Math 108B	Professor: Padraic Bartlett
Lecture 4: Applications of Orthogonality:	QR Decompositions
Week 4	UCSB 2014

In our last class, we described the following method for creating orthonormal bases, known as the Gram-Schmidt method:

Theorem. Suppose that V is a k-dimensional space with a basis $B=\left\{\overrightarrow{b_{1}}, \ldots \overrightarrow{b_{k}}\right\}$.
The following process (called the Gram-Schmidt process) creates an orthonormal basis for V :

1. First, create the following vectors $\left\{\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{k}}\right\}$:

- $\overrightarrow{u_{1}}=\overrightarrow{b_{1}}$.
- $\overrightarrow{u_{2}}=\overrightarrow{b_{2}}-\operatorname{proj}\left(\overrightarrow{b_{2}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)$.
- $\overrightarrow{u_{3}}=\overrightarrow{b_{3}}-\operatorname{proj}\left(\overrightarrow{b_{3}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{b_{3}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)$.
- $\overrightarrow{u_{4}}=\overrightarrow{b_{4}}-\operatorname{proj}\left(\overrightarrow{b_{4}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{b_{4}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)-\operatorname{proj}\left(\overrightarrow{b_{4}}\right.$ onto $\left.\overrightarrow{u_{3}}\right)$.
\vdots
- $\overrightarrow{u_{k}}=\overrightarrow{b_{k}}-\operatorname{proj}\left(\overrightarrow{b_{k}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\ldots-\operatorname{proj}\left(\overrightarrow{b_{k}}\right.$ onto $\left.\overrightarrow{u_{k}-1}\right)$.

2. Now, take each of the vectors $\overrightarrow{u_{i}}$, and rescale them so that they are unit length: i.e. redefine each $\overrightarrow{u_{i}}$ as the rescaled vector $\frac{\overrightarrow{u_{i}}}{\left\|u_{i}\right\|}$.
In this class, I want to talk about a useful application of the Gram-Schmidt method: the QR decomposition! We define this here:

1 The QR decomposition

Definition. We say that an $n \times n$ matrix Q is orthogonal if its columns form an orthonormal basis for \mathbb{R}^{n}.

As a side note: we've studied these matrices before! In class on Friday, we proved that for any such matrix, the relation

$$
Q^{T} \cdot Q=I
$$

held; to see this, we just looked at the (i, j)-th entry of the product $Q^{T} \cdot Q$, which by definition was the i-th row of Q^{T} dotted with the j-th column of A. The fact that Q 's columns formed an orthonormal basis was enough to tell us that this product must be the identity matrix, as claimed.

Definition. A QR-decomposition of an $n \times n$ matrix A is an orthogonal matrix Q and an upper-triangular ${ }^{1}$ matrix R, such that

$$
A=Q R .
$$

Theorem. Every invertible matrix has a QR-decomposition, where R is invertible.
Proof. We prove this using the Gram-Schmidt process! Specifically, consider the following process: take the columns $\overrightarrow{a_{c_{1}}}, \ldots \overrightarrow{c_{c_{n}}}$ of A. Because A is invertible, its columns are linearly independent, and thus form a basis for \mathbb{R}^{n}. Therefore, running the Gram-Schmidt process on them will create an orthonormal basis for \mathbb{R}^{n} ! Do this here: i.e. set

- $\overrightarrow{u_{1}}=\overrightarrow{a_{c_{1}}}$.
- $\overrightarrow{u_{2}}=\overrightarrow{a_{c_{2}}}-\operatorname{proj}\left(\overrightarrow{a_{2}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)$.
- $\overrightarrow{u_{3}}=\overrightarrow{a_{c_{3}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{3}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{a_{c_{3}}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)$.
- $\overrightarrow{u_{4}}=\overrightarrow{a_{c_{4}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{4}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{a_{4}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)-\operatorname{proj}\left(\overrightarrow{a_{4}}\right.$ onto $\left.\overrightarrow{u_{3}}\right)$.
- $\overrightarrow{u_{n}}=\overrightarrow{a_{c_{n}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{n}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)-\ldots-\operatorname{proj}\left(\overrightarrow{c_{n}}\right.$ onto $\left.\overrightarrow{u_{n-1}}\right)$.

