Math 108a	Professor: Padraic Bartlett	
Week 2	Lecture 6: Basis and Dimension	

In our last talk, we introduced the concepts of span and linear independence. We continue introducing new vector space concepts with today's pair of definitions: the concepts of basis and dimension.

1 Basis

We closed our talk Monday by proving the following theorem:
Theorem 1. Any finite set of vectors S has a linearly independent subset T, such that $\operatorname{span}(S)=\operatorname{span}(T)$.

The motivation for this theorem was the desire to take a set S and "remove" all of the elements that aren't necessary when we construct $\operatorname{span}(S)$. I.e. if a set S was linearly dependent, we showed that this meant that one of its vectors \vec{v} can be written as a linear combination of other elements of S. Therefore, in a sense, this vector \vec{v} is "superfluous" with respect to the span of S : we could remove it without changing anything!

This idea - of a set S that doesn't have any redundancy in it, like the ones created by our theorem 1 - is a valuable one in linear algebra. Accordingly, we have a term for these kinds of sets:

Definition. Take a vector space V. A basis B for V is a set of vectors B such that B is linearly independent, and $\operatorname{span}(B)=V$.

Bases are really useful things. You're already aware of a few bases:

- The set of vectors $\overrightarrow{e_{1}}=(1,0,0 \ldots 0), e_{2}=(0,1,0 \ldots 0), \ldots e_{n}=(0,0 \ldots 0,1)$ is a basis for \mathbb{R}^{n}.
- The set of polynomials $1, x, x^{2}, x^{3}, \ldots$ is a basis for $\mathbb{R}[x]$.

As a quick example, we study another interesting basis:
Question. Consider the set of vectors

$$
S=\{(1,1,1,1),(1,1,-1,-1),(1,-1,1,-1),(1,-1,-1,1)\} .
$$

Show that this is a basis for \mathbb{R}^{n}.
Proof. Take any $(w, x, y, z) \in \mathbb{R}^{4}$. We want to show that there are always a, b, c, d such that

$$
a(1,1,1,1)+b(1,1,-1,-1)+c(1,-1,1,-1)+d(1,-1,-1,1)=(w, x, y, z),
$$

and furthermore that if $(w, x, y, z)=(0,0,0,0)$ that this forces a, b, c, d to all be 0 . This proves that the span of S is all of \mathbb{R}^{4} and that S is linearly independent, respectively.

We turn the equation above into four equalities, one for each coördinate in \mathbb{R}^{4} :

$$
\begin{aligned}
& a+b+c+d=w \\
& a+b-c-d=x \\
& a-b+c-d=y \\
& a-b-c+d=z
\end{aligned}
$$

Summing all four equations gives us

$$
4 a=w+x+y+z .
$$

Adding the first two equations and subtracing the second two equations gives us

$$
4 b=w+x-y-z .
$$

Adding the first and third, and subtracting the second and fourth gives us

$$
4 c=w+y-x-z .
$$

Finally, adding the first and fourth and subtracting the second and third yields

$$
4 d=w+z-x-y .
$$

So: if $(w, x, y, z)=(0,0,0,0)$, this means that $a=b=c=d=0$. Therefore, our set is linearly independent.

Furthermore, for any (w, x, y, z), we have that

$$
\begin{aligned}
& \frac{w+x+y+z}{4}(1,1,1,1)+\frac{w+x-y-z}{4}(1,1,-1,-1) \\
+ & \frac{w+y-x-z}{4}(1,-1,1,-1)+\frac{w+z-x-y}{4}(1,-1,-1,1)=(w, x, y, z) .
\end{aligned}
$$

Therefore, we can combine these four elements to get any vector in \mathbb{R}^{4}; i.e. our set spans \mathbb{R}^{4}.

This example is interesting because its entries satisfy the following two properties:

- Every vector is made up out of entries from ± 1.
- The dot product of any two vectors is 0 .

Finding a basis of vectors that can do this is actually an open question. We know that they exist for any \mathbb{R}^{n} where n is a multiple of 4 up to 664 , but no one's found such a basis for \mathbb{R}^{668}. Find one for extra credit?

Another natural idea to wonder about is the following: given a vector space V, what is the smallest number of elements we need to make a basis? Can we have two bases with different lengths?

This is answered in the following theorem:

Theorem. Suppose that V is a vector space with two bases $B_{1}=\left\{\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}\right\}, B_{2}=$ $\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{m}}\right\}$ both containing finitely many elements.. Then these sets have the same size: i.e. $\left|B_{1}\right|=\left|B_{2}\right|$.

Proof. Take any two sets $B_{1}=\left\{\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}\right\}, B_{2}=\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{m}}\right\}$ such that

- B_{1}, B_{2} span V.
- B_{1}, B_{2} are linearly independent.

