
Root-Finding Algorithms Instructor: Padraic Bartlett

Finding All the Roots: Sturm’s Theorem

Day 2 Mathcamp 2013

In our last lecture, we studied two root-finding methods that each took in a polynomial
f(x) and an interval [a, b], and returned a root of that function on that interval. This was
great for the problem we asked at the start of the class — how to find a root of a quintic
polynomial — but is not necessarily so great for many other problems we may want to
study. For example, we may want to find a root of a degree-6 polynomial! In this situation,
we can’t obviously use either of the methods we’ve examined earlier: we have no obvious
way to find an interval on which an even-order polynomial changes sign. Also, we may often
want to find not just one root, but all of the roots of a given polynomial! Our earlier
methods only give us one root, which is not necessarily very useful to us in practice.

In this lecture we’re going to study Sturm’s theorem, a tool that helps with both of
these problems.

1 Sturm’s Theorem

In order to state Sturm’s theorem, we need to make some definitions.

1.1 Definitions and Notation

Definition. A Sturm chain is a finite sequence of polynomials p0(x), p1(x), . . . pm(x) of
decreasing degree with the following properties:

1. p0(x) is square-free: i.e. it has no factors of the form (q(x))2, for any polynomial q(x).

2. If a is a root of p(x), then the sign of p1(a) is the same as the sign of p′(a), and in
particular is nonzero.

3. If a is a root of pi(x) for some i with 0 < i < m, then both pi−1(a), pi+1(a) are
nonzero. Moreover, the sign of pi−1(a) is the opposite of the sign of pi+1(a).

4. pm(x)’s sign is constant and nonzero for all x.

Sturm chains look very strange initially. Before we get into why we’d want to study
them, however, we offer an example of how to construct Sturm chains.

Proposition. Given a square-free polynomial p(x), the following construction gives us a
Sturm chain:

• p(x) = p0(x).

• p1(x) = p′(x).
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• p2(x) = −rem(p0(x), p1(x)) = p1(x)q0(x) − p0(x), where rem(p0(x), p1(x)) is the re-
mainder when polynomial long division1 is is used to divide p0(x) by p1(x), and
q0(x) is the quotient of said long division.

• p3(x) = −rem(p1(x), p2(x)) = p2(x)q1(x)− p1(x).

• In general, define pk inductively as−rem(pk−2(x), pk−1(x)) = pk−1(x)qk−2(x)−pk−2(x).

• Repeat this process until we arrive at some m such that rem(pm−1, pm) = 0, where
pm(x) 6= 0. (Because our degrees are decreasing by at least one at each step, this will
eventually occur.)

Proof. By definition, we know the first two properties in the definition of Sturm chains
hold. So the only nontrivial conditions that we need to examine are the last two properties
of Sturm chains.

To see the third property, we’ll use a proof by induction. First notice that p0(x) and
p1(x) do not share any common roots: this is because if a is a root of p(x), we can write
p(x) = (x−a) ·q(x), for some other polynomial q(x) that doesn’t have a root at a (we know
that q(x) doesn’t have a root at a because p(x) is squarefree.) Then, if we differentiate, we
get that p′(x) = q(x)+(x−a)q′(x), which is equal to q(a) at a, and in particular is nonzero.

For our inductive step, notice that pi−1(x) = pi(x)qi−1(x) − pi+1(x). Therefore, if
pi+1(x), pi(x) had a common root for some i, this root would be shared with pi−1(x), and
(by recursion) this root would be shared with all of our polynomials. We showed, however,
that p0(x), p1(x) do not share a common root, so this is impossible. Therefore, at any root
a of pi(x), for 0 < i < m, we’ve shown that both pi−1(a) and pi+1(a) must be nonzero.

To see that at any root a of pi(x), the sign of pi−1(a) is the opposite of the sign of
pi+1(a): just look at our construction. We know that pi+1(x) = pi(x)qi−1(x)− pi−1(x), by
definition. If we plug in a to this equation, we get pi+1(a) = −pi−1(a), our claim. This
finishes our proof that the third property holds.

We are left with the last property: i.e. showing that pm(x)’s sign is a nonzero constant.
To prove this, we refer to our construction again. We know that deg(pi) > deg(pi+1),
for any i, by construction, because we’re using polynomial long division. So our process
eventually terminates, and yields some pm(x) such that pm(x) is both nonzero and satisfies
pm−1(x) = qi−1(x) · pm(x).

