
Math 108a Professor: Padraic Bartlett

Lecture 17: More Elementary Matrices

Week 8 UCSB 2013

In this lecture, we continue our discussion of the elementary matrices.

1 Elementary Matrices: Recap

In our last class, we defined the elementary matrices

Emultiply k by λ =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


, Eswitch k and l =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


,

Eadd λk to l =



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


.

From there, we proved the following theorem, that explains what happens when we multiply
other matrices by these objects:

Theorem 1. Take any n × n matrix A. Suppose that we are looking at the composition
E◦A, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then E◦A would be the matrix A with its k-th row multipled
by λ.

• if E = Eswitch entry k and entry l, then E ◦A would be the matrix A with its k-th and l-th
rows swapped, and

• if E = Eadd λ copies of entry k to entry l, then E ◦ A would be the matrix A with λ copies
of its k-th row added to its l-th row.
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2 Creating Arbitrary Matrices Using Elementary Matrices

In today’s talk, we explain part of why we care about elementary matrices: they give us a
way to create any n× n matrix!

Theorem. Let A be a n × n matrix. Then there is some string of elementary matrices
E1, . . . Ek such that

A = E1 ◦ . . . ◦ Ek

Before proving this theorem, we work an example, to give an idea for how the proof will
go:

Example. Take the matrix

A =

 1 1 2
3 5 8
13 21 34

 .
Write it as a product of elementary matrices.

Proof. Our plan of attack is the following: we will start with some matrix B, and apply
elementary matrices to it until it becomes the desired matrix A. Specifically:

1. We will start with B equal to the identity matrix

1 0 0
0 1 0
0 0 1

.

2. From here, we will use the theorem we proved in class, that tells us how our elementary
matrices alter other matrices! Specifically, starting with the first row and working our
way down, we will perform operations on the rows of B, that will row-by-row turn B
into A.

(a) Specifically: to make sure that our matrix has the same first row as A, we will
find a linear combination of the three rows of B that yields the first row of A.
We will then make our matrix have this first row by applying the elementary
matrices that correspond to that linear combination! In other words:
suppose that we have a linear combination

α ~br1 + β ~br2 + γ ~br3 = ~ar1 .

Then, if we calculate

add γ copies of
r3 to r1︷ ︸︸ ︷1 0 γ

0 1 0
0 0 1

 ·
add β copies of

r2 to r1︷ ︸︸ ︷1 β 0
0 1 0
0 0 1

 ·
multiply row r1

by α︷ ︸︸ ︷α 0 0
0 1 0
0 0 1

 ·B,
we will get the matrix where the first row of B now contains

2



• α copies of what used to be its first row, plus

• β copies of its second row, plus

• γ copies of its third row!

But we said that this combination is ~ar1 – so our matrix now has the same first
row as ~ar1 !

(Notice that we applied the “multiply” matrix first! This is because we want to
get α ~br1 + β ~br2 + γ ~br3 in the first row. If we were to add β copies of the second
row to the first row, and then multiply the first row by α, we’d accidentally get
βα ~br2 copies of the second row in the first row, which is not what we want.)

(b) We then repeat this process on B’s second row! Specifically, we will find a linear
combination

α ~br1 + β ~br2 + γ ~br3 = ~ar2 .

Then, if we calculate

add α copies of
r1 to r2︷ ︸︸ ︷1 0 0
α 1 0
0 0 1

 ·
add γ copies of

r3 to r2︷ ︸︸ ︷1 0 0
0 1 γ
0 0 1

 ·
multiply row r2

by β︷ ︸︸ ︷1 0 0
0 β 0
0 0 1

 ·B,
we again get the matrix where the second row of B now contains

• β copies of what used to be its first row, plus

• α copies of its first row, plus

• γ copies of its third row!

Again, this is ~ar2 . Yay!

(c) We do this one more time. Again, find a linear combination

α ~br1 + β ~br2 + γ ~br3 = ~ar3 .

