
Math 108B Professor: Padraic Bartlett

Lecture 6: Lies, Inner Product Spaces, and Symmetric Matrices

Week 6 UCSB 2014

1 Lies

Fun fact: I have deceived1 you somewhat with these last few lectures!
Let me clarify. For the past week, we’ve been working with the Schur decomposition,

a result which says that for any complex-valued matrix A, there is some orthonormal basis
B for Cn under which A is upper-triangular!

This is certainly true. Moreover, the proof we used to show this result is also completely
accurate: our six-step process of

1. finding an eigenvalue λ,

2. finding an orthonormal basis B for Eλ, the collection of all eigenvectors for λ,

3. extending this basis to an orthonormal basis B ∪ C for all of Cn,

4. writing A in this basis B ∪ C,

5. noticing that A in this basis is a matrix of the form

AB =



λ1
. . . Arem

λ1

0 A2


,

6. and finally repeating this whole 1-6 process again on A2— this works exactly as stated.

Rather, I claim that I tricked you in a far subtler and more fundamental way: not in terms
of proof techniques or methods, but rather in terms of the very basic concepts that you’ve
been working with! To understand this deception, try to answer the following question:

Question. What is the length of the vector (1, i) ∈ C2? What is a vector that is orthogonal
to (1, i)?

Naively, you might hope that you can solve this problem by just using our existing
formula for the length of a real-valued vector:

∀~v ∈ Rn, ||~v|| =
√
v21 + . . . v2n.

1For good reasons.
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Doing this here, however, gives us a fairly distressing answer:√
12 + i2 =

√
1− 1 = 0.

That seems. . . wrong. This is a clearly nonzero vector; surely it should have nonzero length!
A more subtle yet equally wrong mistake comes up when trying to find vectors orthogonal

to (1, i). You might believe that to find a vector orthogonal to (1, i), we just need to find
some α, β ∈ C2 such that

(α, β) · (1, i) = 0.

If you were interpret the above as the normal dot product, this is just asking us for α, β
such that

α · 1 + β · i = 0.

One immediate solution to the above is to set α = 1, β = i: then we get 12 + i2 = 0.
But what does this say? We’ve just argued that (1, i) is orthogonal to. . . (1, i). In other

words, we’re claiming that a vector is orthogonal to itself!
This is kind of horrible for us; pretty much all of our work earlier has very heavily relied

on the idea that orthogonal vectors are linearly independent and have a large host of other
“nice” properties that are not working in the above example. So: what do we do? Do we
give up? Is math broken forever?

2 No.

Math is not broken forever.
Rather, our definitions just need some clarification for Cn!

3 Length and Orthogonality in Cn

To get a better idea of how we should be dealing with length and orthogonality, let’s look
at the simplest case possible, i.e. C1. For a complex number a+ bi, we have the following:

ℝ

iℝ

θ

z=a+bi

The above picture suggests that the length of a+ bi is just
√
a2 + b2, the hypotenuse of the

triangle in the above picture. Denote this quantity as |z|.
This idea is related to the following definition:
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Definition. Given a complex number z ∈ C, write z = a + bi, where a, b ∈ R. We define
the complex conjugate, z, of z as the complex number a − bi. Notice that for any real
number a, the complex conjugate of a is just a itself, and furthermore that real numbers are
the only numbers with this property. Also, notice that for any complex number z = a+ bi,
we have

z · z = (a+ bi)(a− bi) = a2 + b2 = |z|2,

the length of z squared.

This setting suggests to us that a better definition for the “length” of a complex vector
might be the following:

Definition. Take any vector ~v = (v1, . . . vn) ∈ Cn. The length of ~v is the following
quantity:

||~v|| =
√
|v1|2 + . . . |vn|2.

This avoids the issue we had earlier, where nonzero vectors had nonzero length; here, if any

component of ~v is nonzero, then (because the length quantities
√
a2j + b2j are all positive for

any vj = aj + ibji) the entire quantity ||~v|| is nonzero. So this fixes our first problem!
Moreover: I claim that this solution to our first problem — a notion of “length” for

complex vectors — suggests an answer to our second problem, which is a notion for “or-
thogonality” of complex vectors!

