
Math 108B Professor: Padraic Bartlett

Lecture 2: Change of Basis

Week 2 UCSB 2014

On Friday of last week, we asked the following question: given the matrix A =

[
1 1
1 0

]
,

is there a quick way to calculate large powers of this matrix? Our answer to this question
turned out to be yes! We did this by writing[

1 1
1 0

]
=

 ϕ√
1+ϕ2

− 1√
1+ϕ2

1√
1+ϕ2

ϕ√
1+ϕ2

 · [ϕ 0
0 (− 1

ϕ)

]
·

 ϕ√
1+ϕ2

1√
1+ϕ2

− 1√
1+ϕ2

ϕ√
1+ϕ2

 ,

which is particularly nice because it writes A in the form UDU−1, where D is a diagonal
matrix (i.e. its only nonzero entries are on its diagonal.) This lets us find Ak very quickly,
as it is just

UD���U−1 ·��UD���U−1 · . . . ·��UDU−1 = UDkU−1,

which is very easy to calculate!
In general, this problem — given a matrix A, how can we calculate An quickly — is

something that mathematicians and scientists run into constantly. We came up with a
solution for one specific matrix on Friday; but how can we do this in general?

There are a lot of techniques people have came up with when examining this problem.
One particularly useful idea is the following concept of a “change of basis,” which we study
in the next section!

1 Change of Basis

Here’s a quick motivational question: suppose that we’re working in R2. What is the vector
(2, 3)?

x

y

(2,3)

Ok: this seems dumb. But there is a real question here: what do we mean when we
write down the vector (2, 3)? Well: usually we mean that we have the vector in the xy-plane
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whose x-coördinate is 2, and whose y-coördinate is 3. In other words, when we’re thinking
about R2, we already have a built-in basis in mind for it — specifically, the standard basis
~e1 = x = (1, 0), ~e2 = y = (0, 1). Using this standard basis, we interpret things like (2, 3) as
meaning “two copies of ~e1, plus three copies of ~e2.”

Which makes sense! However, over the course of Math 108A, we saw tons of different
bases for Rn. Why don’t we sometimes use some of those bases instead?

This idea leads us to the following definition:

Definition. Take any vector space Fn. (Almost always in this course, F will almost always
denote R, or sometimes C.) As well, take some basis B = {~b1, . . . ~bn} for Fn. Take an
ordered set of n elements from F , say (v1, . . . vn). We can interpret this as a vector using
the basis B by associating it as follows to a vector in Fn:

(v1, . . . vn) a vector using the basis B = v1 ~b1 + v2 ~b2 + . . . + vn ~bn.

In this sense, we’ve been interpreting vectors for the past quarter as “vectors under the
standard basis ~e1, . . . ~en.” In general, unless we explicitly write otherwise, we will work with
these standard vectors; i.e. only interpret a vector as existing in some other base if we give
it a subscript describing what base it is in!

To illustrate the idea, we run a quick example:

Example. Take R4 with the basis

B = {~b1 = (1, 1, 0, 0), ~b2 = (0, 1, 1, 0), ~b3 = (0, 0, 1, 1), ~b4 = (0, 0, 0, 1)}.

(Again, note that because we haven’t subscripted these vectors with some other basis, we
are interpreting these four vectors in the “standard” fashion: i.e. (1, 1, 0, 0) denotes the
object ~e1 + ~e2 in R4.)

Consider the vector (1, 2, 3, 4) a vector using the basis B. In the standard basis, what is this
vector?

Answer. So: by definition, we have

(1, 2, 3, 4) a vector using the basis B = 1~b1 + 2~b2 + 3~b3 + 4~b4

=

now working in the standard basis︷ ︸︸ ︷
1 · (1, 1, 0, 0) + 2(0, 1, 1, 0) + 3(0, 0, 1, 1, ) + 4(0, 0, 0, 1)

= (1, 3, 5, 7).

So the vector (1, 2, 3, 4) a vector using the basis B corresponds to the vector (1, 3, 5, 7) in the
standard basis.

