log (1.02)-\log (1.03)) & =\log (2) \\
\Rightarrow t & =\frac{\log (2)}{2 \log (1.02)-\log (1.03)}
\end{aligned}
$$

6. A certain radioactive isotope decays exponentially with half-life 84 years. If we start with 32 grams of the isotope, how many years will it take until there are 7 grams left? You may leave logs in your answer.

Solution:

Using our half-life equation, we get that $A(t)=32 \times \frac{1}{2}^{t / 84}$. We then want to solve for the t such that $A(t)=7$. Substituting 7 for $A(t)$ in our equation and solving gives:

$$
\begin{aligned}
7 & =32 \times \frac{1}{2}^{t / 84} \\
\Rightarrow \frac{7}{32} & =\frac{1}{2}^{t / 84} \\
\Rightarrow \log \left(\frac{7}{32}\right) & =\log \left(\frac{1}{2}^{t / 84}\right) \\
\Rightarrow \log \left(\frac{7}{32}\right) & =\frac{t}{84} \log \left(\frac{1}{2}\right) \\
\Rightarrow t & =\frac{84 \log \left(\frac{7}{32}\right)}{\log \left(\frac{1}{2}\right)}
\end{aligned}
$$

7. Suppose that a colony of 20 rabbits in 1990 increased to a population of 140 in 2002. Assuming the population of rabbits is increasing exponentially, how many rabbits will there be in 2014 ?

Solution:

Given how the data is given, it is easier to say that the number of rabbits is multiplied by 7 every 12 years than trying to calculate a doubling time. So this gives us that the number of rabbits $R(t), t$ years after 1990 , is $R(t)=20 \times 7^{t / 12}$.

To determine the number of rabbits in 2010, we then set $t=24$ to get $R(20)=20 \times 7^{24 / 12}=$ $20 \times 7^{2}=20 \times 49=980$ rabbits.
8. Solve for x using natural logs:
$10^{x+4}=8 e^{3 x}$
Solution:

$$
\begin{aligned}
10^{x+4} & =8 e^{3 x} \\
\Rightarrow \ln \left(10^{x+4}\right) & =\ln \left(8 e^{3 x}\right) \\
\Rightarrow \ln \left(10^{x+4}\right) & =\ln (8)+\ln \left(e^{3 x}\right) \\
\Rightarrow(x+4) \ln (10) & =\ln (8)+3 x \ln (e) \\
\Rightarrow(x+4) \ln (10) & =\ln (8)+3 x \\
\Rightarrow x \ln (10)+4 \ln (10) & =\ln (8)+3 x \\
\Rightarrow 3 x-x \ln (10) & =4 \ln (10)-\ln (8) \\
\Rightarrow x(3-\ln (10)) & =4 \ln (10)-\ln (8) \\
\Rightarrow x & =\frac{4 \ln (10)-\ln (8)}{3-\ln (10)}
\end{aligned}
$$

9. Find the average rate of change of $f(x)=5 x^{2}-3$ between $x=2$ and $x=3$. Now find the average rate of change between $x=2$ and $x=2+h$. What is the instantaneous rate of change at $x=2$?

Solution:

By definition, the average rate of change of $f(x)$ between $x=2$ and $x=3$ is:
$\frac{f(3)-f(2)}{3-2}=\frac{\left(5(3)^{2}-3\right)-\left(5(2)^{2}-3\right)}{1}=(5 \cdot 9-3)-(5 \cdot 4-3)=42-17=25$
The average rate of change of $f(x)$ between $x=2$ and $x=2+h$ is:

$$
\begin{aligned}
\frac{f(2+h)-f(2)}{(2+h)-(2)} & =\frac{\left(5(2+h)^{2}-3\right)-\left(5(2)^{2}-3\right)}{h} \\
& =\frac{\left(5\left(4+4 h+h^{2}\right)-3\right)-(5(4)-3)}{h} \\
& =\frac{17+20 h+5 h^{2}-17}{h} \\
& =\frac{20 h+5 h^{2}}{h} \\
& =20+5 h
\end{aligned}
$$

The instantaneous rate of change at $x=2$ is:
$\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0}(20+5 h)=20$
10. Using the limit definition of the derivative, find $f^{\prime}(x)$ when $f(x)=3 x^{2}-2$.

