Math/CS 103

Professor: Padraic Bartlett

Homework 6: Linear Maps

Due 10/14/13, at the start of class

UCSB 2013

This set's a little different. First, recall from class that we've introduced two examples of finite-dimensional vector spaces:

- \mathbb{R}^n , the collection of all *n*-tuples of real numbers. For example, \mathbb{R}^3 was the collection of all triples (x, y, z) where x, y, z were all in \mathbb{R} .
- $\mathcal{P}_n(\mathbb{R})$, the collection of all polynomials with real-valued coefficients of degree $\leq n$. For example, $\mathcal{P}_2(\mathbb{R})$ is the collection of all polynomials of the form $a + bx + cx^2$, where a, b, c were in \mathbb{R} .

We called these both **vector spaces** because they were both objects that we had welldefined notions of **vector addition** (i.e. within any one of these spaces, we could add any two elements from that space together) and **scalar multiplication** (i.e. we could take any of these objects and multiply it by a real number, and still have an object in our space.)

In this problem set, you're going to work with the following definition:

Definition. A linear map from a vector space V to another vector space W, where V and W may be different, is a function $T: V \to W$ with the following properties:

- Plays well with addition: for any $\vec{v}, \vec{w} \in V$, $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$.
- Plays well with multiplication: for any $\vec{v} \in V$ and any $a \in \mathbb{R}$, $T(a\vec{v}) = aT(\vec{v})$.

For example, the map $id: \mathbb{R}^2 \to \mathbb{R}^2$, defined by

$$id(x,y) = (x,y)$$

is a linear map, because

- it plays well with addition: for any two vectors (a, b), (c, d), we have id((a, b) + (c, d)) = id(a + c, b + d) = (a + c, b + d). This is the same thing as id(a, b) + id(c, d) = (a, b) + (c, d) = (a + c, b + d).
- it plays well with multiplication: for any vector (a, b) and any real number λ , we have $id(\lambda(a, b)) = id(\lambda a, \lambda b) = (\lambda a, \lambda b)$. This is the same thing as $\lambda id(a, b) = \lambda(a, b) = (\lambda a, \lambda b)$.

Conversely, the map $T : \mathcal{P}_1(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$, defined by

$$T(a+bx) = a^2$$

is not a linear map, because

• it does not play well with addition. Specifically, look at the two polynomials 2, 2 + x in $\mathcal{P}_1(\mathbb{R})$. $T(2 + (2 + x)) = T(4 + x) = 4^2 = 16$, while $T(2) + T(2 + x) = 2^2 + 2^2 = 8$.

Choose **seven** of the **twelve** maps below, and decide whether or not they are **linear maps**. If you choose something that is a linear map, show that it obeys the two properties described in the definition of a linear map. If you choose something that is not a linear map, construct a set of inputs that makes it fail one of the two properties described in the definition of a linear map. Have fun!

1. $T: \mathbb{R} \to \mathbb{R}$, defined such that

$$T(x) = |x|.$$

2. $T: \mathbb{R}^4 \to \mathbb{R}^2$, defined such that

$$T(w, x, y, z) = (0, 0).$$

3. $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}$, defined such that

$$T(p(x)) = p(1).$$

4. $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_5(\mathbb{R})$, defined such that

$$T(p(x)) = x^2 \cdot p(x).$$

5. $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_5(\mathbb{R})$, defined such that

$$T(p(x)) = (1+x) \cdot p(x).$$

6. $T: \mathbb{R}^n \to \mathbb{R}^{n-1}$, defined such that

$$T(x_1,\ldots,x_n)=(x_2,x_3,\ldots,x_n).$$

7. $T: \mathbb{R}^3 \to \mathcal{P}_3(\mathbb{R})$, defined such that

$$\Gamma(a,b,c) = (x-a) \cdot (x-b) \cdot (x-c).$$

8. $T: T: \mathcal{P}_4(\mathbb{R}) \to T: \mathcal{P}_3(\mathbb{R})$, defined such that

$$T(p(x)) = \frac{d}{dx}p(x).$$

9. $T: \mathbb{R}^4 \to \mathbb{R}^2$, defined such that

$$T(w, x, y, z) = \left(2w + 3x, 4y + \left(5^{5^5}\right)z\right).$$

10. $T: \mathbb{R}^4 \to \mathbb{R}^2$, defined such that

$$T(w, x, y, z) = (wx, yz).$$

11. $T: \mathbb{R}^6 \to \mathbb{R}^6$, defined such that

$$T(u, v, w, x, y, z) = (z, y, x, w, v, u).$$

12. $T: \mathbb{R}^2 \to \mathbb{R}$, defined such that

$$T(x,y) = (x^3 + y^3)^{1/3}$$

Bonus! Create a map $T : \mathbb{R} \to \mathbb{R}$ that satisfies the "plays well with addition" property, but fails the "plays well with multiplication" property. Or show it's impossible.