Math 108B	Professor: Padraic Bartlett	
	Homework 4: QR and Schur Decompositions	
Due Monday, February 10, by 1:30pm	UCSB 2014	

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. (a) Find a QR decomposition of the following matrix:

$$
A=\left[\begin{array}{cccc}
2 & 2 & -4 & -1 \\
3 & 9 & 9 & 7 \\
6 & 3 & 5 & 5 \\
0 & 2 & 5 & 11
\end{array}\right]
$$

(b) Use A 's QR-decomposition to find a vector \vec{v} such that

$$
A \vec{v}=(-1,28,19,18) .
$$

2. (a) Find the Schur decomposition of the following matrix:

$$
A=\left[\begin{array}{cc}
37 & -9 \\
16 & 13
\end{array}\right]
$$

(b) Use A 's Schur decomposition to find A^{50}.
(When finding your answer, do not expand large exponents: i.e. write 9^{50}, instead of 515377520732011331036461129765621272702107522001 .)
3. Consider the following Markov process, used to model a drunkard's walk:

- States: there are four states. The first corresponds to the drunkard's home H_{1}; the second and third correspond to a pair of city blocks C_{2}, C_{3} near the drunkard's walk, and the fourth corresponds to a black hole B_{4} that absorbs everything that touches it.
- Rules:
- If the drunkard is home, it falls asleep and stays home: i.e. it stays at the first home state H_{1} with probability 1 , and goes to the other three states with probability 0 .
- If the drunkard is at block C_{2}, it goes home with probability $1 / 2$, goes to block C_{3} with probability $1 / 2$, and never goes to the other states (i.e. goes to them with probability 0 .)
- If the drunkard is at block C_{3}, it goes to block C_{2} with probability $1 / 2$, stumbles into the black hole B_{4} with probability $1 / 2$, and never goes to the other states.
- If the drunkard has fallen into the black hole, then it is ${ }^{1}$ trapped in the black hole forever: i.e. it stays at the black hole state B_{4} with probability 1 and goes to the other 3 states with probability 0 .
(a) Create a matrix A that corresponds to this process.
(b) Suppose that our drunk starts at C_{3}. Over a long enough period of time, what is the likelihood that the drunk makes it home?

4. Suppose that A is a $n \times n$ real-valued symmetric matrix, Q is an orthonormal basis of \mathbb{R}^{n}, and R is an upper-triangular matrix such that A 's Schur decomposition is given by the product $Q R Q^{-1}$. Prove that R is a diagonal matrix.
5. Prove or disprove: there is a matrix A such that A is diagonal in some basis, but in A 's Schur decomposition $Q R Q^{-1}$ the matrix R is not diagonal.

Bonus! If you solve this problem, email your answers to me directly; answers sent to the TA only will not be graded.
Generalize the drunkard's walk to a Markov chain on \mathbb{Z}^{2}, the integer lattice, as follows:

- States: points (i, j), with $i, j \in \mathbb{Z}$.
- Rules: from any point $(i, j) \neq(0,0)$, your drunkard will move to one of the four points $(i \pm 1, j),(i, j \pm 1)$, each with probability $1 / 4$. At $(0,0)$, however, the drunkard is home, and does not leave (i.e. it stays at $(0,0)$ with probability 1.)

Suppose that your drunk starts at some point $(x, 0)$ on the x-axis. Over a long enough run, what is the probability that it will make it home (i.e. get to $(0,0)$?)

[^0]
[^0]: ${ }^{1}$ Stephen Hawking may disagree: see http://arxiv.org/abs/1401.5761. Also if you're a physicist and know things about this, find me because I want to understand this paper?

