
Math 108a Professor: Padraic Bartlett

Lecture 1: Motivation: Eigenthings and Orthogonality

Week 1 UCSB 2014

One particularly fun1 aspect of planning this year’s run of Math 108B has been dealing
with the variations in possible background material. Between the two distinct runs of Math
108a from the fall, students who took 108a in previous years, and transfer students, the
following subjects have all been seen by some but not a majority of the class:

• Eigenvalues and eigenvectors.

• Orthogonality and the Gram-Schimidt process.

• The determinant.

• The fundamental theorem of algebra.

• Various decomposition results.

Initially, this seemed like a fairly serious problem; how can you create a class that would
simultaneously not bore students who’ve already seen these concepts, without going too
fast for the students who are new to these ideas? However, in practice we’ve found out that
this isn’t actually a serious issue, because the focus of Math 108B is radically different than
that of Math 108A. While 108A was best thought of as an overgrown version of Math 8 —
i.e. a class that’s meant to keep you working on your proofs — 108B is a class that is now
assuming that you know proofs2 and instead want to focus on using proofs to understand
things!

So, while many of you will run into terms over the next week that you “know,” pay
attention: we’re going to be discussing these things from a different perspective than you
may be used to, and using them alongside terms you’ve not seen to get to some beautiful
mathematics.

1 Eigenvalues and Eigenvectors: Basic Definitions and Ex-
amples

We first start off by stating a few of these “previously-covered” concepts, along with some
basic examples to refresh the memory:

Definition. Let A be a n×n matrix with entries from some field F . (In practice, in exam-
ples we will assume that F is the real numbers R unless otherwise stated. It is worthwhile

1For certain values of “fun.”
2Which is not to say that you should not keep working on your proofs. Developing a mathematical style

is a lifelong project, and is something that I and other professors are still refining. Just like there will never
be a day when LeBron is “done” with his jumper, there similarly is never a day when you’re “done” with
developing your mathematical style. You just keep refining it.
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to occasionally think about this field being C, when you’re working on problems on your
own.) We say that ~v ∈ Fn is an eigenvector and λ ∈ F is an eigenvalue if

A~v = λ~v.

We usually ask that ~v 6= ~0, to avoid silly trivial cases.

Example. Does the matrix

A =

[
1 2
2 1

]
have any real or complex-valued eigenvalues or eigenvectors? If so, find them.

Proof. We find these eigenvalues and eigenvectors via brute force (i.e. just using the defi-
nition and solving the system of linear equations.) To do this, notice that if (x, y) 6= (0, 0)
is an eigenvector of A and λ is a corresponding eigenvalue to (x, y), then we have[

1 2
2 1

]
·
[
x
y

]
= λ

[
x
y

]
.

In other words, this is the pair of linear equations

x+ 2y = λx,

2x+ y = λy.

We want to find what values of λ, x, y are possible solutions to this equation. To find these
solutions, notice that if we add these two equations together, we get

3x+ 3y = λ(x+ y).

If x + y is nonzero, we can divide through by x + y to get λ = 3, which is one potential
value of λ. For this value of λ, we have

x+ 2y = 3x,

2x+ y = 3y

⇒ 2y = 2x,

2x = 2y.

In other words, it seems like 3 is an eigenvalue for any eigenvector of the form (x, x). This
is easily verified: simply notice that[

1 2
2 1

]
·
[
x
x

]
=

[
3x
3x

]
= 3

[
x
−x

]
,

which precisely means that 3 is an eigenvalue corresponding to vectors of the form (x, x).
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Otherwise, if x+y = 0, we can use this observation in our earlier pair of linear equations
to get

y = λx,

x = λy.

If one of x, y = 0, then x+ y = 0 forces the other to be zero, and puts us in the trivial case
where (x, y) = (0, 0), which we’re not interested in. Otherwise, we have both x, y 6= 0, and
therefore that λ = x

y = y
x . In particular, this forces x = λy and λ = ±1.

