Math 108B
Homework 7: Similar/Elementary/Permutation Matrices
Due Wednesday, March 5, by 1:30pm
UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. Take the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right]
$$

Find some sequence of elementary matrices E_{1}, E_{2}, E_{3} such that

$$
\left(E_{1} \cdot E_{2} \cdot E_{3}\right) \cdot A \cdot\left(E_{3}^{-1} \cdot E_{2}^{-1} \cdot E_{1}^{-1}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

In other words, show that A is similar to a matrix made out of just its diagonal entries!
2. Suppose that $P_{\sigma_{1}}, P_{\sigma_{2}}$ are a pair of $n \times n$ permutation matrices. Prove that $P_{\sigma_{1}} \cdot P_{\sigma_{2}}$ is also a permutation matrix.
3. Suppose that P_{σ} is a $n \times n$ permutation matrix. Show that there is some value of k such that $\left(P_{\sigma}\right)^{k}=I$.
4. Show that if P_{σ} is a permutation matrix, it has 1 as an eigenvalue. Also, prove that if P_{σ} is a permutation matrix, it does not have any eigenvalues λ with $|\lambda| \neq 1$.
5. (a) Let P_{σ} be the following permutation matrix:

$$
P_{\sigma}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Find three elementary matrices E_{1}, E_{2}, E_{3} of the form $E_{\text {switch entry } i \text { and entry } j \text {, }, \text {, }, \text {, }}$, such that $E_{1} \cdot E_{2} \cdot E_{3}=P_{\sigma}$.
(b) In general, suppose that P_{σ} is a $n \times n$ permutation matrix of the form

$$
P_{\sigma}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right] .
$$

Find $n-1$ elementary matrices $E_{1}, E_{2}, \ldots E_{n-1}$ of the form $E_{\text {switch entry } i \text { and entry } j \text {, }, \text {, }, \text {, }}$ such that $E_{1} \cdot E_{2} \cdot \ldots \cdot E_{n-1}=P_{\sigma}$.

