Math 108a Professor: Padraic Bartlett

Lecture 7: Dot Products
Week 3 UCSB 2013

This talk is designed to introduce the dot product. We do this below:

1 Dot Products

Given a pair of vectors in R™, the dot product operation is the following map:

Definition. Take two vectors (z1,...2,), (y1,-..yn) € R™. Their dot product is simply
the sum

T1Y1 + T2Y2 + .. . TnlYn.

Many of you have seen an alternate, geometric definition of the dot product:

Definition. Take two vectors (z1,...2p), (Y1,...yn) € R™. Their dot product is the
product

[1Z]] - 1|7]] cos(0),
where 6 is the angle between ¥ and .

(Recall, from your previous classes, that given a vector &, the quantity ||Z|| simply
denotes the length of this vector. For example, if Z is a vector in R? of the form (a,b,c),
this length is simply the quantity v/a? + b2 + ¢2, which you can see by using the Pythagorean
theorem.)

In this talk, we show that these two definitions are equivalent.

2 Equivalence of the Geometric and Algebraic Dot Products

Theorem. Let ¥ = (x1,22,73),5 = (y1,¥2,y3) be a pair of vectors in R3. Then the
algebraic interpretation of & - ¢, given by

T1y1 + T2Y2 + ... TnYn,
is equal to the geometric interpretation
[IZ]] - [177]] cos(6),
where 6 is the angle between Z and /.

Proof. Essentially, this is a consequence of the Law of Cosines, a trigonometry rule you may
have ran into in high school. We restate it here:

Proposition. (Law of Cosines) Given the triangle

we have the equality

& = a® 4+ b* — 2abcos(y).

To see how this applies to our situation, consider the following picture:

<l

%y

Y /4 y
X
If we apply the law of cosines to this image, we get
12 =117 = 121> + (111> — 21|2]/[[7]] cos(~).

However, we know that the length of ¥ — ¥ is just the length of the vector (x1 — y1,z2 —
Y2, w3 — y3), which is

V(s —y1)? + (x2 — y2)% + (w3 — y3)2.
Therefore, if we square this, we get
12— §11? = (21 — 2x191 +y1) + (23 — 2w22 +y3) + (23 — 233 + y3)

= (a1 + 25 +25) + (u1 + 95 +v3) — 2(21y2 + w292 + w3Y3)

= 17> +171* - 27 - 7.
If we plug this into our law of cosines formula, we get

2|12+ |77 — 22 - § = [|2]]* + ||71* — 2[12]/][7]] cos(~)
= &y = ||Z][||7]] cos(7).

So we’ve proven our claim!]

One useful consequence of this geometric understanding of the dot product is the concept
of orthogonality:

Definition. Two vectors ¥, w are called orthogonal if their dot product is 0.

Geometrically, we can interpret this as saying that two vectors are orthogonal whenever the
angle 6 between them is such that cos(f) = 0; i.e. that these two vectors meet at either a
90° or 270°-degree angle!

3 Signals

Instead of focusing on further dot-product calculation, we close this lecture by studying a
related object: signals, and correlation.

Definition. A signal A of length n, for the purposes of this lecture, is some finite sequence
(a1,...an) of +1 and —1’s. For example, (+1,—1,—1,—1) is a signal of length 4.

Definition. Given a signal A of length n, for any j between 0 and n — 1, we define the
autocorrelation coefficients of this sequence to be the values

c(A,j) = |<11a1+j + aza245 + ... + an_jan| .

Observation. Notice that for any signal A = (a1,...a,) , ¢(A4,0) = n. This is because
¢(A,0) is just

c(A,j) = |arar + agas + ... + anay|,

i.e. the absolute value of the dot product of A with itself. Because every entry of A is +1,
the dot product of A with itself is just a sum of n copies of (£1)2: i.e. n copies of 1, which
is just n.

Definition. A signal A is called a Barker code if for any j > 1, we have ¢(4, j) < 1.

The idea here is basically the following: suppose you have two devices trying to commu-
nicate wirelessly on some radio wavelength. You could have each device simply send signals
of 1’s and 0’s to the other on that wavelength: but what if there’s interference? Like, if
there were occasionally bits of static that would get in the way, you’d lose vital bits of
information. Similarly, if some other devices started transmitting on your wavelength, you
might not be able to tell this “cross-traffic” apart from the device you’re actually trying to
communicate with.

A solution is to use these codes! Specifically: let A be a signal, as defined above. Every
time you want to send a 1, instead send one copy of our signal A. Every time you want to
send a 0, send —1 times a copy of A. On the receiving end, we simply take all incoming
signals (s1,...sy), and correlate these signals with A: i.e. look at |sja1 + ... span|.

If this correlation is large and close to +n, then it’s likely a copy of our original signal,
and we should interpret this as a +1 sent from the device we’re communicating with! If it’s
small, however, it’s likely some cross-traffic or just static in the air, and we can ignore it.

These Barker codes are incredibly useful; we first developed them somewhere after
WWII as a way to solve exactly this problem for radar systems, and we actively use codes
of length 11 in the 802.11b wireless standard!

We first give an example of a Barker code:

Examples. The code

(+17 +17 +17 _17 _17 +1> _1)

is a Barker code. To see this, we simply calculate its autocorrelation coefficients:

41 41 +1 -1 -1 41 -1
41 41 +1 -1 -1 41 -1
CA1) = | +1 +1 -1 +1 -1 -1 | =0
41 41 +1 -1 -1 41 -1
41 41 41 -1 -1 41 -1
C(4,2) = 1 -1 —1 —1 +1 | =1
+1 41 +1 -1 -1 41 -1
+1 41 +1 -1 -1 41 -1
C(A,3) = -1 —1 +1 +1 | =0
41 41 +1 -1 -1 41 -1
+1 41 +1 -1 -1 +1 -1
C(A,4) = -1 1 -1 | =1
41 41 41 -1 -1 41 -1
41 41 +1 -1 —1 +1 -1
C(A,5) = 1 -1 | =0
41 41 +1 -1 -1 41 -1
+1 41 41 -1 -1 41 -1
C(A,6) = 1 —1

Barker codes have been shown to exist of lengths 2,3,4,5,7,11,13. Despite their utility, it
is currently unknown whether Barker codes exist of other lengths.

	Dot Products
	Equivalence of the Geometric and Algebraic Dot Products
	Signals