Skip the rescaling step for a second. If we take these equations and solve them for the columns $\overrightarrow{a_{c_{i}}}$ of A, we get

- $\overrightarrow{a_{c_{1}}}=\overrightarrow{u_{1}}$.
- $\overrightarrow{a_{c_{2}}}=\overrightarrow{u_{2}}+\operatorname{proj}\left(\overrightarrow{a_{2}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)$.
- $\overrightarrow{a_{c_{3}}}=\overrightarrow{u_{3}}+\operatorname{proj}\left(\overrightarrow{a_{c_{3}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)+\operatorname{proj}\left(\overrightarrow{a_{c_{3}}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)$.
- $\overrightarrow{a_{c_{4}}}=\overrightarrow{u_{4}}+\operatorname{proj}\left(\overrightarrow{a_{c_{4}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)+\operatorname{proj}\left(\overrightarrow{a_{4}}\right.$ onto $\left.\overrightarrow{u_{2}}\right)+\operatorname{proj}\left(\overrightarrow{a_{4}}\right.$ onto $\left.\overrightarrow{u_{3}}\right)$.
- $\overrightarrow{a_{c_{n}}}=\overrightarrow{u_{n}}+\operatorname{proj}\left(\overrightarrow{a_{c_{n}}}\right.$ onto $\left.\overrightarrow{u_{1}}\right)+\ldots+\operatorname{proj}\left(\overrightarrow{a_{c_{n}}}\right.$ onto $\left.\overrightarrow{u_{n-1}}\right)$.

Now, notice that all of the $\operatorname{proj}\left(\overrightarrow{c_{i}}\right.$ onto $\left.\overrightarrow{u_{j}}\right)$-terms are actually, by defintion, just multiples of the vector $\overrightarrow{u_{j}}$. To make this more obvious, we could replace each of these terms with what they are precisely defined to be, i.e. $\frac{a_{c_{i}} \cdot \cdot \overrightarrow{u_{j}}}{\left\|u_{1}\right\|^{2}} \vec{j}$. However, that takes up a lot of space! Instead, for shorthand's sake, denote the constant $\frac{a_{c_{i}} \cdot \overrightarrow{u_{j}}}{\left\|\overrightarrow{u_{1}}\right\|^{2}}$ as $p_{c_{i}, j}$. Then, we have the following:

- $\overrightarrow{a_{c_{1}}}=\overrightarrow{u_{1}}$.

[^0]- $\overrightarrow{c_{c_{2}}}=\overrightarrow{u_{2}}+p_{c_{2}, 1} \overrightarrow{u_{1}}$.
- $\overrightarrow{a_{c_{3}}}=\overrightarrow{u_{3}}+p_{c_{3}, 1} \overrightarrow{u_{1}}+p_{c_{3}, 2} \overrightarrow{u_{2}}$.
- $\overrightarrow{a_{c_{4}}}=\overrightarrow{u_{4}}+p_{c_{4}, 1,} \overrightarrow{u_{1}}+p_{c_{4}, 2} \overrightarrow{u_{2}}+p_{c_{4}, 3} \vec{u}$.
- $\overrightarrow{a_{c_{n}}}=\overrightarrow{u_{n}}+p_{c_{2}, 1} \overrightarrow{u_{1}}+\ldots+p_{c_{2}, n-1} \overrightarrow{u_{n-1}}$.

