Math 108B	Professor: Padraic Bartlett
Homework 5: Inner Products and Real Symmetric Matrices	
Due Wednesday, February 19, by 1:30pm	UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. Given a matrix A, we say that B is a cubic root of A if $B^{3}=A$.
(a) Suppose that A is a real-valued symmetric $n \times n$ matrix. Prove that A has a cubic root.
(b) Is this true for nonsymmetric matrices? Either find a counterexample, or prove that this is true for all matrices.
2. Suppose that A is a real-valued 2×2 matrix. For any two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{2}$, define the " A-product" of \vec{v} and \vec{w} as follows:

$$
\langle\vec{v}, \vec{w}\rangle_{A}=(A \vec{v}) \cdot \vec{w} .
$$

On HW\#3, you studied this object for a specific value of A.
(a) Show that for $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, this A-product is an inner product, as defined in class.
(b) In general, suppose A is a real-valued symmetric matrix. Is this always an inner product? If so, prove it; if not, create a counterexample, and come up with conditions on A that will insure that this A-product is an inner product.
3. Suppose that A, B are a pair of complex-valued $n \times n$ unitary matrices. Prove that $A B$ is a unitary matrix.
4. The trace of a $n \times n$ matrix A, denoted $\operatorname{tr}(A)$, is the sum of the entries on its diagonal. For example, the trace of $\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$ is $1+5=6$.
Prove that for any two $n \times n$ matrices A, B, we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