Example. Take R3, and the vector (1, 2, 3). Write this vector with respect to the basis

B = {~b1 = (1, 0, 0), ~b2 = (1, 1, 0), ~b3 = (0, 1, 1)}.

Answer. So: we start by finding a way to express (1, 2, 3) as a sum of things in our basis:

(1, 2, 3) = 2(1, 0, 0)− 1(1, 1, 0) + 3(0, 1, 1).

Consequently, we can write

(1, 2.3) = (2,−1, 3)B.
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The above two examples worked in an ad-hoc sense; given a vector written in one basis,
we were able to write it in another with little work. There is a more efficient way, however!
Given a basis B = {~b1, . . . ~bn} for some space Fn, consider the following matrix:


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...

 .

Suppose we take a vector of the form (x1, . . . xn), and multiply this vector by our matrix:
what do we get? Well:

...
... . . .

...
~b1 ~b2 . . . ~bn
...

... . . .
...

 ·
x1...
xn

 = x1 ~b1 + . . . + xn ~bn.

In other words: 
...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...

 ·
x1...
xn

 = (x1, . . . xn)B.

This matrix allows us to convert vectors written in the standard notation to vectors written
with respect to the base B! Similarly, notice that if we multiply both the left- and right-

hand-sides above by


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...


−1

, we get

(x1, . . . xn) =


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...


−1

·
(
x1 ~b1 + . . . + xn ~bn

)

=


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...


−1

· (x1, . . . xn)B.

Therefore, we can use the inverse of this matrix to translate vectors written in the base
B to vectors written with the standard basis! We call these matrices change of basis
matrices; they’re rather useful, and will come up often in this course.

The main reason we care about this idea is not because it gives us a new way to
look at vectors, but rather because it gives us a new way to look at things that act on
vectors: i.e. matrices! Think back to last quarter, when we discussed how to turn a
linear transformation into a matrix:
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Definition. Take a linear map T : Fn → Fn. (Again, F will almost always denote R,
or sometimes C.) Let the vectors ~e1, . . . ~en denote the standard basis vectors for Fn: i.e.
~e1 = (1, 0, . . . 0), ~e2 = (0, 1, 0 . . . 0), . . . ~en = (0, 0 . . . 0, 1).

Take all of the vectors T (~ei) in Fn, where i ranges from 1 to n. We can use these vectors
to represent T as an n× n matrix as follows:

T −→ Tmatrix =


...

... . . .
...

T (~e1) T (~e2) . . . T ( ~en)
...

... . . .
...

 ,

Similarly, given some n× n matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,

we can interpret A as a linear map Amap : Fn to Fn as follows:

• For any of the standard basis vectors ~ei, we define Amap(~ei) to simply be the vector
(a1,i, . . . an,i).

• For any other vector (x1, . . . xn) ∈ Fn, we define Amap(x1, . . . xn) to simply be the
corrresponding linear combination of the ~ei’s: i.e.

Amap : (x1, . . . xn) := x1 ·Amap(~e1) + . . . + xnAmap( ~en).

In the above work, we basically chose to represent a linear transformation as a matrix
by looking at where it sent the standard basis vectors ~e1, . . . ~en. However: again, if we’re
looking at Rn or Cn, there are many different choices of basis that we can come up with
that are not the standard basis! So: can we represent a linear transformation as a matrix
using these other bases?

The answer is yes! We provide a definition and a few examples below:

Definition. Take a linear map T : Fn → Fn. (Again, F will almost always denote R, or
sometimes C.) As well, take some basis B = {~b1, . . . ~bn} for Fn.

Take all of the vectors T (~bi) in Fn, where i ranges from 1 to n. For each one of these
vectors, because B is a basis, we can find constants t1,i, . . . tn,i such that

T (~bi) = t1,i ~b1 + . . . tn,i ~bn.

Take these sums, and use them to represent T as an n× n matrix as follows:

T −→ Tmatrix with respect to the basis B =

t1,1 t2,1 . . . tn,1
...

... . . .
...

t1,n t2,n . . . tn,n


B

,
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Similarly, given some n × n matrix A with entries in F , we can interpret it as a linear
transformation with respect to this basis B! In other words, suppose we have

Amatrix with respect to the base B =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . an,n


B

=


...

