1 Glossary

Matching A matching H of a graph G is a 1-regular subgraph of G.

Line Graph The line graph $L(G)$ of a graph G is the graph with vertex set given by the edges of G, and an edge $\{e, f\}$ in G iff these two edges are incident in G.

Edge Coloring A n-edge coloring of a graph G is a mapping from the set $E(G)$ into the set $\{1, 2, \ldots, n\}$ such that no two incident edges receive the same colors.

Edge Chromatic Number The edge chromatic number of a graph G, $\chi'(G)$, is the smallest value of n such that G admits a n-edge coloring.

2 Hall’s Marriage Theorem

Theorem 1 Take a bipartite graph $G = (A, B)$. Then, the following conditions are equivalent:

- G has a 1-factor.
- (Hall’s condition): For any subset $X \subset A$ or $X \subset B$, if $N(X)$ denotes the neighbors of X, then $|X| \leq |N(X)|$.

Proof. (\Rightarrow): Suppose that G has a 1-factor; because G is bipartite, such a 1-factor is just a pairing-up of vertices in A and in B along edges in G. Thus, for any subset $X \subset A$, because $N(X)$ must contain the edges in this 1-factor, we have that $|X| \leq N(X)$ (and similarly for $X \subset B$.)

(\Leftarrow): Take any matching M in G. Consider the following algorithm for creating an alternating path between distinct vertices in A and B:

1. Suppose without loss of generality that M’s not already a 1-factor, and pick some $a_0 \in A$ that’s nor involved in M.

2. Suppose that the sequence $a_0b_1a_1b_2a_2\ldots b_{k-1}a_{k-1}$ has been created. Then, because the set $\{a_0\ldots a_{k-1}\}$ of chosen A-vertices is strictly larger than the set $\{b_1\ldots b_{k-1}\}$ of chosen B-vertices, there must be some element $b \in B$ that’s connected by some edge $\{b, a\}$ to some previously-chosen a_i, by Hall’s condition. Let b_k be equal to b, and define $f(k) = i$ (so that $\{b_k, a_{f(k)}\}$ is the edge we used here to pick b.)
3. If \(b_k \) is in \(M \), let \(a_k \) be the vertex across from \(b_k \) in \(M \), and return to (2) to continue to grow our sequence. Otherwise, end our sequence! By construction, we know that \(b_k \) is unique amongst the previously chosen \(b_i \)'s; similarly, because we picked the \(a_i \) up to this point by using the matching \(M \), we know that they’re all distinct. So this is still a sequence of distinct vertices!

4. Let the sequence that this algorithm terminates with be denoted as \(a_0b_1\ldots b_{k-1}a_{k-1}b_k \). Notice, now, that this sequence of vertices, by construction, have the following properties:
 - \(a_0 \) and \(b_k \) are both unmatched.
 - \(b_i \) is adjacent to some element in \(\{a_0\ldots a_{i-1}\} \).
 - \(a_i b_i \) is in \(M \), for all \(i \).

5. So: consider the following path, made by alternately following the edges of \(M \) and the edges recorded by the function \(f \):

\[
bb_k, \{b_k, a_f(k)\}, b_f(k), \{a_f(k), b_f(k)\}, b_f(k), \{b_f(k), a_{f^2(k)}\}, a_{f^2(k)}, \ldots, \{b_{f^n(k)}, a_{f^{n+1}(k)}\},
\]

where \(a_{f^{n+1}(k)} = a_0 \).

All of the edges \(\{a_f(k), b_f(k)\} \) lie in \(M \), while none of the edges \(\{b_k, a_f(k)\} \) lie in \(M \), by construction. So, replace the collection of \(\{a_f(k), b_f(k)\} \) in \(M \) with the collection of \(\{b_k, a_f(k)\} \) edges! This collection has precisely one more edge than the old collection, and only deals with the vertices \(a_0, b_k \) (which weren’t in \(M \) anyways) and \(a_1\ldots a_{k-1}, b_1\ldots b_{k-1} \) (which were involved in edges we removed from \(M \) – so it preserves \(M \)'s status as a matching! Thus, repeating this process will allow us to grow \(M \) into a 1-factor.

Corollary 2 A \(k \)-regular bipartite graph \(G = (A,B) \) can be decomposed into \(k \) disjoint 1-factors.

Proof. Pick any subset \(X \subset A \) or \(X \subset B \) of size \(n \). Because \(G \) is \(k \)-regular, there are \(kn \) distinct edges leaving \(X \) and entering \(N(X) \). Consequently, as each vertex has degree \(k \), there must be at least \(n \) vertices in \(N(X) \) to absorb these edges! – so \(|N(X)| \geq |X| \).

Thus, by Hall’s Marriage theorem, there is a 1-factor in \(G \). Deleting it from \(G \) leaves a \(k - 1 \)-regular graph; so repeating this process leaves us with a decomposition of \(G \) into \(k \) distinct 1-factors.

3 Edge Colorings

Proposition 3 A cycle \(C_n \) has edge-chromatic number \(\chi'(G) = \chi(G) \).

Proof. Take a cycle \(C_n \), and consider its line graph \(L(C_n) \). This is another cycle! In fact, it’s the same cycle as \(G \), as it has the same number of vertices; thus, its edge chromatic number is the same as \(G \).
Theorem 4 If $G = (A, B)$ is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. As we showed earlier in lecture, a k-regular bipartite graph G can be decomposed into k disjoint 1-factors. Simply coloring each of these 1-factors a different color, then, will insure that we have a k-edge-coloring of G, as no 1-factor contains two incident edges (by definition.)

So, it suffices to show that we can embed any bipartite graph G with maximum degree $\Delta(G)$ as a subgraph of some $\Delta(G)$-regular bipartite graph (as a k-edge coloring of a graph gives, by restriction, a k-edge coloring of all of its subgraphs.) To do this,

- simply add vertices to either A or B so that both sides have the same number of vertices, and then
- take any vertex $a \in A$ that doesn’t have degree $\Delta(G)$. Then, because the number of edges leaving A is the same as the number of edges entering B, and all vertices have degree $\leq \Delta(G)$, there must be some vertex b in B also with degree $< \Delta(G)$. Add an edge between these two vertices! Repeat this process until the graph is $\Delta(G)$-regular.