Initially, we had hoped to say that two complex vectors are orthogonal whenever their dot
product is 0. This, however, was a disaster: we wound up with vectors being orthogonal to
themselves, which is very far away from the “meeting at right angles” idea that orthogonality
had for us in Rn. This was caused by the same phenomena that made our original guess for
how to define length fail; in both cases, we had complex multiplication creating things that
“canceled” when we didn’t actually want these things to cancel! So, if we want to fix this
notion, we need to start by fixing our notion of dot product for complex numbers! And
in particular, this fix is suggested by our earlier work with length. Consider the following
proposition, which we’ve proven in past lectures for real-valued vectors:

Proposition. Given any vector ~v ∈ Rn, we have ||~v||2 = ~v · ~v.

This suggests that maybe our fix for the “length” problem earlier may be a good fix for our
“orthogonality” problem here. In particular, suppose that we want to define a “product”
on complex vectors with the following property: for any vector ~v ∈ Cn, we should have
~v prod ~v = ||~v||2. What should we do?

Well, if we make the following observation on the idea of length:

||~v||2 = |v1|2 + . . . |vn|2 = v1v1 + v2v2 + . . . vnvn =

n∑
i=1

vivi.

this strongly suggests the following definition for a “product:”
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Definition. Suppose that ~v, ~w are a pair of vectors in C. We define the inner product of
~v and ~w as follows:

〈~v, ~w〉 =
n∑
i=1

viwi.

This idea of inner product lets us create a corresponding notion of orthogonality, like we
did on HW#3 for some other notions of inner products:

Definition. Given two nonzero complex vectors ~v, ~w ∈ C, we say that ~v and ~w are or-
thogonal if and only if 〈~v, ~w〉 = 0.

Notice that under this definition, we never say that a vector is orthogonal to itself, as
for any nonzero vector ~v we have 〈~v,~v〉 = ||~v||2, which is nonzero.

This definition lets us go back and answer our earlier question: a vector (α, β) is now
orthogonal to (1, i) if and only if

〈(α, β), (1, i)〉 = α · 1 + β · i = α− iβ.

So, one sample vector that is orthogonal to (1, i) is therefore (1,−i).
This notion of inner product on complex vectors is pretty similar to our old notion of

dot product over real-valued vectors. In particular, it shares a number of properties with
the dot product:

1. Positive-definite: for any vector ~v, the inner product of ~v with itself corresponds to
its length squared, and thus in particular is nonzero whenever ~v 6= 0.

2. Linear in first slot: for any vectors ~u,~v, ~w and coefficient α, the inner product
〈~u+ α~v, ~w〉 is equal to the sum 〈~u, ~w〉+ α〈~v, ~w〉.

3. Conjugate-symmetric: for any two vectors ~v, ~w, we have 〈~v, ~w〉 = 〈~w,~v〉. (For the
real-valued dot product, this property trivially held because ~v · ~w = ~w ·~v and because
both sides were real-valued (and thus equal to their own conjugate.))

There are many different notions of inner products; we say that any map that takes in two
vectors in a space and sends them to a scalar is an inner product if it satisfies the three
properties above. In practice, however, we will usually restrict ourselves to just working
with this idea of inner product for the complex numbers, and only work with other inner
products when explicitly stated.

More excitingly, basically every old result we’ve ever had on orthogonality? It carries
forward to this notion of inner product! We list some highlights here:

Theorem. If a collection of vectors ~v1, . . . ~vk are all orthogonal to each other with respect
to some inner product, then they are all linearly independent.

Proof. Take any linear combination of these vectors that combines to ~0:

a1 ~v1 + . . .+ an ~vn = ~0
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Now, take the inner product of this linear combination with any ~vi. By linearity, this is
equal to

a1〈~v1, ~vi〉+ . . .+ an〈 ~vn, ~vi〉 = 〈~vi,~0〉.

Notice that because of linearity, we have that 〈~vi,~0〉 = 〈~vi,~0 + ~0〉 = 〈~vi,~0〉 + 〈~vi,~0〉, and
therefore that 〈~vi,~0〉 = 0. So this tells us the right-hand-side. The left-hand-side, by
orthogonality, is just ai〈~vi, ~vi〉, which is ai||~vi||2. In particular, the ||~vi||2 portion is nonzero;
so we can divide both sides through by it to get

ai = 0.