If pm(x) is not a constant, is this possible? Well, if pm(x) and pm−1(x) share pm(x) as
a common factor, then by definition pm−1(x) also shares this factor, and (by recursion) so
does every polynomial in our chain.

Can this happen? Well: again, look at p0(x) and p1(x). We know that if pm(x) is a factor
of p0(x), then if we write p0(x) = pm(x) · q(x), we have p1(x) = p′m(x) · q(x) + pm(x) · q′(x).
If pm(x) is a factor of p1(x) as well, we can use this equation to conclude that pm(x) is also
a factor of p′m(x) · q(x). Because p′m(x) has strictly lower degree than pm(x), we know that
in order for this to be true, there must be some factor of pm(x) that is a factor of q(x).
However, this means that this factor occurs twice in p0(x) = pm(x) · q(x). In order for p0(x)
to be squarefree, as claimed, this pm(x) must be a constant, as claimed.

1Given two polynomials p0, p1, there is a unique pair of polynomials q, r such that p0 = p1 · q + r and the
degree of r is either 0 or lower than the degree of p1. The process we use to find this q, r is polynomial long
division; come talk to me if you haven’t done this before, or have forgotten how it goes!
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So this process generates a Sturm chain, as claimed.

1.2 Stating and Proving Sturm’s Theorem

Sturm chains are pretty odd things; from their construction, it’s not immediately obvious
what they are, or why we care about them. As it turns out, however, they’re incredibly
useful things, that were very carefully and cleverly constructed so that the following theorem
would be true:

Theorem. Take any squarefree polynomial p(x), and any interval (a, b) such that pi(a), pi(b) 6=
0, for any i. Let p0(x), . . . pm(x) denote the Sturm chain corresponding to p(x). For any
constant c, let σ(c) denote the number of changes in sign in the sequence p0(c), . . . pm(c).
Then p(x) has σ(a)− σ(b) distinct roots in the interval (a, b).

Proof. First, notice that near any root a of p(x), our function p(x) is negative on one side
of a and positive on the other side of a. This is because our function, when factored, looks
like (x − a) · g(x), for some function g(x) that does not have a root at a (because p(x) is
squarefree) and therefore has constant sign near a.

So. Imagine, for the moment, the function σ sweeping left-to-right across the real
number line. We know that σ cannot change unless the sign of one of our polynomials pi(x)
changes. Because polynomials are continuous, this can only happen if we pass over a zero
of some pi(x). Therefore: at any such root of some pi(x), we want to show that σ decreases
by 1 if we pass over a root of p0(x), and does not change if we pass over a zero of any other
pi(x).

We first consider the case where pi(x) has a root, for some i ≥ 1. Call it a. At a,
we know that pi−1(a), pi+1(a) are both nonzero and opposite signs. Furthermore, because
these functions do not have a root at a, near a these signs do not change.

If pi(x) switches from being positive to negative, our sign pattern here goes from either
−+ + to −−+ or +−− to + +−, depending on the signs of pi−1(a), pi+1(a). Similarly, if
pi(x) switches from negative to positive, our sign pattern goes from either −−+ to −++ or
from +−− to ++−. In any of these cases, the total number of sign changes is undisturbed.
Therefore σ does not change.

Now, suppose that p0(x) has a root at a. If it switches from positive to negative, we
know that in a small neighborhood of a our function must have negative derivative, as our
polynomial is decreasing. Therefore our sign pattern has gone from +− to −−, and σ has
decreased by 1. Similarly, if we switch from negative to positive, our function is increasing
and has positive derivative near a; consequently, our sign pattern goes from −+ to ++.
Again, σ decreases by 1, which is what we claimed.

Therefore, σ(a)− σ(b) is the total number of roots on the interval (a, b), as claimed.

We can even strengthen this to general polynomials as follows:

Corollary. Take any polynomial p(x), and any interval (a, b) such that pi(a), pi(b) 6= 0, for
any i. Then p(x) has σ(a)− σ(b) distinct roots in the interval (a, b).

