Math 108B	Professor: Padraic Bartlett	
Homework 8: Jordan Canonical Form		
Due Friday, March 14, by 1:30pm	UCSB 2014	

Homework problems need to show work and contain proofs in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! If you have any questions, feel free to contact either Yihan or I via email or office hours. Have fun!

1. This problem has you go through an example run of our Jordan canonical form construction. Consider the following matrix:

$$
A=\left[\begin{array}{cccc}
14 & -6 & -4 & 0 \\
6 & 2 & 0 & -4 \\
-2 & 2 & 4 & 0 \\
-2 & 2 & 0 & 4
\end{array}\right]
$$

(a) Find a Schur decomposition $A=U R U^{-1}$.
(b) Now, conjugate R by elementary matrices until it is an upper-triangular matrix R^{\prime} with the following properties:

- Whenever $r_{i i} \neq r_{j j}, r_{i j}=0$.
(c) Conjugate R^{\prime} by a permutation matrix so that we get an upper-triangular matrix $R^{\prime \prime}$ whose diagonal is the same as R, but in order.
(d) Finally, conjugate $R^{\prime \prime}$ by elementary matrices so that it is a block-diagonal matrix B, the blocks of which are all Jordan blocks. Conclude that A can be written in Jordan normal form.

2. (a) Suppose that B is a $n \times n$ Jordan block of the form

$$
B=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & \ldots & 0 & \lambda
\end{array}\right]
$$

Prove that B is similar to B^{T}.
(b) Using 1, prove that if A is a block-diagonal matrix where each block is a Jordan block, then A is similar to A^{T}.
(c) Using 2 , prove that if A is any matrix, A is similar to A^{T}.
3. Again, suppose that B is a $n \times n$ Jordan block of the form

$$
B=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & \ldots & 0 & \lambda
\end{array}\right]
$$

(a) Show that λ is the only eigenvalue of B. Let E_{λ} denote the collection of all vectors \vec{v} such that $B \vec{v}=\lambda \vec{v}$. What is the dimension of E_{λ} ?
(b) Show that there is some value of k such that $(B-\lambda I)^{k}$ is the all-zeroes matrix. Find the smallest value of k for which this is true.
(c) Suppose that C is any $n \times n$ matrix, such that C has only one distinct eigenvalue λ. Prove that there is some value of k such that $(C-\lambda I)^{k}$ is the all-zeroes matrix.
4. Suppose that B is a 4×4 Jordan block of the form

$$
B=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]
$$

Suppose that $|\lambda|<1$. Prove that

$$
\lim _{k \rightarrow \infty} B^{k}=\text { the all-zeroes matrix. }
$$

