Math 108a
Homework 3: Orthogonality

Due Monday, January 27, by 1:30pm
UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. Find an orthonormal basis for the space

$$
V=\{(w, x, y, z) \mid w+x+y+z=0\} .
$$

2. (a) Find the three distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ for the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 2\end{array}\right]$, and their associated eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$.
(b) Set $\overrightarrow{r_{1}}=\overrightarrow{v_{1}} /\left\|\overrightarrow{v_{1}}\right\|, \overrightarrow{r_{2}}=\overrightarrow{v_{2}} /\left\|\overrightarrow{v_{2}}\right\|, \overrightarrow{r_{3}}=\overrightarrow{v_{3}} /\left\|\overrightarrow{v_{3}}\right\|$. Prove that the set $R=\left\{\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \overrightarrow{r_{3}}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
(c) Write A as a matrix under the basis R. What kind of matrix is A_{R} ?
3. (a) Can you find four nonzero vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that

- \vec{a} is orthogonal to \vec{b},
- \vec{c} is orthogonal to \vec{d},
- \vec{b} is orthogonal to \vec{c},
- \vec{d} is orthogonal to \vec{a},
but \vec{a} is not orthogonal to \vec{c} ? Either find such a set of four vectors and demonstrate they have these properties, or prove no such set can exist.
(b) Can you find five nonzero vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{e} \in \mathbb{R}^{2}$, such that
- \vec{a} is orthogonal to \vec{b},
- \vec{c} is orthogonal to \vec{d},
- \vec{b} is orthogonal to \vec{c},
- \vec{d} is orthogonal to \vec{e}, and
- \vec{e} is orthogonal to \vec{a} ?

4. In class, our definition of orthogonality came from our idea of what a dot product was! Surprisingly, however, there are many different notions of dot product. Consider the following definition: for $A=$ the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, and any two vectors $\vec{a}, \vec{b} \in \mathbb{R}^{2}$, define the inner product of \vec{x} and \vec{y} with respect to $A,\langle\vec{a}, \vec{b}\rangle_{A}$, as follows:

$$
\langle\vec{a}, \vec{b}\rangle_{A}=(A \cdot \vec{a}) \cdot \vec{b} .
$$

For example, the inner product of $(1,2),(3,4)$ is

$$
\langle(1,2),(3,4)\rangle_{A}=\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \cdot(3,4)=(4,5) \cdot(3,4)=32 .
$$

We can use this inner product to define a "new" notion of orthogonality: we say that two vectors $\vec{a}, \vec{b} \in \mathbb{R}^{2}$ are orthogonal with respect to the inner product given by A if $\langle\vec{a}, \vec{b}\rangle_{A}$ is 0 .
(a) Find six distinct nonzero vectors $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{6}}$ in \mathbb{R}^{2}, none of which are scalar multiples of each other, such that the inner products $\left\langle\overrightarrow{a_{1}}, \overrightarrow{a_{2}}\right\rangle_{A},\left\langle\overrightarrow{a_{3}}, \overrightarrow{a_{4}}\right\rangle_{A},\left\langle\overrightarrow{a_{5}}, \overrightarrow{a_{6}}\right\rangle_{A}$ are all zero.
(b) Under the normal notion of dot product and orthogonality, two vectors were orthogonal if the angle between them was a right angle. Is that true for the inner product with respect to A ? Why?
(c) Suppose I told you that two nonzero vectors \vec{a}, \vec{b} met at an angle greater than 120°. Is it possible that $\langle\vec{a}, \vec{b}\rangle_{A}=0$? Either prove that no such pair can exist, or create a pair that meet at such an angle and have dot product equal to 0 .
5. In Math 108A, we ran into the idea of polynomials as vector spaces. Specifically, consider the set $\mathcal{P}_{3}(\mathbb{R})$, the collection of all polynomials of degree 3 or less: i.e.

$$
\mathcal{P}_{3}(\mathbb{R})=\left\{a+b x+c x^{2}+d x^{3} \mid a, b, c, d \in \mathbb{R}\right\} .
$$

This is a vector space! Consider the following notion of "dot product" for these polynomials: for any pair of polynomials $p(x), q(x) \in \mathcal{P}_{3}(\mathbb{R})$, we define their inner product, $\langle p(x), q(x)\rangle$, as follows:

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) \cdot q(x) d x .
$$

For example, the inner product of $1+x$ and $x+x^{2}$ is the quantity

$$
\begin{aligned}
\left\langle 1+x, x+x^{2}\right\rangle=\int_{-1}^{1}(1+x)\left(x+x^{2}\right) d x & =\int_{-1}^{1} x+2 x^{2}+x^{3} d x \\
& =\left.\left(\frac{x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{x^{4}}{4}\right)\right|_{-1} ^{1}=\frac{4}{3}
\end{aligned}
$$

We can use this inner product to define a notion of orthogonality: we say that two polynomials $p(x), q(x)$ are orthogonal if and only if their inner product $\langle p(x), q(x)\rangle$ is 0 .
(a) Warmup: choose four nonzero polynomials $p_{1}(x), q_{1}(x), p_{2}(x), q_{2}(x)$, and calculate the dot products $\left\langle p_{1}(x), q_{1}(x)\right\rangle,\left\langle p_{2}(x), q_{2}(x)\right\rangle$.
(b) Find a basis for $\mathcal{P}_{3}(\mathbb{R})$ that is made of orthogonal polynomials. (Note: because $\mathcal{P}_{3}(\mathbb{R})$ is a four-dimensional space, as you have four degrees of freedom in the polynomial $a+b x+c x^{2}+d x^{3}$, you should get four polynomials in your basis.)