Solution:

The limit definition is $f^{\prime}(x)=\lim _{x \rightarrow \infty} \frac{f(x+h)-f(x)}{h}$.
Since $f(x)=3 x^{2}-2$ we then have:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3(x+h)^{2}-2\right)-\left(3(x)^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3\left(x^{2}+2 x h+h^{2}\right)-2\right)-\left(3 x^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-2-3 x^{2}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 6 x+3 h \\
& =6 x
\end{aligned}
$$

11. Suppose an object is thrown off the top of a building and its height in meters after t seconds is given by the function $f(t)=50+5 t-t^{2}$. How fast is the object traveling when it hits the ground? When does the object attain its maximum height?

Solution:

Since $f(t)$ represents the height of the object, to find out the time when the object hits the ground we set $f(t)=0$ and solve for t :

$$
\begin{aligned}
f(t) & =0 \\
50+5 t-t^{2} & =0 \\
(10-t)(5+t) & =0
\end{aligned}
$$

So $t=-5$ or 10 , so we take $t=10$ since we want a positive value for time. Then to know how fast the object was traveling when it hits the ground, we substitute $t=10$ into the derivative. $f^{\prime}(t)=5-2 t$ so $f^{\prime}(10)=5-2 \cdot 10=-15$. Hence the object was moving at $15 \mathrm{~m} / \mathrm{s}$ when it hit the ground. When the object attains its maximum height it has derivative 0 , so we find the value of t corresponding to $f^{\prime}(t)=0.5-2 t=0$ implies that $t=\frac{5}{2}$. So the object attains its maximum height at $\frac{5}{2} \mathrm{~s}$.
12. Evaluate the following derivatives:
(a) $\frac{d}{d x}\left(4 e^{x / 2}\right)$
(b) $\frac{d}{d x}\left(\frac{x^{2}-3}{x}\right)$
(c) $\frac{d}{d x}\left(\frac{2}{\sqrt[5]{x}}\right)$
(d) $\frac{d}{d x}\left(\frac{x^{2}-4}{x+2}\right)$

Solution:
(a) $\frac{d}{d x}\left(4 e^{x / 2}\right)=\frac{1}{2} \cdot 4 e^{x / 2}=2 e^{x / 2}$
(b) $\frac{d}{d x}\left(\frac{x^{2}-3}{x}\right)=\frac{d}{d x}\left(\frac{x^{2}}{x}-\frac{3}{x}\right)=\frac{d}{d x}\left(x-\frac{3}{x}\right)=\frac{d}{d x}\left(x-3 x^{-1}\right)=1+3 x^{-2}=1+\frac{3}{x^{2}}$
(c) $\frac{d}{d x}\left(\frac{2}{\sqrt[5]{x}}\right)=\frac{d}{d x}\left(2 x^{-1 / 5}\right)=-\frac{1}{5} \cdot 2 x^{-6 / 5}=-\frac{2}{5} x^{-6 / 5}$
(d) $\frac{d}{d x}\left(\frac{x^{2}-4}{x+2}\right)=\frac{d}{d x}\left(\frac{(x+2)(x-2)}{x+2}\right)=\frac{d}{d x}(x-2)=1$
13. Let $f(x)=\frac{1}{x}$. Find an equation for the tangent line to $f(x)$ at $x=2$. Then use this tangent line to approximate $\frac{1}{3}$. What is the resulting percent error?