We can perform this manipulation for any i; therefore, all of the coefficients in our linear
combination must be 0. In other words, our set is linearly independent, because there is no
nontrivial combination of our vectors that creates the all-zero vector!

Definition. Let ~v, ~w be a pair of vectors in a space equipped with an inner product. The
projection of ~v onto ~w with respect to that inner product is the following object:

proj(~v onto ~w) =
〈~v, ~w〉
〈~w, ~w〉

~w.

Similarly, the orthogonal part of ~v over ~w with respect to that inner product, denoted
orth(~v over ~w), is the following vector:

orth(~v over ~w) = ~v − proj(~v onto ~w)

Theorem. Given two vectors ~v, ~w from a space equipped with some inner product, if we
form the vector orth(~v over ~w) with respect to our inner product, it is orthogonal to the
vector ~w.

Proof. This proof works exactly how it did for dot products, except there are〈−,−〉’s where
we had ·’s before: we just calculate 〈orth(~v over ~w), ~w〉, and get

〈orth(~v over ~w), ~w〉 = 〈~v − proj(~v onto ~w), ~w〉

= 〈~v, ~w〉 −
〈
〈~v, ~w〉
〈~w, ~w〉

~w, ~w

〉
= 〈~v, ~w〉 − 〈~v, ~w〉

〈~w, ~w〉
〈~w, ~w〉

= 〈~v, ~w〉 − 〈~v, ~w〉
= 0.

So these two vectors are orthogonal!

In past lectures, we generalized the above ideas to the Gram-Schmidt process. We
do this again here:
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Theorem. Consider the following process (called the Gram-Schmidt process, formally), to
create a set of k nonzero orthogonal vectors { ~u1, . . . ~uk} out of combinations of some basis
B = {~b1, . . . ~bk}:

• ~u1 = ~b1.

• ~u2 = ~b2 − proj(~b2 onto ~u1).

• ~u3 = ~b3 − proj(~b3 onto ~u1)− proj(~b3 onto ~u2).

• ~u4 = ~b4 − proj(~b4 onto ~u1)− proj(~b4 onto ~u2)− proj(~b4 onto ~u3).

...

• ~uk = ~bk − proj(~bk onto ~u1)− . . .− proj(~bk onto ~uk−1).

This process works: i.e. the result above is a set of orthogonal vectors that forms a new
basis for whatever space B spanned! In particular, it works for any fixed inner product that
you use to calculate all of the projection maps above.

We omit the proof here, because it’s literally the same idea as before: just replace all of the
instances of dot products with inner products, and everything goes through just like it did
in our earlier example.

4 Applications: Real Symmetric Matrices

With the above clarifications made, everything we did with Schur’s theorem still works:
throughout our proof of Schur’s theorem, the only technique we used to get orthogonal
vectors was repeated Gram-Schmidt, and this works for any space equipped with an inner
product! Math is unbroken, life is great, we can decompose matrices, yay.

. . . what else can we do with this new idea? Well, consider the following definition:

Definition. A matrix A is called symmetric if AT = A: i.e. if for any (i, j), the (i, j)-th

entry of A is equal to the (j, i)-th entry of A. For example, the matrix

[
1 2
2 1

]
is symmetric,

while the matrix

[
1 2
3 4

]
is not.

On the homework, you proved the following result:

Theorem. Suppose that A is a real symmetric matrix, and let A’s Schur decomposition
be something of the form URU−1, where U is an orthogonal matrix of real numbers, and
R is an upper-triangular matrix. Then R is in fact a diagonal matrix.

Using our new ideas about inner products, we can strengthen this result here:

Theorem. (The spectral theorem.) Suppose that A is a n × n real symmetric matrix
(i.e. don’t make any assumptions about what U is like we did above.) Then in A’s Schur
decomposition URU−1, R is a diagonal real-valued matrix! Furthermore, we can insure in
our construction of U that it is a real-valued orthogonal matrix.
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In other words, we don’t need to make any assumptions about A itself: as long as A is a
real-valued symmetric matrix, it has the form UDUT , where U is an orthogonal matrix!

Consequently, notice that if we multiply UDUT by any column ~uci of U , we get

UDUT · ~uci = UD · ~ei = Udii~ei = dii · ~uci .