If we return to the two equations

x+ 2y = λx,

2x+ y = λy,

we can see that λ = 1 is not possible, as it would force x+ 2y = x, i.e. y = 0. Therefore we
must have λ = −1, and therefore x = −y. In other words, it seems like −1 is an eigenvalue
with corresponding eigenvectors (x,−x). Again, this is easily verified: simply notice that[

1 2
2 1

]
·
[
x
−x

]
=

[
−x
x

]
= −1

[
x
−x

]
which precisely means that −1 is an eigenvalue corresponding to vectors of the form (x,−x).

In this case, we had a 2 × 2 matrix with 2 distinct eigenvalues, each one of which
corresponded to a one-dimensional family of eigenvectors. This was rather nice! It bears
noting that things are often not this nice, as the following example illustrates:

Example.

A =

[
0 −1
1 0

]
have any real or complex-valued eigenvalues or eigenvectors? If so, find them.

Proof. We proceed using the same brute-force method as before. If there was an eigenvector
(x, y) 6= (0, 0) and corresponding eigenvalue λ, we would have[

0 −1
1 0

]
·
[
x
y

]
= λ

[
x
y

]
.

In other words, we would have a solution to the system of equations

−y = λx

x = λy.

3



If one of x, y are equal to zero, then the two linear equations above force the other to be
zero; this puts us in the trivial case where (x, y) = (0, 0), which we’re not interested in.
Otherwise, we can solve each of the linear equations above for λ, and get

−y
x

= λ

x

y
= λ.

In other words, we have − y
x = x

y . Because both x and y are nonzero, this equation is
equivalent to (by multiplying both sides by xy)

−y2 = x2.

This equation has no real-valued solutions, because any nonzero real number squared is
positive. If we extend our results to complex-valued solutions, we can take square roots
to get iy = ±x. This gives us two possible values of λ : either i with corresponding
eigenvectors (x,−ix), or −i with corresponding eigenvectors (x, ix). We check that these
are indeed eigenvalues and eigenvectors here:[

0 −1
1 0

]
·
[
x
−ix

]
=

[
ix
x

]
= i

[
x
−ix

]
,[

0 −1
1 0

]
·
[
x
ix

]
=

[
−ix
x

]
= −i

[
x
ix

]
.

This was an example of a 2× 2 matrix that has no real eigenvalues or eigenvectors, but
did have two distinct complex-valued eigenvalues, each with corresponding one-dimensional
families of eigenvectors. You might hope here that this is always true; i.e. that working in
the complex plane is enough to always give you lots of eigenvectors and eigenvalues!

This is not true, as the following example indicates:

Example. Consider the n× n matrix

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


,

formed by filling the main diagonal and the stripe directly above the main diagonal with
1’s, and filling the rest with zeroes. Does this matrix have any real or complex-valued
eigenvalues or eigenvectors? If so, find them.
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Proof. We proceed as before. Again, let (x1, . . . xn) 6= ~0 denote a hypothetical eigenvector
and λ a corresponding eigenvalue; then we have

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


·



x1
x2
x3
. . .
xn−1
xn

 = λ



x1
x2
x3
. . .
xn−1
xn

 .

This gives the following set of n linear equations:

x1 + x2 = λx1,

x2 + x3 = λx2,

...

xn−1 + xn = λxn−1,

xn = λxn.

There are at most two possiblities:

1. λ = 1. In this case, we can use our first equation x1 + x2 = x1 to deduce that x2 = 0,
the second equation x2 + x3 = x2 to deduce that x3 = 0, and in general use the k-th
linear equation xk + xk+1 = xk to deduce that xk+1 = 0. In other words, if λ = 1, all
of the entries x2, . . . xn are all 0. In this case, we have only the vectors (x1, 0, . . . 0)
remaining as possible candidates. We claim that these are indeed eigenvectors for the
eigenvalue 1: this is easily checked, as

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


·



x1
0
0
. . .
0
0

 =



x1 + 0
0
0
. . .
0
0

 = 1



x1
0
0
. . .
0
0

 .