Proof. Take any polynomial p(x). Let d(x) be the greatest common divisor of p(x), p′(x).
(In the case that p(x) is squarefree, this is a constant, as proven earlier.)
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Use the construction p0(x), p1(x), . . . pm(x) that we created a Sturm chain with earlier.
Now, divide every term in our chain by the quantity d(x). Because d(x) was a factor of
both p0(x), p1(x) it’s a factor of every term of our chain by construction, so the resulting
object is still a chain of polynomials. Furthermore, after doing so no two consecutive terms
in our chain share a common nonconstant factor, again by construction. Because p(x) has
no roots at a, b, we know that d(x) is nonzero at a, b, and therefore that this new chain has
the same number of sign changes at a, b as the old chain did (because at a, b this d(x) is
just some nonzero constant.)

We claim that we can apply Sturm’s theorem to this new chain, and it will give us the
number of distinct roots of p(x)/d(x) on the interval [a, b]. Note that d(x) only contains
repeated roots of p(x); this is because it was formed by taking the gcd of p(x) and another
polynomial. Therefore, we know that if this new chain is Sturm, counting the number of
distinct roots in p(x)/d(x) is the same as counting the number of distinct roots of p(x)
itself.

This chain satisfies the first property of Sturm chains: we’ve forced the first term to be
squarefree, by factoring out any repeated factors it has. (This is because any factor that
shows up twice in p(x) shows up at least once in p′(x); prove this using the product rule
and the derivative!)

It also satisfies the “no two consecutive zeroes” property. This is because if there was
any repeated pair of zeroes, we would have two consecutive terms with a common factor,
which (by using the recursive/inductive arguments we’ve made throughout this lecture)
would force all of the terms of our sequence to share a common factor. In particular it
would force p(x) and p′(x) to share a common factor, and we’ve made this impossible by
factoring out such things.

It still satisfies the “alternating signs on either side of a root” property, because this
property is unaltered by factoring out terms and is true in our original construction.

As well, its last term pm(x) is a nonzero constant, because (as shown earlier) we know
that pm(x) is a factor of every other element in our chain, and we’ve factored out all common
terms with degree greater than a constant.

Finally, we have the requirement that at any root a of the leading term in our chain, we
have that the sign of the second term in our chain is the same as the sign of the derivative
of the first term in our chain at a. Is this true? Well: the leading term in our chain is p(x)

d(x) ,

which has derivative d
dx

(
p(x)
d(x)

)
= p′(x)d(x)−p(x)d′(x)

d2(x)
. At a, this is p′(a)d(a)

d2(a)
= p′(a)

d(a) , if we use

the observation that a is a root of p(x). The second term in our chain is p′(x)
d(x) , which is

precisely this at a; therefore this property is preserved.
So we have a chain that is Sturm: therefore, if we apply our theorem, we can count

the number of roots in the leading polynomial! Because we’ve only factored out repeated
factors, we know that this leading polynomial has the same number of distinct roots as our
original polynomial p(x): so counting the roots of this new polynomial is the same thing as
counting roots of p(x). As a consequence, because these factors (as noted) don’t effect the
total number of sign changes at a given point, we in fact have that p(x) has σ(a) − σ(b)
distinct roots in the interval (a, b).

This is why we care about Sturm chains: they let us find all of the roots of a polynomial!
In particular, consider the following algorithm for finding roots of a polynomial:
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Root-Finding Algorithm 3: Sturm’s Theorem

Input: A polynomial p(x) = anx
n + . . . a1x + a0, along with a desired error tolerance ε. As

well, take as input an interval (a, b) that we want to find roots within. Require that
pi(a), pi(b) 6= 0, for any pi(x) in the Sturm chain corresponding to p(x).

1. Calculate the Sturm chain p0(x), . . . pm(x) corresponding to p(x).

2. Take our interval (a, b). Using Sturm’s theorem, find σ(a) − σ(b), which tells us the
total number of roots in (a, b).

3. If this total number of roots is zero, halt: there are no roots here. If the total number
of roots is 1, use your favorite root-finding algorithm here.

4. Otherwise, the total number is k for some k ≥ 2. If the length of this interval is smaller
than 2ε, halt and report that there are k roots at b+a

2 within our error tolerances.