Solution:

The slope of this tangent line will be $f^{\prime}(2)$. Since $f^{\prime}(x)=-\frac{1}{x^{2}}$, we get that $f^{\prime}(2)=-\frac{1}{4}$. The tangent line will also intersect the graph of $f(x)$ at $x=2$, so it must pass through the point $(2, f(2))=\left(2, \frac{1}{2}\right)$. Using point-slope form, we then get the equation:

$$
\begin{aligned}
y-\frac{1}{2} & =-\frac{1}{4}(x-2) \\
\Rightarrow y & =-\frac{1}{4} x+\frac{1}{2}+\frac{1}{2} \\
\Rightarrow y & =-\frac{1}{4} x+1
\end{aligned}
$$

So the tangent line to $f(x)=\frac{1}{x}$ at $x=2$ is $y=-\frac{1}{4} x+1$.
To approximate $\frac{1}{3}$ with the tangent line that is approximating $f(x)=\frac{1}{x}$, we set $x=3$ to get $y=-\frac{1}{4} \cdot(3)+1=-\frac{3}{4}+1=\frac{1}{4}$.
The resulting percent error is then:
$\frac{\left|\frac{1}{3}-\frac{1}{4}\right|}{\frac{1}{3}} \times 100 \%=\frac{\frac{1}{12}}{\frac{1}{3}} \times 100 \%=\frac{1}{12} \cdot \frac{3}{1} \times 100 \%=\frac{1}{4} \times 100 \%=25 \%$.
14. Let $f(x)=-x^{3}+6 x^{2}-12 x-5$. For what values of x is $f(x)$ decreasing? For what values of x is $f(x)$ concave down?

Solution:

To determine where $f(x)$ is decreasing, we need to first find its derivative:
$f^{\prime}(x)=-3 x^{2}+12 x-12$
We then set $f^{\prime}(x)$ to zero to find critical points.

$$
\begin{array}{r}
-3 x^{2}-12 x+12=0 \\
\Rightarrow x^{2}-4 x+4=0 \\
\Rightarrow(x-2)(x-2)=0
\end{array}
$$

So there is a critical point at $x=2$ and therefore we just need to test the sign of $f^{\prime}(x)$ in the regions $x<2$ and $x>2$. $f^{\prime}(0)=-12<0$ and $f^{\prime}(3)=-3<0$ so $f^{\prime}(x)$ is negative on both intervals. Therefore $f(x)$ is decreasing on both $x<2$ and $x>2$.
To determine where $f(x)$ is concave down, we need to find its second derivative:
$f^{\prime \prime}(x)=-6 x+12$
Setting $f^{\prime \prime}(x)=0$ then gives us $-6 x+12=0$ so $x=2$ is our inflection point. So now we need to test the sign of $f^{\prime \prime}(x)$ in the regions $x<2$ and $x>2$. $f^{\prime \prime}(0)=12>0$ and $f^{\prime \prime}(3)=-6<0$. So $f^{\prime \prime}(x)$ is negative only on the region $x>2$. So $f(x)$ is concave down on $x>2$.
15. Suppose $T(p)$ represents the time it takes in minutes to get a sandwich at the Arbor Subway when there are p people in line. What does $T(3)=5$ mean? What does $T^{\prime}(3)=1$ mean? What does $T^{-1}(8)=6$ mean?

Solution:

$T(3)=5$ means when there are 3 people in line, it takes 5 minutes to get a sandwich.
$T^{\prime}(3)=1$ means when there are 3 people in line, the time it takes to get a sandwich is increasing at a rate of 1 minute per person in line.
$T^{-1}(8)=6$ means it takes 8 minutes to get a sandwich when there are 6 people in line.
16. Suppose $f(t)$ represents the amount of liters in a water tank after t days. What does $f^{\prime}(4)=-2$ mean? What does $f^{\prime \prime}(4)=.5$ mean? If $f^{\prime \prime}(t)$ is always equal to .5 , at what time will the tank no longer be losing water?

Solution:

$f^{\prime}(4)=-2$ means that at 4 days, the amount of water in the tank is decreasing at a rate of 2 liters/day.
$f^{\prime \prime}(4)=.5$ means that at 4 days, the rate of water entering/leaving the tank is increasing at a rate of 0.5 liters/day each day (alternatively, it is increasing at a rate of 0.5 liters $/$ day 2).