2. We are trying to find any value of λ 6= 1. If this is true, then our last equation
xn = λxn can only hold if xn = 0. Plugging this observation into our second-to-last
equation xn−1 + 0 = λxn−1 tellsus that xn−1 is also zero. In general, using induction
(where our base case was proving that xn = 0, and our inductive step is saying that
if xk = 0, we have xk−1 also equal to zero) we get that every xk must be equal to
zero. But this is the trivial case where (x1, . . . xn) = ~0, which we’re not interested in
if we’re looking for eigenvectors. Therefore, there are no eigenvectors corresponding
to non-1 eigenvalues.

So; in this case, we found a n× n matrix with only one eigenvalue, corresponding only to
a one-dimensional space of eigenvectors! In other words, sometimes there are very very few
eigenvectors or eigenvalues to be found.
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2 Eigenvalues and Eigenvectors: Why We Care

So: eigenvalues and eigenvectors! We have an ad-hoc method for finding them (lots of linear
equations) and have seen through examples that there are sometimes very few of them for
a given matrix. We have not yet talked about why we care about them, though — why
look for these things?

The short answer is that they’re useful. Honestly? They’re probably the most useful
thing in linear algebra, and arguably in mathematics as a whole. Understanding eigenvalues
and eigenvectors is fundamental to thousands of problems, ranging from the most practical
of applications in physics and economics to the airiest of theoretical constructions in higher
mathematics. To give a bit of an idea for what these applications look like, we do two
examples here:

2.1 The Googles

Perhaps one of the most commonly used applications of eigenvalues and eigenvectors is
Google’s PageRank algorithm. Basically, before Google came along, web search engines
were atrocious; many search results were not very-sophisticated massive keyword-bashes
plus some well-meaning but dumb attempts to improve these results by hand. Then Brin
and Page came onto the scene, with the following simple idea:

Important websites are the websites other important websites link to.

This seems kinda circular, so let’s try framing this in more of a graph-theoretic frame-
work: Take the internet. Think of it as a collection of webpages, which we’ll think of as
“vertices,” along with a collection of hyperlinks, which we’ll think of as directed lines3 going
between webpages. Call these webpages {v1, . . . vn} for shorthand, and denote the collection
of webpages linking to some vi as the set LinksTo(vi).

In this sense, if we have some quantity of “importance” rank(vi) that we’re associating
to each webpage i, we still want it to obey the entire “important websites are the websites
other important websites link to” idea. However, we can refine what we mean by this a little
bit. For example, suppose that we know a website is linked to by Google. On one hand,
this might seem important — Google is an important website, after all! — but on the other
hand, this isn’t actually that relevant, because Google basically links to everything. So
we don’t want to simply say something is important if it’s linked to by something important
— we want to weight that importance by how many other things that important website
links to! In other words, if you’re somehow important and also only link to a few things,
we want to take those links very seriously — i.e. if something is linked to by the front page
of the New York Times or the Guardian, that’s probably pretty important!

If we write this down with symbols and formulae, we get the following equation:

rank(vi) =
∑

vj∈LinksTo(vi)

rank(vj)

number of links leaving(vj)
.

In other words, to find your rank, we add up all of the ranks of the webpages that link to
you, scaling each of those links by the number of other links leaving those webpages. This

3A “series of tubes,” if you will.
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is . . . still circular. But it looks mathier! Also, it’s more promising from a linear-algebra
point of view. Suppose that we don’t think of each ranking individually, but rather take
them all together as some large rank vector ~r = (rank(v1), . . . rank(vn)).

As well, instead of thinking of the links one-by-one, consider the following n× n “link-
matrix” A, formed by doing the following:

• If there is a link to vi from vj , put a 1
number of links leaving(vj)

in the entry (i, j).

