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In our last lecture, we did three things:

• We defined the concept of a quasirandom graph!

• We tried to start proving our theorem about quasirandom graphs.

• We quickly found out that this was far harder than expected.

This is not so much because of the difficulty of the material: if the ideas on day 2 made
sense, then you’re actually completely capable of following the remaining proofs in this
equivalence! (Up to a bunch of linear algebra.) However, the problem with these proofs (as
you saw yesterday) is the sheer volume of notation that crops up in the proofs: they’re
insanely dense, and following any more than one in a lecture is pretty much impossible, just
because of all of the symbols.

So: we’re not doing that! Instead, we’re going to shift gears markedly: for the moment,
believe that all of these quasirandom properties are equivalent. What can we do with them?
In this lecture, we will study a family of quasirandom graphs. Specifically, we will prove
that (1) this family is actually quasirandom, and (2) use quasirandomness to prove some
statements that are not at all obvious about this family

First, we restate the quasirandomness definition, so that you have it on hand:

Definition. Let G = {Gkn}∞n=1 be any sequence of graphs, each on kn vertices, where the
kn’s are an nondecreasing sequence that tends to infinity. We say that this sequence is
quasirandom if, roughly speaking, it “looks like a random graph” in a number of quan-
tifiable ways.

To make this rigorous, here’s an additional bit of notation. Suppose that G, H are two
graphs. Let N∗G(H) denote the number of labelled occurences of H as an induced subgraph
of G. Similarly, let NG(H) denote the number of labeled occurences of H as a subgraph of
G (not necessarily induced.)

We say that our sequence G is quasirandom if and only if its elements satisfy the following
list of asymptotic properties, as the number of vertices in any such elementG goes to infinity:

P1(s): For any graph Hs on s vertices,

N∗G(Hs) = (1 + o(1)) · ns · 2−(s2).

P2(t): Let Ct denote the cycle of length t. Then

e(G) ≥ (1 + o(1)) · n
2

4
, and

NG(Ct) ≤ (1 + o(1)) · n
t

2t
.

1



P3: Let A(G) denote the adjacency matrix of G, and |λ1| ≥ . . . ≥ |λn| be the eigenvalues
of A(G). Then

e(G) ≥ (1 + o(1)) · n
2

4
, and

λ1 = (1 + o(1)) · n
2
, λ2 = o(n).

P4: Given any subset S ⊆ V ,

e(S) =
|S|2

4
+ o(n2).

P5: Given any pair of vertices v, v′ ∈ G, let s(v, v′) denote the number of vertices y such
that both (v, y) and (v′, y) are either both edges or both nonedges in G. Then∑

v,v′

∣∣∣s(v, v′)− n

2

∣∣∣ = o(n3).

1 Paley Graphs

The Paley graphs are defined as follows:

Definition. Let p be an odd prime that is 1 mod 4. Define the Paley graph as follows:

• Our vertex set is Fp = Z/pZ.

• Connect two elements x, y with an edge {x, y} if and only if x − y is a quadratic
residue: i.e. there is some element a ∈ Fp such that x− y = a2.

The first thing that we claim about these Paley graphs is that they’re well-defined: i.e. that
we’ve actually made a graph! The only problematic part of the definition above was that
we said that {x, y} was an edge if and only if x − y is a quadratic residue. The problem
with this is that our definitions for edge are different depending on how we order these
vertices: if we think of our edge as {x, y}, we’re saying that this holds if and only if x− y
is a quadratic residue, while if we think of our edge as {y, x}, we’re saying that this holds
if and only if y − x is a quadratic residue! These conditions, on the face of them, can be
quite different! In particular, both of these objects are quadratic residues if and only if −1
is a quadratic residue: i.e. that there is some value a ∈ Fp such that a2 = −1.

In some finite fields, this is not true: in F7, for example, there is no element that squares
to −1. (Check this!) However, as it turns out, this is always true in Fp, whenever p is a
prime that’s 1 mod 4.

We prove this as follows:

• Take Fp, and remove 0; this is now a group with 0 mod 4 elements with respect to
multiplication.

2



• Fun fact from group theory / that you could also probably prove directly: because
this is a group with order divisible by 4, there is some element x such that x4 ≡ 1
mod p, but x3, x2, x 6≡ 1 mod p.

