Math 108B	Professor: Padraic Bartlett
Homework 6: Similar/Elementary Matrices; the Spectral Theorem	
Due Wednesday, February 26, by 1:30pm	UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. Suppose that A and B are a pair of 2×2 matrices, such that λ is an eigenvalue of A if and only if it is an eigenvalue of B. Is A similar to B ? Either create a counterexample to this claim, or prove that it is true.
2. (a) Prove that if A and B are similar, then the trace of A is the trace of B.
(b) Prove that if A and B are similar, then the determinant of A is the determinant of B.
3. (a) Prove the following claim: the only matrix that is similar to the identity matrix is the identity matrix.
(b) Is there any other matrix A such that the only matrix similar to A is A itself? Come up with a very simple property characterizing all such matrices. Prove that your property indeed characterizes these kinds of matrices: i.e. prove that any matrix that satisfies your property is only similar to itself, and that if a matrix is only similar to itself then it satisfies your property.
4. Consider the following elementary matrix:

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\lambda & 0 & 1
\end{array}\right]
$$

Find an upper-triangular matrix that is similar to E.
(Bonus!) If you solve this problem, email your answers to me directly; answers sent to the TA only will not be graded.
Take the field $\mathbb{Z} / 2 \mathbb{Z}=\langle\{0,1\},+, \cdot\rangle$, given by the usual concept of modular arithmetic $\bmod 2$. With this field, we can define vectors in $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, like $(0,1) \in(\mathbb{Z} / 2 \mathbb{Z})^{2}$, and matrices like $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ that act on these vectors; as well, we can define the concepts of matrix multiplication $\bmod 2$ (i.e. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \equiv\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \bmod 2$.) For any n, call the collection of $n \times n$ matrices with entries from this field $M_{n}(\mathbb{Z} / 2 \mathbb{Z})$.
For any n, what is the largest set of $n \times n$ matrices in $M_{n}(\mathbb{Z} / 2 \mathbb{Z})$ that you can find, such that no two of these matrices are similar via some third element in $M_{n}(\mathbb{Z} / 2 \mathbb{Z})$?