• Otherwise, put a 0.

This contains all of the information about the internet’s links, in one handy n× n matrix!
Now, notice that if we multiply this matrix A by our rank vector ~r, we get

A · ~r =


∑

vj∈LinksTo(v1)
rank(vj)

number of links leaving(vj)∑
vj∈LinksTo(v2)

rank(vj)
number of links leaving(vj)

...∑
vj∈LinksTo(vn)

rank(vj)
number of links leaving(vj)

 .

In other words, if we the “mathy” version of the importance rule we derived earlier, we have

A · ~r = ~r.

In other words, the vector ~r that we’re looking for is an eigenvector for A, corresponding
to the eigenvalue 1! The entries in this eigenvector then correspond to the “importance”
ranks we were looking for. In particular, the coordinate in the vector ~r with the highest
value corresponds to the “most important” website, and should be the first page suggested
by the search engine.

Up to tweaks and small modifications, this is precisely how search works nowadays;
people come up with quick and efficient ways to find eigenvectors for subgraphs of the
internet that correspond to the eigenvalue 1. (Actually finding this eigenvector in an efficient
manner is a problem people are still working on — there are lots of interesting techniques,
some of which I hope we’ll get to later in the course!)

2.2 Fibonacci

It bears noting that eigenvalues aren’t only useful for applications: they have lots of theo-
retical and mathy uses as well! Consider the Fibonacci sequence, defined below:

Definition. The Fibonacci sequence {fn}∞n=1 is the sequence of numbers defined recur-
sively as follows:

• f0 = 0,

• f1 = 1,

• fn+1 = fn + fn−1.
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The first sixteen Fibonacci numbers are listed here:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 . . .

Here’s a question you might want to ask, at some point in time: what’s f1001? On one
hand, you could certainly calculate this directly, by just finding all of the numbers in the
sequence from 1 up to 1001. But what if you needed to calculate this quickly? Could you
find a closed form?

The answer is yes, and the solution comes through using eigenvectors and eigenvalues!
Specifically, notice the following:[

1 1
1 0

]
·
[
fn
fn−1

]
=

[
fn + fn−1

fn

]
=

[
fn+1

fn

]
.

In other words, if we take a vector formed by two consecutive Fibonacci sequence elements,

and multiply it by the matrix

[
1 1
1 0

]
, we shift this sequence one step forward along the

Fibonacci sequence!
Therefore, if we want to find f1001, we can just calculate

[
1 1
1 0

]k
·
[
f1
f0

]
=

[
1 1
1 0

]999
·
[
1 1
1 0

]
·
[
f1
f0

]
=

[
1 1
1 0

]999
·
[
f2
f1

]
=

[
1 1
1 0

]998
·
[
f3
f2

]
...

=

[
f1001
fk

]
.

So: we just need to find

[
1 1
1 0

]k
! This is not an obviously easy task: multiplying the

matrix by itself a thousand times seems about as difficult as adding the Fibonacci numbers
to themselves that many times. However, with the help of eigenvalues, eigenvectors, and
the concept of orthogonality, this actually can be made rather trivial!

First, let’s find the eigenvalues and eigenvectors for this matrix. As before, we just use
brute force: we seek (x, y) 6= (0, 0) and λ such that

[
1 1
1 0

]
·
[
x
y

]
= λ

[
x
y

]
.

In terms of linear equations, this is just asking for x, y, λ such that

x+ y = λx

x = λy.
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First, notice that if either x or y are zero, then the other is zero by the second equation,
which puts us in the trivial case (x, y) = (0, 0), which we don’t care about.

Now, note that if we substitute the second equation into the first, we get

λ2y − λy − y = 0.

If we divide through by y (which we can do, because it is nonzero,) we get

λ2 − λ− 1 = 0.

We can use the quadratic formula to see that this has the roots

1±
√

5

2
.