In other words, we have that the columns of U are all eigenvectors of A = UDUT , with
eigenvalues corresponding to the entries dii on the diagonal of D! This gives us the following
remarkably useful result for free:

Theorem. Suppose that A is a n × n real symmetric matrix. Then there is an orthonor-
mal basis { ~uc1 , . . . ~ucn} for Rn, made out of n orthogonal (and thus linearly independent)
eigenvectors for A.

This is incredibly useful: as we’ve seen often in this course, many matrices (like

[
1 1
0 1

]
)

cannot be written in this form, and whenever we can write a matrix in this form it makes
lots of tasks, like raising the matrix to large powers, remarkably trivial.

How do we prove this?

5 Real Symmetric Matrices: The Concepts

First, we need to understand the following pair of definitions:

Definition. Take a complex-valued m × n matrix A. The conjugate transpose of A,
denoted A∗, is the n × m matrix formed as follows: set the (i, j)-th entry of A∗ to be
the complex conjugate of the (j, i)-th entry of A. In other words, to get A∗, first take
A’s transpose, then replace each entry with its complex conjugate. Again, notice that for
real-valued matrices A, we have A∗ = AT .

Definition. A complex-valued n× n matrix is called unitary if U∗ · U = I. For example,

the matrix

 3/5 4i/5 0
4i/5 3/5 0

0 0 1

 is unitary, because

 3/5 4i/5 0
4i/5 3/5 0

0 0 1

∗

·

 3/5 4i/5 0
4i/5 3/5 0

0 0 1

 =

 3/5 −4i/5 0
−4i/5 3/5 0

0 0 1

 ·
 3/5 4i/5 0

4i/5 3/5 0
0 0 1

 =

1 0 0
0 1 0
0 0 1


.

The reason we mention these concepts is because they will help us understand the
matrices U that we get from Schur decompositions URU−1 of matrices! Specifically, we
have the following theorem:

Theorem. Take any orthonormal basis { ~uc1 , . . . ~ucn} for Cn. Form the n × n matrix U
given by using these basis vectors as the columns of U . Then U is unitary: i.e. U∗U = I.
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Proof. To see this, simply look at the product U∗U . Denote the columns ~uci as the vectors
(u1i, . . . uni); then we have

U∗ · U =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

. . .
...

u1n u2n
... unn

 ·

u11 u12 . . . u1n
u21 u22 . . . u2n

...
...

. . .
...

un1 un2
... unn


.

The diagonal entries (i, i) on this product matrix are the following expressions:

(u1i, . . . uni) · (u1i, . . . uni) =
n∑
k=1

ukiuki =
n∑
k=1

|uki|2 = || ~uci ||2 = 1,

because the ~uci ’s are all unit length.
Conversely, the off-diagonal entries (i, j), i 6= j are just

(u1i, . . . uni) · (u1j , . . . unj) =
n∑
k=1

ukiukj = 〈 ~uci , ~ucj 〉 = 0.

Therefore, we have that U∗U = I, as claimed.

In particular, this tells us that the matrices U from Schur decompositions URU−1 of
matrices are unitary, because those matrices come from orthonormal bases for Cn! So we
can actually write Schur decompositions in the form URU∗, which is nice.

Now, note the following quick lemmas, one of which we have proven before:

Lemma 1. Take any string of matrices A1, . . . An, such that A1 · . . . · An is well-defined.
Then

(A1 ·A2 · . . . ·An)T = ATn ·ATn−1 · . . . ·AT2 ·AT1 .

Proof. First, notice that for any two n×nmatricesA,B, we have (A·B)T = (BT )·(AT ). This
is not too hard to show: simply notice that due to the definition of matrix multiplication,
the entry in (i, j) of A ·B is

(the i-th row of A) · (the j-th column of B),

which means that the (j, i)-th entry of (A ·B)T is precisely that dot product.
On the other hand, notice that the j-th row of BT is just (b1,j , . . . bn,j), in other words

the j-th column of B. Similarly, the i-th column of AT is (ai,1, . . . ai,n), the i-th row of A.
Therefore, we have that the (j, i)-th entry of (BT ) · (AT ) is just

(the j-th row of BT ) · (the i-th column of AT )

=(the j-th column of B) · (the i-th row of A)

=(the i-th row of A) · (the j-th column of B).
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Therefore the two matrices (A · B)T , (BT ) · (AT ) have the same entries, and are therefore
the same matrices!