... . . .
...

~ac1 ~ac2 . . . ~acn
...

... . . .
...


B

,

where ~aci is the i-th column vector of A. Then we can interpret A as a linear map
Amap : Fn to Fn as follows:

• For any of the basis vectors ~bi, we define Amap(~bi) to simply be the vector ~aci .

• Take any other vector ~x ∈ Fn. Because B is a basis, we can write ~x as a unique linear
combination of the elements of B: i.e.

~x = c1 ~b1 + . . . + cn ~bn.

Then, because we sent each ~bi to the column ~aci we should define Amap(~x) to simply
be the corresponding linear combination of the ~aci ’s: i.e.

Amap, from a matrix written with basis B : (~x) := c1 ~ac1 + . . . + cn ~acn .

In general, if we have a matrix written with respect to any basis other than a standard
basis, we will clearly denote this by giving it a subscript labeling it as a matrix written
with respect to some other basis. If you see a matrix without any such subscript, you can
assume that it is a matrix written with respect to the standard basis.

To illustrate the ideas here, we work a pair of examples:

Example. Consider the following linear transformation T from R4 → R4:

T (a, b, c, d) = (a + b, a + c, a + d, a)

Write this linear transformation as a matrix with respect to the standard basis, and
also with respect to the basis B = {~b1 = (1, 0, 0, 0), ~b2 = (1, 1, 0, 0), ~b3 = (0, 1, 1, 0), ~b4 =
(0, 0, 1, 1)}.

Answer. To write this linear map as a matrix with respect to the standard basis, we just
need to find the following:

T −→ Tmatrix =


...

... . . .
...

T (~e1) T (~e2) . . . T ( ~en)
...

... . . .
...

 =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 .
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Writing this in terms of the basis B is slightly tricker. We first need to calculate the
vectors T (~b1), . . . T (~bn):

T ((1, 0, 0, 0)) = (1, 1, 1, 1),

T ((1, 1, 0, 0)) = (2, 1, 1, 1),

T ((0, 1, 1, 0)) = (1, 1, 0, 0),

T ((0, 0, 1, 1)) = (0, 1, 1, 0).

Now, for each vector, we need to write it as a sum of elements in the basis:

T ((1, 0, 0, 0)) = (1, 1, 1, 1) = (1, 1, 0, 0) + (0, 0, 1, 1) = ~b2 + ~b4,

T ((1, 1, 0, 0)) = (2, 1, 1, 1) = (1, 0, 0, 0) + (1, 1, 0, 0) + (0, 0, 1, 1) = ~b1 + ~b2 + ~b4,

T ((0, 1, 1, 0)) = (1, 1, 0, 0) = ~b2,

T ((0, 0, 1, 1)) = (0, 1, 1, 0) = ~b3.

As a consequence, we can write the T (~bi)’s as vectors under the basis B:

T (~b1) = (0, 1, 0, 1) a vector using the basis B,

T (~b2) = (1, 1, 0, 1) a vector using the basis B,

T (~b3) = (0, 1, 0, 0) a vector using the basis B,

T (~b4) = (0, 0, 1, 0) a vector using the basis B.

From here, we can now turn T into a 4 × 4 matrix T with respect to the basis B, by just
using the above vectors as our columns:

Tmatrix with respect to the base B =


0 1 0 0
1 1 1 0
0 0 0 1
1 1 0 0


B

.

Success!

As the above example indicates, sometimes writing a matrix in some other base doesn’t
really make it look any prettier or nicer. However, in other situations it really can! Consider
the example we worked with last Friday:

Example. Take the matrix

[
1 1
1 0

]
, and write it using the basis

B =

{
~b1 =

(
ϕ√

1 + ϕ2
,

1√
1 + ϕ2

)
, ~b2 =

(
1√

1 + ϕ2
,− ϕ√

1 + ϕ2

)}
.
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Answer. So: our first step is to turn this matrix into the linear transformation T (x, y) =
(x+y, x). From here, we can proceed as we did in the earlier example. Start by determining
where this linear transformation takes the elements of our basis:

T

(
ϕ√

1 + ϕ2
,

1√
1 + ϕ2

)
=

(
ϕ + 1√
1 + ϕ2

,
ϕ√

1 + ϕ2

)
.