These are very famous values! In particular, the quantity

1 +
√

5

2

is something that people have been studying for millenia — it’s the famous golden ratio,
denoted by the symbol ϕ. It has tons of weird and useful properties, but the main one I
want us to note here is that

1−
√

5

2
=

(1−
√

5)(1 +
√

5)

2(1 +
√

5)
=

1− 5

2(1 +
√

5)
= − 2

1 +
√

5
= − 1

ϕ
.

In other words, the two possible values of λ are ϕ,− 1
ϕ .

For each of these, we can solve for x, y: if we have λ = ϕ, then the pair of equations

x+ y = ϕx

x = ϕy

has solutions given by (ϕy, y). Similarly, if we have λ = − 1
ϕ , then the pair of equations

x+ y = − 1

ϕ
x

x = − 1

ϕ
y

has solutions given by (− y
ϕ , y).

So: we have the eigenvectors and eigenvalues! Now, notice the following very clever
trick we can do with these eigenvalues and eigenvectors. First, notice that we have[

1 1
1 0

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕ2x y

ϕ2

ϕx − y
ϕ

]
.
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This is not hard to see: if you think of the

[
ϕx − y

ϕ

x y

]
matrix as just two columns, each of

which are eigenvectors, then the right-hand-side is just a result of that eigenvector property.
Now: notice that the right-hand-side can be written[

ϕ2x y
ϕ2

ϕx − y
ϕ

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
.

As a result of this, we have[
1 1
1 0

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
,

which implies [
1 1
1 0

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
[
ϕx − y

ϕ

x y

]−1

And this is fantastic! Why? Well, notice that if we’re calculating something like

[
1 1
1 0

]k
,

we have

k copies︷ ︸︸ ︷[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
�
���

��[
ϕx − y

ϕ

x y

]−1

·
��

���
[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
�

���
��[

ϕx − y
ϕ

x y

]−1

· . . . ·
��

���
[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
[
ϕx − y

ϕ

x y

]−1

.

=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]k
·
[
ϕx − y

ϕ

x y

]−1

.

And this is easy to calculate — if we take a diagonal matrix and raise it to a large power,
we just get the matrix formed by raising those diagonal entries to that power4! In other
words, we get [

1 1
1 0

]k
=

[
ϕx − y

ϕ

x y

]
·
[
ϕk 0
0 (− 1

ϕ)k

]
·
[
ϕx − y

ϕ

x y

]−1
.

Great! If we can just find

[
ϕx − y

ϕ

x y

]−1
, then this is a very easy calculation: we just

have to multiply three matrices, instead of a thousand. Much less work!
To find this inverse matrix, notice the following special property about these eigenvec-

tors: if we take one eigenvector for ϕ and another for − 1
ϕ , those two vectors are orthogonal!

Specifically, recall the following definitions:

4This property emphatically does not hold for normal matrices. I.e. NEVER ever write something like[
a b
c d

]3

=

[
a3 b3

c3 d3

]
on a test or quiz, because it is made of lies and will result in you getting no points and

a lot of red ink.
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Definition. Take two vectors (x1, . . . xn), (y1, . . . yn) ∈ Rn. Their dot product is simply
the sum

x1y1 + x2y2 + . . . xnyn.

Alternately, you can prove that the quantity above is also equal to the product

||~x|| · ||~y|| cos(θ),

where θ is the angle between ~x and ~y.

Definition. Given two vectors ~v, ~w ∈ Rn, we say that these two vectors are orthogonal if
their dot product ~v · ~w = 0. Note that geometrically, if both of these vectors have nonzero
length, this can only happen if the cosine of the angle between these two vectors is zero:
i.e. if these two vectors meet at a right angle!

With these definitions restated, it is not hard to check that an eigenvector (ϕx, x) for ϕ
and an eigenvector (− y

ϕ , y) for − 1
ϕ are orthogonal: we just calculate

(ϕx, x) · (− y
ϕ
, y) = −xy + xy = 0.