Then, if we calculate

add α copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
α 0 1

 ·
add β copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 β 1

 ·
multiply row r3

by γ︷ ︸︸ ︷1 0 0
0 1 0
0 0 γ

 ·B,
we again get the matrix where the third row of B now contains

• γ copies of what used to be its third row, plus

• α copies of its first row, plus

• β copies of its second row!
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This is ~ar3 , again using similar logic to before. In other words, we’ve successfully
turned our matrix B into A! If we simply write down all of the nine elementary
matrices we used on the way, this gives us a way to write our matrix A as the
product of these nine elementary matrices with the identity matrix (which is
itself an elementary matrix!)

Ok. With this plan established, we just have to do it for

A =

 1 1 2
3 5 8
13 21 34

 .
We start with B equal to the identity matrix, and we try to make its first row equal to

A’s first row. Here, we want α, β, γ such that

α(1, 0, 0) + β(0, 1, 0) + γ(0, 0, 1) = (1, 1, 2);

in other words α = 1, β = 1, γ = 2.
So we have

add 2 copies of
r3 to r1︷ ︸︸ ︷1 0 2

0 1 0
0 0 1

 ·
add 1 copies of

r2 to r1︷ ︸︸ ︷1 1 0
0 1 0
0 0 1

 ·
multiply row r1

by 1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 0
0 0 1

 =

1 1 2
0 1 0
0 0 1

 .
This rightmost matrix is the new B.

Now, we do it again for the second row! I.e. we want α, β, γ such that

α(1, 1, 2) + β(0, 1, 0) + γ(0, 0, 1) = (3, 5, 8);

in other words α = 3, β = 2, γ = 2.
So we have

add 3 copies of
r1 to r2︷ ︸︸ ︷1 0 0

3 1 0
0 0 1

 ·
add 2 copies of

r3 to r2︷ ︸︸ ︷1 0 0
0 1 2
0 0 1

 ·
multiply row r2

by 2︷ ︸︸ ︷1 0 0
0 2 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 1 2

0 1 0
0 0 1

 =

1 1 2
3 5 8
0 0 1


Again, this rightmost matrix is the new B.

Do it again for the third row! I.e. find α, β, γ such that

α(1, 1, 2) + β(3, 5, 8) + γ(0, 0, 1) = (13, 21, 34);

in other words α = 1, β = 4, γ = 0.
This gives us

add 1 copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
1 0 1

 ·
add 4 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 4 1

 ·
multiply row r3

by 0︷ ︸︸ ︷1 0 0
0 1 0
0 0 0

 ·
the matrix B︷ ︸︸ ︷1 1 2

3 5 8
0 0 1

 =

 1 1 2
3 5 8
13 21 34

 .
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Win! We’ve therefore written A as the product of elementary matrices! Specifically,
we’ve written

add 1 copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
1 0 1

 ·
add 4 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 4 1

 ·
multiply row r3

by 0︷ ︸︸ ︷1 0 0
0 1 0
0 0 0

 ·
add 3 copies of

r1 to r2︷ ︸︸ ︷1 0 0
3 1 0
0 0 1

 ·
add 2 copies of

r3 to r2︷ ︸︸ ︷1 0 0
0 1 2
0 0 1

 ·
multiply row r2

by 2︷ ︸︸ ︷1 0 0
0 2 0
0 0 1



·

add 2 copies of
r3 to r1︷ ︸︸ ︷1 0 2

0 1 0
0 0 1

 ·
add 1 copies of

r2 to r1︷ ︸︸ ︷1 1 0
0 1 0
0 0 1

 ·
multiply row r1

by 1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
the identity matrix︷ ︸︸ ︷1 0 0

0 1 0
0 0 1

 .

This method doesn’t always blindly work, however: consider the following matrix!

A =

[
0 1
1 0

]
If we were to simply apply the method above, we’d start with

B =

[
1 0
0 1

]
.