T

(
1√

1 + ϕ2
,− ϕ√

1 + ϕ2

)
=

(
1− ϕ√
1 + ϕ2

,
1√

1 + ϕ2

)
.

Now, notice that because (as proven on Wednesday) ϕ2 = ϕ + 1 and ϕ2 − ϕ = 1, we have(
ϕ + 1√
1 + ϕ2

,
ϕ√

1 + ϕ2

)
=

(
ϕ2√

1 + ϕ2
,

ϕ√
1 + ϕ2

)

= ϕ

(
ϕ√

1 + ϕ2
,

1√
1 + ϕ2

)
= ϕ · ~b1, and(

1− ϕ√
1 + ϕ2

,
1√

1 + ϕ2

)
=

 ϕ−ϕ2

ϕ√
1 + ϕ2

,
1√

1 + ϕ2


=

( −1
ϕ√

1 + ϕ2
,

1√
1 + ϕ2

)

=
−1

ϕ

(
1√

1 + ϕ2
,− ϕ√

1 + ϕ2

)
= − 1

ϕ
· ~b2.

Therefore, we can write T (~b1) = ϕ~b1 and T (~b2) = − 1
ϕ
~b2. This means that we can write

the matrix associated to this linear transformation as

Tmatrix with respect to the basis B =

[
ϕ 0
0 − 1

ϕ

]
B

.

So in other words, we have that[
1 1
1 0

]
,

[
ϕ 0
0 − 1

ϕ

]
B

.

correspond to the same linear transformations!
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In this situation, writing our matrix in another base is incredibly useful! In this second
base, matrix exponentiation is really really easy: because our matrix is diagonal, we have

([
ϕ 0
0 − 1

ϕ

]
B

)n

=

n times︷ ︸︸ ︷[
ϕ 0
0 − 1

ϕ

]
B

· . . . ·
[
ϕ 0
0 − 1

ϕ

]
B

·
[
ϕ 0
0 − 1

ϕ

]
B

=

n−2 times︷ ︸︸ ︷[
ϕ 0
0 − 1

ϕ

]
B

· . . . ·
[
ϕ 0
0 − 1

ϕ

]
B

·

[
ϕ2 0

0
(
− 1

ϕ

)2]
B

=

n−3 times︷ ︸︸ ︷[
ϕ 0
0 − 1

ϕ

]
B

· . . . ·
[
ϕ 0
0 − 1

ϕ

]
B

·

[
ϕ2 0

0
(
− 1

ϕ

)3]
B

...

=

[
ϕn 0

0
(
− 1

ϕ

)n]
B.

Punchline: in certain bases, it’s really easy to raise a matrix to a large power! That’s
great — except we often don’t want to have to work in strange bases all the time. We like
the standard basis!

This then raises the last problem that we’re going to consider in this section: on one
hand, we’ve seen that it is sometimes nice to work in other bases. But we don’t want to
have to do all of our work in other bases: it would be nice if we had some way to translate
matrices back and forth between two different bases! I.e. it’s really useful to be able to

think of the linear map in the example above as

[
1 1
1 0

]
in lots of situations when we’re

doing small manipulations, but also useful to think of it as

[
ϕ 0
0 − 1

ϕ

]
B

when we want to

raise it to large powers!
So: how can we do this? In other words: suppose I give you a matrix in some basis B.

How can you translate it back to the standard basis?
The answer here: the change of basis matrices from before!

Proposition. Suppose we have some space Fn with a basis B = {~b1, . . . ~bn}. Suppose we
have a n× n matrix A written in this base B: i.e.

Amatrix with respect to the base B =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n


B

.

Then, we can “turn” AB into a matrix written with the standard basis, that corresponds
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to the same linear transformation, as follows:

Awritten in the standard basis =


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...

 ·

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n


B

·


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...


−1

.