If $f^{\prime \prime}(t)=0.5$ for all t then after each day $f^{\prime}(t)$ will increase by 0.5 . Thus since $f^{\prime}(4)=-2, f^{\prime}(5)$ will be $-1.5, f^{\prime}(6)$ will be -1 , and so on and then clearly $f^{\prime}(8)=0$ and the tank will no longer be losing water. So the tank will no longer be losing water starting on day 8 .
17. Suppose some kids decide to open a lemonade stand on a street corner. It costs them 20 cents to make a single cup of lemonade. After weeks of selling, they find that they can sell 50 cups when they charge $\$ 1$ per cup and that their sales fall by 5 for each 10 cents extra that they charge. What price should the kids sell their lemonade to make the most profit? What is the maximum profit they can make?

Solution:

Let n be the number of cups of lemonade the kids sell and p the price for each cup. Then the Profit (P) function for the kids will be $P=n p-0.2 n=n(p-0.2)$ since $n p$ represents the amount of income they make and the $-0.2 n$ represents the 20 cents cost for making each cup of lemonade. The question asks for the ideal price to sell the lemonade, so we want a function for profit in terms of just p.
The fact that the kids sell 50 cups when they charge $\$ 1$ per cup gives us a point $(1,50)$ if we graphed p versus n. The fact that sales fall by 5 for each 10 cents extra they charge gives us a slope of $m=-\frac{5}{.1}=-50$.
Point-slope form then gives us:

$$
\begin{aligned}
n-50 & =-50(p-1) \\
\Rightarrow n-50 & =-50 p+50 \\
\Rightarrow n & =-50 p+50+50 \\
\Rightarrow n & =-50 p+100
\end{aligned}
$$

Substituting this formula for n into our equation for profit gives us:

$$
\begin{aligned}
P(p) & =(-50 p+100)(p-0.2) \\
& =-50 p^{2}+100 p+10 p-20 \\
& =-50 p^{2}+110 p-20
\end{aligned}
$$

So $P^{\prime}(p)=-100 p+110$ and solving for critical points yields $-100 p+110=0 \Rightarrow p=1.1$. Thus the price that yields the maximum profit is $\$ 1.10$.
The maximum profit the kids can make then requires substituting this ideal price back into the function for profit. So $P(1.10)=(-50 \cdot 1.10+100)(1.10-0.2)=(-55+100)(0.9)=(45)(0.9)=40.50$. Thus the kids' maximum profit is $\$ 40.50$.
18. Suppose a farmer wants to make a rectangular field that is bordered by a brick wall on one side and wooden fence on the other three sides. The cost of the brick wall is $\$ 5$ per meter and the wooden fence costs $\$ 3$ per meter. If the farmer only has $\$ 120$ to spend, what is the maximum area this field can be?

Solution:

Let L be the length of the brick side of the rectangular perimeter and W denote the other dimension. Then the cost of the entire perimeter would be L meters of brick wall at $\$ 5$ per meter and $(2 W+L)$ meters of wooden fence at $\$ 3$ per meter, yielding Cost $=5 L+3(2 W+L)=8 L+6 W$.
Then since the farmer only has $\$ 120$ to spend, we set $8 L+6 W=120$ as we assume the farmer will need to spend all of his money to maximize the area of his field.
Now we want to maximize the area (A) of the field, where $A=W L$. We would like to get a formula for the area in terms of one variable. We can use the above cost formula to do this. $8 L+6 W=120$ implies $W=\frac{120-8 L}{6}$. Substituting this into the area equation gives us:
$A(L)=\left(\frac{120-8 L}{6}\right) L=\frac{120 L-8 L^{2}}{6}=20 L-\frac{4}{3} L^{2}$
$\Rightarrow A^{\prime}(L)=20-\frac{8}{3} L$
Setting to 0 and solving then yields $20-\frac{8}{3} L=0 \Rightarrow L=\frac{20 \cdot 3}{8}=\frac{15}{2}$. Then the maximum area is then:

$$
\begin{aligned}
A\left(\frac{15}{2}\right) & =20 \cdot \frac{15}{2}-\frac{4}{3}\left(\frac{15}{2}\right)^{2} \\
& =150-\frac{4}{3}\left(\frac{225}{4}\right) \\
& =150-\frac{225}{3} \\
& =150-75 \\
& =75 \mathrm{~m}^{2}
\end{aligned}
$$