If we do this, then it is not too hard to see that we actually have the following identity:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \overrightarrow{u_{3}} & \ldots & \overrightarrow{u_{n}} \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \cdot\left[\begin{array}{ccccc}
1 & p_{c_{2}, 1} & p_{c_{3}, 1} & \ldots & p_{c_{n}, 1} \\
0 & 1 & p_{c_{3}, 2} & \ldots & p_{c_{n}, 2} \\
0 & 0 & 1 & \ldots & p_{c_{n}, 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccccc}
\vdots & \vdots & \vdots & & \\
\vdots & \vdots & \vdots & & \vdots \\
\overrightarrow{u_{1}} & \left(\overrightarrow{u_{2}}+p_{c_{2}, 1} \overrightarrow{u_{1}}\right) & \left(\overrightarrow{u_{3}}+p_{c_{3}, 2} \overrightarrow{u_{2}}+p_{c_{3}, 1} \overrightarrow{u_{1}}\right) & \ldots & \left(\overrightarrow{u_{n}}+\sum_{i=1}^{n-1} p_{c_{n}, i} \overrightarrow{u_{i}}\right) \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right]=A .
\end{aligned}
$$

In other words, we have a QR-decomposition!
Well, almost. The left-hand matrix's rows form an orthogonal basis for \mathbb{R}^{n}, but they are not yet all length 1 . To fix this, simply scale the left matrix's columns so that they're all length 1 , and then increase the scaling on the right-hand matrix's rows so that it cancels out: i.e.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
\frac{\overrightarrow{u_{1}}}{\left\|\overrightarrow{u_{1}}\right\|} \| & \frac{\overrightarrow{u_{2}}}{\left\|\overrightarrow{u_{2}}\right\|} \| & \frac{\overrightarrow{u_{3}}}{\| \overrightarrow{u_{3}}} \| & \cdots & \frac{\overrightarrow{u_{n}}}{\left\|\overrightarrow{u_{n}}\right\|} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right] \cdot\left[\begin{array}{cccccc}
\left\|\overrightarrow{u_{1}}\right\| & p_{c_{2}, 1} \cdot\left\|\overrightarrow{u_{1}}\right\| & p_{c_{3}, 1} \cdot\left\|\overrightarrow{u_{1}}\right\| & \ldots & p_{c_{n}, 1} \cdot\left\|\overrightarrow{u_{2}}\right\| \\
0 & \left\|\overrightarrow{u_{2}}\right\| & p_{c_{3}, 2} \cdot\left\|\overrightarrow{u_{2}}\right\| & \ldots & p_{c_{n}, 2} \cdot\left\|\overrightarrow{u_{2}}\right\| \\
0 & 0 & \| & \left\|\overrightarrow{u_{3}}\right\| & \ldots & p_{c_{n}, 3} \cdot\left\|\overrightarrow{u_{3}}\right\| \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \left\|\overrightarrow{u_{n}}\right\|
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\overrightarrow{u_{1}} & \left(\overrightarrow{u_{2}}+p_{c_{2}, 1} \overrightarrow{u_{1}}\right) & \left(\overrightarrow{u_{3}}+p_{c_{3}, 2} \overrightarrow{u_{2}}+p_{c_{3}, 1} \overrightarrow{u_{1}}\right) & \ldots \\
\vdots & \vdots & \vdots & \left(\overrightarrow{u_{n}}+\sum_{i=1}^{n-1} p_{c_{n}, i} \overrightarrow{u_{i}}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots
\end{array}\right]=A .
\end{aligned}
$$

A QR-decomposition!

As a side note, it bears mentioning that this result holds even if the matrix is not invertible:

Theorem. Every matrix has a QR-decomposition, though R may not always be invertible.
The proof is pretty much exactly the same as above, except you have to be careful when dealing with the $\left\|\overrightarrow{u_{i}}\right\|$'s, as you might be dividing by zero in the situations where A 's columns were linearly dependent. On your own, try to think about what you'd need to change in the above proof to make it work for a general matrix!

Instead, I want to focus on why this decomposition is nice: solving systems of linear equations!