Answer. Take any vector (x1, . . . xn) written in the standard basis. Suppose that we want
to apply the linear transformation corresponding to AB to this vector. The first thing we
have to do is convert it to the basis B: we do this by multiplying it on the left by the

change of basis matrix


...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...


−1

, as discussed earlier. Once this is done, we can

apply AB to it, by multiplying this on the left by AB. Finally, to interpret our results in
the standard basis, we have to multiply it on the left by the other change of basis matrix
...

... . . .
...

~b1 ~b2 . . . ~bn
...

... . . .
...

.
This set of multiplications lets us apply AB to a vector written with the standard basis

and interpret our results in the standard basis, and is precisely what claimed Astandard was!
So we are done.

To illustrate the idea here, we work a quick example:

Example. Consider the linear transformation

T (x, y) = (4x− 6y, x− y).

Write this transformation as a matrix with respect to the standard basis, and also with
respect to the basis B = {~b1 = (3, 1), ~b2 = (2, 1)}. Relate these two matrices via the
proposition above. Verify that the left and right hand sides are indeed equal.

Answer. To write this as a matrix using the standard basis, just look at where it sends
(1, 0) and (0, 1):

Tstandard =

[
4 −6
1 −1

]
.

To write it as a matrix using the basis B, first determine where it sends ~b1 and ~b2, and
write these results as a combination of the elements of B:

T (~b1) = (6, 2) = 2~b1 = (2, 0)B,

T (~b2) = (2, 1) = ~b2 = (0, 1)B.
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Use these vectors to create the matrix with respect to the basis B:

Tstandard =

[
2 0
0 1

]
B.

According to the proposition above, we should have[
4 −6
1 −1

]
=

[
3 2
1 1

]
·
[
2 0
0 1

]
B

·
[
3 2
1 1

]−1

.

To check this, we quickly determine the inverse of

[
3 2
1 1

]
by hand: it’s the matrix

[
a b
c d

]
such that [

a b
c d

]
·
[
3 2
1 1

]
=

[
1 0
0 1

]
.

Multiplying out the left-hand side and setting it equal to the right-hand side gives us the
following four linear equations:

3a + b = 1,

2a + b = 0,

3c + d = 0,

2c + d = 1.

Subtracting one copy of the second equation from the first gives us a = 1, which when
substituted into the second equation also gives b = −2. Similarly, subtracting one copy of
the fourth equation from the third gives us c = −1, which when plugged into the fourth
equation also yields d = 3. Therefore, we have[

3 2
1 1

]−1

=

[
1 −2
−1 3

]
,

and therefore should have[
4 −6
1 −1

]
=

[
3 2
1 1

]
·
[
2 0
0 1

]
B

·
[

1 −2
−1 3

]
.

This is easily verified:[
3 2
1 1

]
·
[
2 0
0 1

]
B

·
[

1 −2
−1 3

]
=

[
6 2
2 1

]
·
[

1 −2
−1 3

]
=

[
4 −6
1 −1

]
.

With our earlier proposition in mind, we can restate our work from week 1, Friday’s
lecture using the language of a change-of-basis matrix! Specifically: we have shown that

the matrix

[
1 1
1 0

]
can be written using the basis

B =

{
~b1 =

(
ϕ√

1 + ϕ2
,

1√
1 + ϕ2

)
, ~b2 =

(
1√

1 + ϕ2
,− ϕ√

1 + ϕ2

)}
.
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as the matrix [
ϕ 0
0 − 1

ϕ

]
B

.

If we use the result we gave above about change-of-basis matrices, we’ve just proven
that

[
1 1
1 0

]
=

 ϕ√
1+ϕ2

1√
1+ϕ2

1√
1+ϕ2

− ϕ√
1+ϕ2

−1

·
[
ϕ 0
0 − 1

ϕ

]
B

·

 ϕ√
1+ϕ2

1√
1+ϕ2

1√
1+ϕ2

− ϕ√
1+ϕ2


.

Which is exactly what we did on last Friday’s lecture — but this time, we understand
why these things fit together in the way that they did!

Well, mostly. The only thing we haven’t discussed is why we chose the basis B in the
way that we did. In next week’s class, we’ll fix that!
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