5. Otherwise, if c = b+a
2 is not a root of pi(x) for any i, divide this interval into two

equal halves (a, c), (c, b), and run step 2 on each interval. Else, if c was a root of one
of these pi(m)’s, add a tiny amount to c so that c still lies fairly close to the middle of
(a, b) and is not a root. (The precise manner in which you do this doesn’t matter too
much, and probably depends on what you’re coding your algorithm on. In any case,
this should be relatively easy, as each pi has at most m roots, so we’re only trying
to avoid finitely many points and can easily do so by adding very tiny bits to the
midpoint of our interval.) Again, run step 2 on each of the intervals (a, c), (c, b).

Output: Approximations to all of the roots of p(x) within our interval, with an error of at most
ε for any root.

We calculate an example here:

Example. Find all of the roots of p(x) = x6 − 4x3 + x− 2, with an error of ± 1
10 .

Answer. We start by calculating Sturm chains, via our algorithm:

• p0(x) = x6 − 4x3 + x− 2.

• p1(x) = 6x5 − 12x2 + 1.

• p2(x) = −rem(x6 − 4x3 + x− 2, 6x5 − 12x2 + 1) = 2x3 − 5x
6 + 2.

• p3(x) = −rem(6x5 − 12x2 + 1, 2x3 − 5x
6 + 2) = 18x2 − 25x

24 + 3
2 .

• p4(x) = −rem(2x3 − 5x
6 + 2, 18x2 − 25x

24 + 3
2) = 92687x

93312 −
5159
2592 .

• p5(x) = −rem(18x2 − 25x
24 + 3

2 ,
92687x
93312 −

5159
2592) = −12568084416

175324081 .

If we notice that for any |x| ≥ 2, |x|6 > 4|x|3 + |x|+ | − 2|, we can conclude that all of
p(x)’s roots occur on the interval (−2, 2). So, we proceed via our algorithm. At x = 2, our
Sturm chain has values (approximately)
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p0(x) p1(x) p2(x) p3(x) p4(x) p5(x)

32 145 16.33 71.42 −3.8 · 10−3 −71.68

At x = −2, our Sturm chain has values

p0(x) p1(x) p2(x) p3(x) p4(x) p5(x)

92 −239 −12.33 75.58 −3.98 −71.68

Therefore, σ(2) = 1, σ(−2) = 3, and the total number of roots in (−2, 2) is 3− 1 = 2.
We subdivide to try to improve these bounds. If we look at our chain at x = 0, we have

p0(x) p1(x) p2(x) p3(x) p4(x) p5(x)

−2 1 2 1.5 −1.99 −71.68

Therefore there is one root on (−2, 0) and another root in (0, 2). Because p(−2) =
92, p(0) = −2, p(2) = 32, we can apply the method of bisections on both of the intervals
[0, 2] and [−2, 0]:

interval [a, b] midpoint of [a, b] function at midpoint

[−2, 0] −1 p(−1) = 2.
[−1, 0] −.5 p(−.5) ≈ −1.98.

[−1,−.5] −.75 p(−.75) ≈ −.88.
[−1,−.75] −.875 p(−.875) ≈ .25.

[−.875,−.75] −.8125

interval [a, b] midpoint of [a, b] function at midpoint

[0, 2] 1 p(1) = −4.
[1, 2] 1.5 p(1.5) ≈ −2.61.

[1.5, 2] 1.75 p(1.75) ≈ 7.04.
[1.5, 1.75] 1.625 p(1.625) ≈ .87.
[1.5, 1.625] 1.5625

1.5625 and −.8125 are thereby roots of our function to within our desired accuracy.
Graphing our function offers a nice verification that this process has indeed found both

of our roots:
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Root-Finding Algorithms Instructor: Padraic Bartlett

Homework 2: Sturm’s Theorem + More Root-Finding Problems

Day 2 Mathcamp 2013

Starred problems are harder.

1. Can you find a function f(x) and an interval [a, b] such that both the method of false
position and the bisection method converge to roots of f(x), but they converge to
different roots?

2. Use Sturm’s theorem to find the roots of x4 − 3x2 + x− 2.

3. Similarly, use Sturm’s theorem to find the roots of x6 + 2x3 + x2 + 1.

4. Calculate the Sturm chains for an arbitrary quadratic polynomial ax2 + bx+ c. From
looking at these chains, under what condition does your polynomial have two distinct
roots? Exactly one root? No roots? Why are your results “expected?”
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