2 Applications of QR decompositions: Solving Systems of Linear Equations

Suppose you have an invertible matrix A and vector \vec{b}. Consider the task of a vector \vec{v} such that

$$
A \vec{v}=\vec{b} ;
$$

in other words, solving the system of n linear equations $a_{r_{i}} \cdot \vec{v}=b_{i}, i=1 \ldots n$. This is typically a doable if slightly tedious task, via Gaussian elimination (i.e. pivoting on entries in A.) However it takes time, and (from the perspective of implementing on a computer) can be fairly sensitive to small changes or errors: i.e. if you're pivoting on an entry in A that is nearly zero, it is easy for small rounding errors in a computer program to suddenly cause very big changes in what the entries in your matrix should be!

However, suppose that we have a QR decomposition for A : i.e. we can write $A=Q R$, for some upper-triangular R and orthogonal Q. Then, solving

$$
Q R \vec{v}=\vec{b}
$$

is the same task as solving

$$
Q^{T} Q R \vec{v}=R \vec{v}=Q^{T} \vec{b} ;
$$

and this is suddenly much easier!
In particular, because R is upper-triangular, $R \vec{v}$ is just

$$
\left[\begin{array}{c}
r_{1,1} v_{1}+r_{1,2} v_{2}+r_{1,3} v_{3}+\ldots+r_{1, n} v_{n} \\
r_{2,2} v_{2}+r_{2,3} v_{3}+\ldots+r_{2, n} v_{n} \\
\vdots \\
r_{n-1, n-1} v_{n-1}+r_{n-1, n} v_{n} \\
r_{n, n} v_{n}
\end{array}\right] .
$$

And finding values of this to set equal to some fixed vector $Q^{T} \vec{b}$ is really easy! In particular, the last coordinate of $R \vec{v}$ just has one variable v_{n}, so it's easy to solve for that variable. From here, the second coordinate of $R \vec{v}$ has just two variables, v_{n-1}, v_{n}, one of which we
know now! So it's equally easy to solve for v_{n-1}. Working our way up, we have the same situation for each variable: we never have to do any "work" to solve for the variables v_{i} !

To illustrate this, we work an example:
Example. Consider the matrix

$$
A=\left[\begin{array}{cccc}
2 & 1 & 3 & 3 \\
2 & 1 & -1 & 1 \\
2 & -1 & 3 & -3 \\
2 & -1 & -1 & -1
\end{array}\right]
$$

First, find its QR decomposition. Then, use that QR decomposition to find a vector A such that

$$
A \cdot \vec{v}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]
$$

Answer. We start by performing Gram-Schmidt on the columns of A :

$$
\begin{aligned}
\overrightarrow{u_{1}} & =\overrightarrow{a_{c_{1}}}=(2,2,2,2) . \\
\overrightarrow{u_{2}} & =\overrightarrow{a_{c_{2}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{2}}} \text { onto } \overrightarrow{u_{1}}\right) \\
& =(1,1,-1,-1)-\frac{(1,1,-1,-1) \cdot(2,2,2,2)}{(2,2,2,2) \cdot(2,2,2,2)}(2,2,2,2) \\
& =(1,1,-1,-1)-0 \\
& =(1,1,-1,-1) . \\
\overrightarrow{u_{3}} & =\overrightarrow{a_{c_{3}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{3}}} \text { onto } \overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{a_{c_{3}}} \text { onto } \overrightarrow{u_{2}}\right) \\
& =(3,-1,3,-1)-\frac{(3,-1,3,-1) \cdot(2,2,2,2)}{(2,2,2,2) \cdot(2,2,2,2)}(2,2,2,2)-\frac{(3,-1,3,-1) \cdot(1,1,-1,-1)}{(1,1,-1,-1) \cdot(1,1,-1,-1)}(1,1,-1,-1) \\
& =(3,-1,3,-1)-\frac{8}{16}(2,2,2,2)-0 \\
& =(2,-2,2,-2) . \\
\overrightarrow{u_{4}} & =\overrightarrow{a_{c_{4}}}-\operatorname{proj}\left(\overrightarrow{a_{c_{4}}} \text { onto } \overrightarrow{u_{1}}\right)-\operatorname{proj}\left(\overrightarrow{a_{c_{4}}} \text { onto } \overrightarrow{u_{2}}\right)-\operatorname{proj}\left(\overrightarrow{a_{c_{4}}} \text { onto } \overrightarrow{u_{3}}\right) \\
& =(3,1,-3,-1)-\frac{(3,1,-3,-1) \cdot(2,2,2,2)}{(2,2,2,2) \cdot(2,2,2,2)}(2,2,2,2)-\frac{(3,1,-3,-1) \cdot(1,1,-1,-1)}{(1,1,-1,-1) \cdot(1,1,-1,-1)}(1,1,-1,-1) \\
& -\frac{(3,1,-3,-1) \cdot(2,-2,2,-2)}{(2,-2,2,-2) \cdot(2,-2,2,-2)}(2,-2,2,-2) \\
& =(3,1,-3,-1)-0-\frac{8}{4}(1,1,-1,-1)-0 \\
& =(1,-1,-1,1) .
\end{aligned}
$$

