Math 108a

Professor: Padraic Bartlett

Homework 3: Orthogonality

Due Monday, January 27, by 1:30pm

UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. Find an orthonormal basis for the space

$$V = \{ (w, x, y, z) \mid w + x + y + z = 0 \}.$$

2. (a) Find the three distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$ for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix}$, and their associated eigenvectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$.

(b) Set $\vec{r_1} = \vec{v_1}/||\vec{v_1}||, \vec{r_2} = \vec{v_2}/||\vec{v_2}||, \vec{r_3} = \vec{v_3}/||\vec{v_3}||$. Prove that the set $R = {\vec{r_1}, \vec{r_2}, \vec{r_3}}$

- is an orthonormal basis for \mathbb{R}^3 .
- (c) Write A as a matrix under the basis R. What kind of matrix is A_R ?
- 3. (a) Can you find four nonzero vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that
 - \vec{a} is orthogonal to \vec{b} , \vec{c} is orthogonal to \vec{d} ,
 - \vec{b} is orthogonal to \vec{c} , \vec{d} is orthogonal to \vec{a} ,

but \vec{a} is **not** orthogonal to \vec{c} ? Either find such a set of four vectors and demonstrate they have these properties, or prove no such set can exist.

- (b) Can you find five nonzero vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{e} \in \mathbb{R}^2$, such that
 - \vec{a} is orthogonal to \vec{b} , \vec{c} is orthogonal to \vec{d} ,
 - \vec{d} is orthogonal to \vec{e} , and
 - \$\vec{b}\$ is orthogonal to \$\vec{c}\$,
 \$\vec{e}\$ is orthogonal to \$\vec{a}\$?
- 4. In class, our definition of **orthogonality** came from our idea of what a **dot product** was! Surprisingly, however, there are many different notions of dot product. Consider the following definition: for A = the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, and any two vectors $\vec{a}, \vec{b} \in \mathbb{R}^2$, define the **inner product of** \vec{x} and \vec{y} with respect to A, $\langle \vec{a}, \vec{b} \rangle_A$, as follows:

$$\langle \vec{a}, \vec{b} \rangle_A = (A \cdot \vec{a}) \cdot \vec{b}$$

For example, the inner product of (1, 2), (3, 4) is

$$\langle (1,2), (3,4) \rangle_A = \left(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) \cdot (3,4) = (4,5) \cdot (3,4) = 32.$$

We can use this inner product to define a "new" notion of orthogonality: we say that two vectors $\vec{a}, \vec{b} \in \mathbb{R}^2$ are **orthogonal with respect to the inner product given** by A if $\langle \vec{a}, \vec{b} \rangle_A$ is 0.

- (a) Find six distinct nonzero vectors $\vec{a_1}, \ldots, \vec{a_6}$ in \mathbb{R}^2 , none of which are scalar multiples of each other, such that the inner products $\langle \vec{a_1}, \vec{a_2} \rangle_A, \langle \vec{a_3}, \vec{a_4} \rangle_A, \langle \vec{a_5}, \vec{a_6} \rangle_A$ are all zero.
- (b) Under the normal notion of dot product and orthogonality, two vectors were orthogonal if the angle between them was a right angle. Is that true for the inner product with respect to A? Why?
- (c) Suppose I told you that two nonzero vectors \vec{a}, \vec{b} met at an angle greater than 120°. Is it possible that $\langle \vec{a}, \vec{b} \rangle_A = 0$? Either prove that no such pair can exist, or create a pair that meet at such an angle and have dot product equal to 0.
- 5. In Math 108A, we ran into the idea of **polynomials** as vector spaces. Specifically, consider the set $\mathcal{P}_3(\mathbb{R})$, the collection of all polynomials of degree 3 or less: i.e.

$$\mathcal{P}_3(\mathbb{R}) = \{a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}.$$

This is a vector space! Consider the following notion of "dot product" for these polynomials: for any pair of polynomials $p(x), q(x) \in \mathcal{P}_3(\mathbb{R})$, we define their **inner product**, $\langle p(x), q(x) \rangle$, as follows:

$$\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x) \cdot q(x) \, dx.$$

For example, the inner product of 1 + x and $x + x^2$ is the quantity

$$\langle 1+x, x+x^2 \rangle = \int_{-1}^{1} (1+x)(x+x^2) \, dx = \int_{-1}^{1} x+2x^2+x^3 \, dx \\ = \left(\frac{x^2}{2} + \frac{2x^3}{3} + \frac{x^4}{4}\right) \Big|_{-1}^{1} = \frac{4}{3}$$

We can use this inner product to define a notion of **orthogonality**: we say that two polynomials p(x), q(x) are orthogonal if and only if their inner product $\langle p(x), q(x) \rangle$ is 0.

- (a) Warmup: choose four nonzero polynomials $p_1(x), q_1(x), p_2(x), q_2(x)$, and calculate the dot products $\langle p_1(x), q_1(x) \rangle, \langle p_2(x), q_2(x) \rangle$.
- (b) Find a basis for $\mathcal{P}_3(\mathbb{R})$ that is made of orthogonal polynomials. (Note: because $\mathcal{P}_3(\mathbb{R})$ is a four-dimensional space, as you have four degrees of freedom in the polynomial $a + bx + cx^2 + dx^3$, you should get four polynomials in your basis.)