Why do we care? Well: notice that if we look at the product[
ϕx x
− y

ϕ y

]
·
[
ϕx − y

ϕ

x y

]
=

[
(ϕx, x) · (ϕx, x) (ϕx, x) · (− y

ϕ , y)

(− y
ϕ , y) · (ϕx, x) (− y

ϕ , y) · (− y
ϕ , y)

]
,

we get that the upper-right and bottom-left entries are 0, because those vectors are orthog-
onal! Therefore, we have that this product is[

ϕx x
− y

ϕ y

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕ2x2 + x2 0

0 y2

ϕ2 + y2

]
.

So, in particular, if we wanted to make this product the identity matrix, we could just pick
x, y such that

x2(1 + ϕ2) = 1 ⇐ x =
1√

1 + ϕ2

y2(1 +
1

ϕ2
) = 1 ⇐ y =

1√
1 + 1

ϕ2

=
ϕ√

1 + ϕ2
.

In other words: we have just calculated

[
ϕx − y

ϕ

x y

]−1
for free! In the case where we set

x, y as above, it’s just the transpose of this matrix: i.e.

[
ϕx x
− y

ϕ y

]
!

11



So: we’ve just proven the following formula:[
1 1
1 0

]k
=

 ϕ√
1+ϕ2

− 1√
1+ϕ2

1√
1+ϕ2

ϕ√
1+ϕ2

 · [ϕk 0
0 (− 1

ϕ)k

]
·

 ϕ√
1+ϕ2

1√
1+ϕ2

− 1√
1+ϕ2

ϕ√
1+ϕ2


=

 ϕ√
1+ϕ2

− 1√
1+ϕ2

1√
1+ϕ2

ϕ√
1+ϕ2

 ·
 ϕk+1√

1+ϕ2

ϕk√
1+ϕ2

−
(− 1

ϕ
)k√

1+ϕ2

ϕ(− 1
ϕ
)k√

1+ϕ2


=

 ϕk+2+(− 1
ϕ
)k

1+ϕ2

ϕk+1−ϕ(− 1
ϕ
)k

1+ϕ2

ϕk+1−ϕ(− 1
ϕ
)k

1+ϕ2

ϕk+ϕ2(− 1
ϕ
)k

1+ϕ2

 .
If we multiply the numerator and denominator in each fraction by 1

ϕ , we get
ϕk+1−(− 1

ϕ
)k+1

1
ϕ
+ϕ

ϕk−(− 1
ϕ
)k

1
ϕ
+ϕ

ϕk−(− 1
ϕ
)k

1
ϕ
+ϕ

ϕk−1−(− 1
ϕ
)k−1

1
ϕ
+ϕ

 .
We do this because

ϕ+
1

ϕ
=

1 +
√

5

2
+

2

1 +
√

5
=

1 +
√

5

2
− 1−

√
5

2
=
√

5,

which allows us to simplify the above into

1√
5

[
ϕk+1 − (− 1

ϕ)k+1 ϕk − (− 1
ϕ)k

ϕk − (− 1
ϕ)k ϕk−1 − (− 1

ϕ)k−1

]
.

Whew! Ok. In the end, we’ve finally proven the following theorem:

Theorem. [
1 1
1 0

]k
=

1√
5

[
ϕk+1 − (− 1

ϕ)k+1 ϕk − (− 1
ϕ)k

ϕk − (− 1
ϕ)k ϕk−1 − (− 1

ϕ)k−1

]
.

As a particular consequence, we have[
1 1
1 0

]k
·
[
f1
f0

]
=

[
1 1
1 0

]k
·
[
1
0

]
=

1√
5

[
ϕk+1 − (− 1

ϕ)k+1

ϕk − (− 1
ϕ)k

]
.

In other words, we have

fk+1 =
ϕk+1 − (− 1

ϕ)k+1

√
5

.

This is exactly what we wanted! A way to calculate the Fibonacci numbers quickly, without
having to calculate everything else on the way. Success!
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