Math 108a Professor: Padraic Bartlett

Lecture 11: Understanding Null Space
Week 4 UCSB 2018

In our last lecture, we started studying the motivation behind the concept of the null
space. In today’s talk, we return to this study.

1 Null Space: The Theorem

In our last class, we stated but did not have time to prove the following theorem:

Theorem 1. Let T : U — V be a linear map. Let N(T') denote the null space of T, and
u, W be any pair of vectors from U,V respectively such that T(d) = U.
Let T~Y(%) denote the set of all vectors in U that get mapped to ¥ by T': i.e.

Ay ={w e U | T(W) = v}.
Then T—1(%) is just N(T) translated by @! In other words,
T (%) = {& € U | there is some & € N(T) such that & = & + i}

In other words, understanding the collection of elements that all get mapped to 0 basically
lets us understand the collection of elements that get mapped to any fixed vector ¥.

We prove it here.

Proof. Let i, be any pair of vectors from U,V respectively such that T'(@) = v.
Take any vector w € T~ !(¥). By definition, we know that T (&) = v.
Look at the vector @ — 4. If we use the fact that T is linear, we can see that

T(@ — @) = T(W) — T(d@) = 7 — 7 = 0;
therefore, W — 4 is in the null space N(T") of T. Therefore, we can write
W= (0 — ) +

i.e. we can write @ as the sum of an element from N(7') and the vector 4.
Now, take any vector ¥ € N(T'). Again, because T is linear, we have

T(Z+ 1) =T(Z) + T(@) =0+ =7

therefore, 7 + @ is in T~ (7).

So we’ve shown both that any element in 7~!(%) can be written as the sum of @ with an
element of the null space of T, and furthermore that any such sum is an element of T~(%).
Therefore, these two sets are equal! L]



People sometimes call these T~!(%) sets the “fibers” of the linear map 7.

This theorem, hopefully, gives us some idea why we care about the null space: if we
understand 7-1(0), then we actually understand 7—1(@), for any vector @ That’s powerful,
and surprising.

But wait, there’s more! Not only does this tell us what these T—!(a@) things look like,
it actually tells us what the entirety of U looks like in terms of the null space! Specifically,
make the following two observations:

e Take any @ in U. There is some set T~1(%) such that @ € T—(¥). Specifically, just
look at T'(i): this is equal to some element @ in V. Then @ € T~1(a), by definition.

e No vector # is in two different sets 7~1(%), 7~ (). This is because if we apply T to
any element in 7~1(%), we get ' by definition; similarly, if we apply T to any vector
in T~!(w), we get 1 by definition. Therefore, if we had an element @ in both sets,
applying T to @ would have to yield ¥ and @ simultaneously, which is only possible if
U = 0.

So the sets T~1(&@) “partition” the set U: i.e. we can divide U up into various copies
of these T~!(%) sets, such that every element of U is in exactly one of these sets! In other
words, if we have a linear map T : U — V', we can “chop up” U into a bunch of translated
copies of the null space of T'.

The diagram below, sketched in our last class, may help you visualize this:

null(T) + X
null(T)
AT
null(T) +y
A
Y
an
z
null(T) + 7 range(T)

To make this diagram more concrete, consider the following example:

Example. Consider the linear map T : R? — R, defined by T'(x,y) = 2z — y. What is the
null space of this map? What do the sets T~ !(a) look like, for various values of a € R?

Answer. The null space of this map, by definition, is the set

wll(T) = {(z,) | T(x,y) = 0}.



We know that T'(z,y) = 0 if and only if 22 — y = 0; in other words, whenever 2z = y.
Therefore, the null space of T' can be more succinctly described as the set

null(T) = {(z,2z) | = € R}.

Furthermore, notice that for any a € R, we have T'(a,0) = a. Therefore, our theorem above
tells us that we can express T~ !(a) as the null space of T shifted by (a,0): i.e.

T '(a)={(a+z,22) | x € R}

Consequently, we can “partition” U into these T~!(a)-sets, all of which are lines with
slope 2 through the point (a,0); each of these sets is then mapped to their corresponding
value a by T. This can be visualized by the rather beautiful picture below:
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Before we started this pair of talks, we already understood why we cared about the
range of a linear map T — it let us talk about the “outputs” of T. In a sense, the aim
of these two talks has been to show that understanding the null space of a linear map T’
performs a similar task: it gives us a ton of information about the “inputs” of T.
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