From there, we would try to combine the two rows of B to get the first row of A:

α(1, 0) + β(0, 1) = (0, 1)→ α = 0, β = 1.

This would have us perform the following two steps:

add 1 copies of
r2 to r1︷ ︸︸ ︷[
1 1
0 1

]
·

multiply row r1
by 0︷ ︸︸ ︷[

0 0
0 1

]
·

the matrix B︷ ︸︸ ︷[
1 0
0 1

]
=

[
0 1
0 1

]
.

From here, however, we’re stuck! There’s no way to keep going.
The thing that happened here is that we turned B from a matrix with two linearly

independent rows into a matrix whose rows are linearly dependent! Because we did this,
there was no way to continue: all possible multiples of our rows were things of the form
(0, x), and we can’t make (1, 0) out of such vectors.

However, we can get around this by using the swap elementary matrices! In the example
above, the matrix A is itself a swap matrix: so it’s already an elementary matrix!

In general, by using these swaps we can avoid the situation above, where we made the
rows linearly dependent “too soon.” In practice, you can just do this by feel, but if you
want a rigorous approach, use the following theorem!
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Theorem. Let A be an arbitrary n × n matrix. Then we can write A as the product of
elementary matrices.

Proof. To do this process, first do the following:

1. Take the collection R of all of A’s rows.

2. If this set is linearly independent, you’re done!

3. Otherwise, there is some row that shows up in this collection that is a combination of
the other rows. Get rid of that row, and return to (2).

This creates a subset R′ of A’s rows that is linearly independent. Furthermore, it creates
a subset from which we can create any of A’s rows, even the ones we got rid of! This is
because we only got rid of rows that were linearly dependent on the earlier ones; i.e. we
only got rid of rows that we can make with the rows we kept!

So: all we need to do now is make B into a matrix that has all of the rows in this subset
R′! If we can do this, then we can just do the following:

• Multiply all of the other rows in B by zero.

• Now, using each all-zero row as an empty slot, create each of the rows from A that
we don’t have by combining the rows from R′. We can do this because all of the
remaining rows in A were linear combinations of the R′ rows!

• Finally, rearrange the rows using swaps so that our matrix is A (and not just a matrix
with the same rows, but in some different order.)

This is our plan! We execute the plan as below:

1. We start with B equal to the n × n identity matrix. Note that B’s rows span all of
Rn

2. If all of the rows in R′ currently occur as rows of B, stop!

3. Otherwise, there is a row ~ar in R′ that is not currently a row in B.

4. If the rows of B span R, then specifically there is a combination of the rows of B that
yields ~ar.

5. Furthermore, this vector is not just a combination of rows in R′, because R′ is a linearly
independent set. Therefore, in any linear combination of B’s rows that creates ~ar,
there is some row of B that is not one of the R′ rows that’s used in creating ~ar.

6. So: take the linear combination

a1 ~br1 + . . . an ~brn = ~ar,

and let ~brk denote the row that occurs above that’s not one of the R′ rows and that
has ak 6= 0.
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7. Take B, and multiply it by

all of the values ai, with i 6=k︷ ︸︸ ︷
add a1 copies of

r1 to rk︷ ︸︸ ︷
...

. . . a1 . . .
...

 ·
add a2 copies of

r2 to rk︷ ︸︸ ︷
...

. . . a2 . . .
...

 · . . . ·
add an copies of

r2 to rk︷ ︸︸ ︷
...

. . . an . . .
...

 ·
multiply row rk

by ak︷ ︸︸ ︷
...

. . . ak . . .
...

 ·B
This takes the k-th row of B and fills it with the linear combination that creates ~ar!
So this means that the row ~ar is now in B.

8. Also, notice that the rows of B all still span Rn! This is because

a1 ~br1 + . . . an ~brn = ~ar

⇒ ~brk =
1

ak

 a1 ~br1 + . . . an ~brn︸ ︷︷ ︸
terms that aren’t ak ~brk

+~ar

 .