Using these four vectors, we construct a QR-decomposition as described earlier. Notice that we've already calculated the $\frac{\vec{c}_{\vec{c}} \cdot \overrightarrow{u_{j}}}{\left\|\overrightarrow{u_{i}}\right\|^{2}} \vec{u}_{j}=p_{c_{i}, j}$'s above, and so we don't need to repeat our
work here:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\frac{u_{1}}{\| u_{1}} \| & \frac{u_{2}}{\| u_{1}} \| & \frac{u_{3}}{\| u_{1}} \| & \frac{u_{4}}{\| u_{4}} \| \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \cdot\left[\begin{array}{cccc}
\left\|\overrightarrow{u_{1}}\right\| & p_{c_{2}, 1} \cdot\left\|\overrightarrow{u_{1}}\right\| & p_{c_{3}, 1} \cdot\left\|\overrightarrow{u_{1}}\right\| & p_{c_{4}, 1} \cdot\left\|\overrightarrow{u_{1}}\right\| \\
0 & \left\|\overrightarrow{u_{2}}\right\| & p_{c_{3}, 2} \cdot\left\|\overrightarrow{u_{2}}\right\| & p_{c_{4}, 2} \cdot\left\|\overrightarrow{u_{2}}\right\| \\
0 & 0 & \left\|\overrightarrow{u_{3}}\right\| & p_{c_{4}, 3} \cdot\left\|\overrightarrow{u_{3}}\right\| \\
0 & 0 & 0 & \left\|\overrightarrow{u_{4}}\right\|
\end{array}\right]} \\
& =\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
4 & 0 & 2 & 0 \\
0 & 2 & 0 & 4 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] .
\end{aligned}
$$

From here, to solve the equation $A \vec{v}=(1,2,0,1)$, we can use our QR -decomposition to write $Q R \vec{v}=(1,2,0,1)$, or equivalently $R \vec{v}=Q^{T}(1,2,0,1)$. We find the right-hand-side here:

$$
\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]^{T} \cdot\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
0
\end{array}\right] .
$$

So: we have the simple problem of finding $\vec{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that

$$
\left[\begin{array}{llll}
4 & 0 & 2 & 0 \\
0 & 2 & 0 & 4 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
0
\end{array}\right] .
$$

Ordering from bottom to top, this problem is just the task of solving the four linear equations

$$
\begin{aligned}
2 v_{4} & =0 \\
4 v_{3} & =-1 \\
2 v_{2}+4 v_{4} & =1 \\
4 v_{1}+2 v_{3} & =2 .
\end{aligned}
$$

If we solve from the top down, this is trivial: we get $v_{4}=0, v_{3}=-1 / 4, v_{2}=1 / 2$, and $v_{1}=\frac{5}{8}$. Thus, we've found a solution to our system of linear equations, and we're done!

[^0]: ${ }^{1} \mathrm{~A}$ matrix is called upper-triangular if all of its entries below the main diagonal are 0 . For example, $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$ is upper-triangular.

