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Lecture 6: Basis and Dimension

Week 2 UCSB 2013

In our last talk, we introduced the concepts of span and linear independence. We
continue introducing new vector space concepts with today’s pair of definitions: the concepts
of basis and dimension.

1 Basis

We closed our talk Monday by proving the following theorem:

Theorem 1. Any finite set of vectors S has a linearly independent subset T , such that
span(S) = span(T ).

The motivation for this theorem was the desire to take a set S and “remove” all of
the elements that aren’t necessary when we construct span(S). I.e. if a set S was linearly
dependent, we showed that this meant that one of its vectors ~v can be written as a linear
combination of other elements of S. Therefore, in a sense, this vector ~v is “superfluous”
with respect to the span of S: we could remove it without changing anything!

This idea — of a set S that doesn’t have any redundancy in it, like the ones created by
our theorem 1 — is a valuable one in linear algebra. Accordingly, we have a term for these
kinds of sets:

Definition. Take a vector space V . A basis B for V is a set of vectors B such that B is
linearly independent, and span(B) = V .

Bases are really useful things. You’re already aware of a few bases:

• The set of vectors ~e1 = (1, 0, 0 . . . 0), e2 = (0, 1, 0 . . . 0), . . . en = (0, 0 . . . 0, 1) is a basis
for Rn.

• The set of polynomials 1, x, x2, x3, . . . is a basis for R[x].

As a quick example, we study another interesting basis:

Question. Consider the set of vectors

S = {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}.

Show that this is a basis for Rn.

Proof. Take any (w, x, y, z) ∈ R4. We want to show that there are always a, b, c, d such that

a(1, 1, 1, 1) + b(1, 1,−1,−1) + c(1,−1, 1,−1) + d(1,−1,−1, 1) = (w, x, y, z),

and furthermore that if (w, x, y, z) = (0, 0, 0, 0) that this forces a, b, c, d to all be 0. This
proves that the span of S is all of R4 and that S is linearly independent, respectively.

1



We turn the equation above into four equalities, one for each coördinate in R4:

a + b + c + d = w

a + b− c− d = x

a− b + c− d = y

a− b− c + d = z

Summing all four equations gives us

4a = w + x + y + z.

Adding the first two equations and subtracing the second two equations gives us

4b = w + x− y − z.

Adding the first and third, and subtracting the second and fourth gives us

4c = w + y − x− z.

Finally, adding the first and fourth and subtracting the second and third yields

4d = w + z − x− y.

So: if (w, x, y, z) = (0, 0, 0, 0), this means that a = b = c = d = 0. Therefore, our set is
linearly independent.

Furthermore, for any (w, x, y, z), we have that

w + x + y + z

4
(1, 1, 1, 1) +

w + x− y − z

4
(1, 1,−1,−1)

+
w + y − x− z

4
(1,−1, 1,−1) +

w + z − x− y

4
(1,−1,−1, 1) = (w, x, y, z).

Therefore, we can combine these four elements to get any vector in R4; i.e. our set spans
R4.

This example is interesting because its entries satisfy the following two properties:

• Every vector is made up out of entries from ±1.

• The dot product of any two vectors is 0.

Finding a basis of vectors that can do this is actually an open question. We know that they
exist for any Rn where n is a multiple of 4 up to 664, but no one’s found such a basis for
R668. Find one for extra credit?

Another natural idea to wonder about is the following: given a vector space V , what
is the smallest number of elements we need to make a basis? Can we have two bases with
different lengths?

This is answered in the following theorem:
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Theorem. Suppose that V is a vector space with two bases B1 = {~v1, . . . ~vn}, B2 =
{ ~w1, . . . ~wm} both containing finitely many elements.. Then these sets have the same size:
i.e. |B1| = |B2|.

Proof. Take any two sets B1 = {~v1, . . . ~vn}, B2 = { ~w1, . . . ~wm} such that

• B1, B2 span V .

• B1, B2 are linearly independent.

We will show that these two sets must be the same size.
To do this, pick any vector ~v1 ∈ B1. Use the fact that B2 spans V to write ~v1 as a linear

combination of elements in B2. I.e. find constants ai such that

~v1 = a1 ~w1 + . . . an ~wn

Because ~v1 is nonzero, there is some aj such that aj 6= 0. Consequently, we can take this
equality and solve for ~wj :

~wj =
−1

aj
(a1 ~w1 + . . . + aj−1 ~wj−1 + aj+1 ~wj+1 + . . . + an ~wn + ~v1) .

Therefore, we have that ~wj is in the span of the set B′2 = { ~w1, . . . ~wj−1, ~wj+1, . . . ~wn, ~v1}.
We also have all of the other ~wi’s in this set: therefore, we have all of B2 in this span! In
other words, the span of this B′2 is all of V , just like the span of B2! Essentially, we’ve
shown that we can “replace” one of the ~wj vectors with one of the elements from B1.

Moreover, we know that this set is still linearly independent. To see this, notice the
following things:

• There is only one way to write ~v1 as a sum of elements in B2. (If there were two
different ways, then their difference would be a nontrivial combination of elements in
B2 that sums to 0. B2 is linearly independent, so that’s impossible.

• If we have any linear combination of elements in B′2 that sums to 0, if it does not use
~v1, then it must be trivial (i.e. all scalars are 0) because B2 is linearly independent.

• So if we have a linear combination of elements in B′2 that sums to 0, it must use ~v1
nontrivially. Using this, we can simply solve for ~v1 in terms of the other vectors. This
combination does not use ~wj , because that vector is not in B′2: which means we have
found a second way to write ~v1 as a sum of elements in B2. But we said that was
impossible!

We repeat this trick with ~v2: i.e. we find a combination of vectors in B′2 that yields ~v2.
This combination cannot consist only of ~v1, because we know that B1 is linearly independent,
and therefore that there is no nontrivial way to combine some of the elements of B1 to get
another element of B1. Therefore, there must be some ai ~wi used in this linear combination
with ai nonzero; again, solve for ~wi and use this observation to “replace” ~wi with ~v2. Call

this new set B
(2)
2 . Again, this set is linearly independent, for the same reasons as before.
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Keep doing this. As stated before, we can always find a way to express each ~vk+1 as

a linear combination of elements in B
(k)
2 because these sets span our whole vector space;

moreover, these combinations always involve an element ai ~wi because the set B1 is linearly
independent.

Therefore, the only way this process stops is when we run out of elements in B1. When

this happens, look at the set B
(n)
2 that we get. We’ve placed all of the elements of B1 in

this set. If there was an element ~wk of B2 left in this set, then our set would be linearly
dependent: this is because B1 spans all of V , and therefore we can express ~wk as some
combination of elements in B2.

But this is impossible: we showed that these sets S(k) are always linearly independent!
Therefore, there are no elements of B2 left in this set. Because we got rid of elements one
at a time and stopped after n steps, this means that there are n elements in B2. In other
words, B2 and B1 have the same number of elements.

Using this, we can finally define the concept of dimension:

Definition. Suppose that V is a vector space with a basis B containing finitely many
elements. Then we say that the dimension of V is the number of elements in B.

For example, the dimension of Rn is n, because this vector space is spanned by the
vectors ~e1 = (1, 0, 0 . . . 0), e2 = (0, 1, 0 . . . 0), . . . en = (0, 0 . . . 0, 1).
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