Therefore, we have that the old k-th row ~brk is in the span of the new B’s rows! As
well, because none of the other rows changed, those rows are all still in the span as
well. Therefore, because the new B’s rows contain the old B’s rows in their span,
they must span Rn!

9. Go to (2), and repeat this process!

The result of this process is a matrix B that contains all of the rows in R′, which is what
we wanted (because we can make A out of this!) So we’re done.

To illustrate this argument, we run another example:

Example. Consider the matrix

A =

0 1 2
4 −1 0
2 0 1


Write A as a product of elementary matrices.

Proof. We start, as directed in the proof, by finding a subset of A’s rows that is linearly in-
dependent. We can tell at the start that the collection of all rows is not linearly independent,
because

1(0, 1, 2) + 1(4,−1, 0)− 2(2, 0, 1) = (0, 0, 0).

However, we also have that the pair

(0, 1, 2), (2, 0, 1)
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is linearly independent, because

α(0, 1, 2) + β(2, 0, 1) = (0, 0, 0)⇒ α, β = 0,

and that these two vectors contain the third in their span.
So the set R′ from our discussion above is just these two vectors!
Set B equal to the 3 × 3 identity matrix. We start by picking a vector from R′ – let’s

choose ~ar = (0, 1, 2).
We want to multiply B by elementary matrices so that it has (0, 1, 2) as one of its rows.

To do this, we first write (0, 1, 2) as a combination of B’s rows:

0(1, 0, 0) + 1(0, 1, 0) + 2(0, 0, 1) = (0, 1, 2).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in R′.
For example, the coefficient of the second row above is 1, and the second row (0, 1, 0) is not
in R′: so we can pick the second row.

We now turn the second row into this ~ar = (0, 1, 2), by using the linear combination we
have for (0, 1, 2) above:

add 2 copies of
r3 to r2︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 ·
add 0 copies of

r1 to r2︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r2

by 1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 0
0 0 1

 =

1 0 0
0 1 2
0 0 1

 .
Success! We repeat this. We choose another row from R′, specifically ~ar = (2, 0, 1). We

write (2, 0, 1) as a combination of B’s rows:

2(1, 0, 0) + 0(0, 1, 2) + 1(0, 0, 1) = (2, 0, 1).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in
R′; for example, the first row works here.

We now turn the first row into this ~ar = (2, 0, 1), by using the linear combination we
have for (2, 0, 1) above:

add 1 copies of
r3 to r1︷ ︸︸ ︷1 0 1

0 1 0
0 0 1

 ·
add 0 copies of

r2 to r1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r1

by 2︷ ︸︸ ︷2 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 1

 .
We are now out of rows of R′! This brings us to the second stage of our proof: multiply

all of the remaining rows that aren’t R′ rows by 0.

multiply row r3
by 0︷ ︸︸ ︷1 0 0

0 0 1
0 1 0

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 0

 .
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Now we are at the last stage of our proof: combine the R′ rows to create whatever rows in
A are left, in these “blank” all-zero rows!

Specifically, we take the one row of A that’s left: (4,−1, 0). As we noted before, we can
write

(4,−1, 0) = 2(2, 0, 1)− 1(0, 1, 2).

Therefore, we have

add 2 copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
2 0 1

 ·
add −1 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 −1 1

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 0

 =

2 0 1
0 1 2
4 −1 0

 .
So we have a matrix with the same rows as A! Finally, we just shuffle the rows of B to get
A itself:

switch rows
r3 and r2︷ ︸︸ ︷1 0 0
0 0 1
0 1 0

 ·
switch rows
r2 and r1︷ ︸︸ ︷0 1 0
1 0 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷2 0 1
0 1 2
4 −1 0

 =

0 1 2
4 −1 0
2 0 1

 = A.

Win!
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