We will show that these two sets must be the same size.
To do this, pick any vector $\overrightarrow{v_{1}} \in B_{1}$. Use the fact that B_{2} spans V to write $\overrightarrow{v_{1}}$ as a linear combination of elements in B_{2}. I.e. find constants a_{i} such that

$$
\overrightarrow{v_{1}}=a_{1} \overrightarrow{w_{1}}+\ldots a_{n} \overrightarrow{w_{n}}
$$

Because $\overrightarrow{v_{1}}$ is nonzero, there is some a_{j} such that $a_{j} \neq 0$. Consequently, we can take this equality and solve for \vec{w}_{j} :

$$
\overrightarrow{w_{j}}=\frac{-1}{a_{j}}\left(a_{1} \overrightarrow{w_{1}}+\ldots+a_{j-1} w_{j-1}+a_{j+1} w_{j+1}+\ldots+a_{n} \overrightarrow{w_{n}}+\overrightarrow{v_{1}}\right) .
$$

Therefore, we have that $\overrightarrow{w_{j}}$ is in the span of the set $B_{2}^{\prime}=\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{j-1}}, w_{j+1}, \ldots \overrightarrow{w_{n}}, \overrightarrow{v_{1}}\right\}$. We also have all of the other $\overrightarrow{w_{i}}$'s in this set: therefore, we have all of B_{2} in this span! In other words, the span of this B_{2}^{\prime} is all of V, just like the span of B_{2} ! Essentially, we've shown that we can "replace" one of the \vec{w}_{j} vectors with one of the elements from B_{1}.

Moreover, we know that this set is still linearly independent. To see this, notice the following things:

- There is only one way to write $\overrightarrow{v_{1}}$ as a sum of elements in B_{2}. (If there were two different ways, then their difference would be a nontrivial combination of elements in B_{2} that sums to $0 . B_{2}$ is linearly independent, so that's impossible.
- If we have any linear combination of elements in B_{2}^{\prime} that sums to 0 , if it does not use $\overrightarrow{v_{1}}$, then it must be trivial (i.e. all scalars are 0) because B_{2} is linearly independent.
- So if we have a linear combination of elements in B_{2}^{\prime} that sums to 0 , it must use $\overrightarrow{v_{1}}$ nontrivially. Using this, we can simply solve for $\overrightarrow{v_{1}}$ in terms of the other vectors. This combination does not use \vec{w}_{j}, because that vector is not in B_{2}^{\prime} : which means we have found a second way to write $\overrightarrow{v_{1}}$ as a sum of elements in B_{2}. But we said that was impossible!

We repeat this trick with $\overrightarrow{v_{2}}$: i.e. we find a combination of vectors in B_{2}^{\prime} that yields $\overrightarrow{v_{2}}$. This combination cannot consist only of $\overrightarrow{v_{1}}$, because we know that B_{1} is linearly independent, and therefore that there is no nontrivial way to combine some of the elements of B_{1} to get another element of B_{1}. Therefore, there must be some $a_{i} \vec{w}_{i}$ used in this linear combination with a_{i} nonzero; again, solve for $\overrightarrow{w_{i}}$ and use this observation to "replace" $\overrightarrow{w_{i}}$ with $\overrightarrow{v_{2}}$. Call this new set $B_{2}^{(2)}$. Again, this set is linearly independent, for the same reasons as before.

Keep doing this. As stated before, we can always find a way to express each $\overrightarrow{v_{k+1}}$ as a linear combination of elements in $B_{2}^{(k)}$ because these sets span our whole vector space; moreover, these combinations always involve an element $a_{i} \vec{w}_{i}$ because the set B_{1} is linearly independent.

Therefore, the only way this process stops is when we run out of elements in B_{1}. When this happens, look at the set $B_{2}^{(n)}$ that we get. We've placed all of the elements of B_{1} in this set. If there was an element $\overrightarrow{w_{k}}$ of B_{2} left in this set, then our set would be linearly dependent: this is because B_{1} spans all of V, and therefore we can express $\overrightarrow{w_{k}}$ as some combination of elements in B_{2}.

But this is impossible: we showed that these sets $S^{(k)}$ are always linearly independent! Therefore, there are no elements of B_{2} left in this set. Because we got rid of elements one at a time and stopped after n steps, this means that there are n elements in B_{2}. In other words, B_{2} and B_{1} have the same number of elements.

Using this, we can finally define the concept of dimension:
Definition. Suppose that V is a vector space with a basis B containing finitely many elements. Then we say that the dimension of V is the number of elements in B.

For example, the dimension of \mathbb{R}^{n} is n, because this vector space is spanned by the vectors $\overrightarrow{e_{1}}=(1,0,0 \ldots 0), e_{2}=(0,1,0 \ldots 0), \ldots e_{n}=(0,0 \ldots 0,1)$.