• Rewrite this as x4− 1 ≡ 0 mod p. Factor this into the two polynomials (x2 + 1)(x2−
1) ≡ 0 mod p. Because x2 6= 1, this is a nonzero number, and we can cancel it out.
This leaves x2 + 1 ≡ 0 mod p.

• But this is just precisely x2 ≡ −1 mod p! Which is what we were looking for.

We’ve proven that the Paley graphs are well-defined! We now claim it’s quasirandom. To
do this, we again use property P5: this is because for graphs where we know the individual
elements well but not the overall structure, this is like the only property we can get a good
handle on.

To do this, take any two elements x, y ∈ Fp. When is a third element z either adjacent
to both of these elements or not adjacent to either element? Well, this happens when

z − x, z − y

are either both quadratic residues or both quadratic nonresidues.
Fun facts about quadratic residues:

• If you look at Fp and remove the zero, precisely half of the elements in this collection
are quadratic residues. This is because if x2 = a, we also have (−x)2 = a, and
furthermore if we ever have x2 ≡ y2 mod p, we have x2 − y2 ≡ (x + y)(x − y) ≡ 0
mod p. This holds if and only if one of (x+ y), (x− y) are 0, because we’re in a field
and therefore don’t have zero divisors: i.e. if and only if x = ±y.

• Also, notice that the product of any two quadratic residues is a quadratic residue:
this is pretty immediate, because having x2 = a and y2 = b gives you (xy)2 = ab.

• Similarly, the product of a quadratic residue and a quadratic nonresidue is a quadratic
nonresidue. To see why, suppose that a = x2 is the quadratic residue and b is the
quadratic nonresidue. If ab = y2 for some y, then we would have b =

( y
x

)2
(which we

can do because Fp is a field), which makes b a quadratic residue, a contradiction!

• Consider a multiplication table for Fp without 0. In every row and column, we have
all of the elements of this group show up exactly once: therefore, in the entire table,
all of the elements show up the same number of times! What does this mean, given
the results we just came up with above?

Well: if the product of a nonresidue and a residue is a nonresidue, while the product
of a residue and a nonresidue is also a nonresidue, these products account for (on one
hand) half of the elements in our table, but (on the other hand) all of the nonresidues,
because exactly half of the elements are nonresidues!

This means that any of the other products we make must be residues! In particular,
this means that the product of any two nonresidues magically must become a residue!
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If we apply this to our problem, this means that

z − x, z − y

are either both quadratic residues or both quadratic nonresidues if and only if

z − x
z − y

is a quadratic residue! (Because if exactly one of them was a residue and the other was not,
then this ratio would fail to be a residue.)

But, for any of the quadratic residues a2 other than 1, there is a unique z such that

z − x
z − y

= 1 +
y − x
z − y

≡ a2 mod p;

this is because this is a field, so we can multiply by (z − y) and shuffle coefficients together
to get a linear function in z

z − y + y − x ≡ a2(z − y) mod p

⇔z(1− a2)− (x− a2y) ≡ 0 mod p.

which (again, because it’s a field) has exactly one root when thought of as a function of z.
So: this means that there are precisely as many vertices z that are either both common

neighbors and common non-neighbors to x, y as there are non-1 quadratic residues: i.e.
q−1
2 − 1 = q−3

2 .

Consequently, this means that s(x, y) = q−3
2 , and therefore that

∑
x,y∈Fp

∣∣∣s(x, y)− q

2

∣∣∣ =
∑

x,y∈Fp

3

2
=

3n2

2
,

which is definitely o(n3)! Therefore, this sequence of graphs is quasirandom, as claimed,
and therefore has all of the other quasirandom graph properties. In particular, this means
that in any given subset of, say, q/25 of the vertices, we’d start seeing about half of those
elements differing by a quadratic residue: this is because quasirandom graphs have roughly
the right number of edges in any subset of their edges, and so in particular these subsets will
eventually have to start having the right number of edges. This is not necessarily obvious:
you might think that maybe you could pick a set of values such that their differences
would mostly all be quadratic residues, or all be quadratic nonresidues! But our results on
quasirandom graphs says that this is completely impossible.

Beautiful, right?
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