In particular, this tells us that if we look at the transpose of a product of n matrices
together, we have that it’s just the product of their transposes in reverse order! Just
repeatedly apply the above result.

Lemma 2. Take any string of matrices A1, . . . An, such that A1 · . . . · An is well-defined.
Let Ai denote the matrix formed by replacing each entry of Ai with its conjugate. Then
A1 · . . . ·An = A1 · . . . ·An.

Proof. It suffices to prove this claim for the product of two matrices, as by induction (like
we did above) the result will extend to arbitrary products of matrices. To do this, take
any two matrices A,B. An arbitrary entry (i, j) in A · B looks like the dot product of the
conjugate of A’s i-th row with the conjugate of B’s j-th column: i.e.

n∑
k=1

ai,k · bk,j .

(Note that even though we have complex numbers here, we still use the dot product to
calculate matrix multiplication. This is because the origins of how we defined matrix mul-
tiplication came out of how we compose linear maps; in this sense, the connection with the
dot product was somewhat “accidental.”)

Similarly, an arbitrary entry in AB is just the conjugate of the dot product of A’s i-th
row and B’s j-th column: i.e.

n∑
k=1

ai,k · bk,j .

But for any two complex numbers a+ bi, x+ yi, we have

(a+ bi) · (x+ yi) = (ax− by) + (ay + bx)i = (ax− by)− (ay + bx)i = (a− bi) · (x− yi) = (a+ bi) · (x+ yi).

So these two quantities are equal, and therefore their corresponding matrices are equal.

Combining these two lemmas gives us the following result:

Lemma 3. Take any string of matrices A1, . . . An, such that A1 · . . . · An is well-defined.
Then

(A1 ·A2 · . . . ·An)∗ = A∗
n ·A∗

n−1 · . . . ·A∗
2 ·A∗

1.

This gives us our first step on the way to the spectral theorem:

Theorem. Suppose that A is a n × n real symmetric matrix. Then in A’s Schur decom-
position URU∗, R is a diagonal real-valued matrix.

9



Proof. First, notice that because A is real-valued and symmetric, then A∗ = A. Therefore,
if A’s Schur decomposition is URU∗, we have

A = URU∗,

A = A∗ = (URU∗)∗ = (U∗)∗R∗U∗ = UR∗U∗

⇒ URU∗ = UR∗U∗

⇒ U∗URU∗U = U∗UR∗U∗U

⇒ R = R∗.

Because R is upper-triangular, R∗ is lower-triangular; therefore, the identity above tells us
that all of the off-diagonal entries must be zero! Furthermore, because each of the diagonal
entries of R is equal to its own conjugate, we must have that all of these values are real. So
we have proven our theorem!

Our last step is to show that the entries in the matrix U itself must also be real-valued.
This, however, is not hard:

Theorem. Suppose that A is a n× n real symmetric matrix. Then it is possible to create
A’s Schur decomposition UDU−1 in such a way that U is an orthogonal real-valued matrix.

Proof. Take a Schur decomposition UDU∗ of A, where we know that D is diagonal and
real-valued from our earlier work.

Take any column ~uci of U . Notice that because A written in the basis U is the diagonal
matrix D, we must have that ~uci is an eigenvector — one with corresponding eigenvalue
dii in the matrix D. In particular, this tells us that A has n eigenvalues with n linearly-
independent corresponding eigenvectors.

Now, these eigenvectors might be complex-valued. That’s sad. Let’s fix that!
Pick any eigenvalue λ. Let ~u1, . . . ~uk be the columns of U that are complex-valued

eigenvectors corresponding to λ. For each vector ~u, let Re(~u) denote the real-valued vector
formed by taking the real parts of the vector ~u, and let Im(~u) denote the real-valued vector
formed by taking the coefficients from the imaginary parts of the vector ~u. Notice that
because A~u = λ~u, we have in fact that A · Re(~u) = λRe(~u) and A · Im(~u) = λ · Im(~u), by
just looking at the real and imaginary components of ~u!

Look at the collection

{Re( ~u1), Im( ~u1), . . . Re( ~uk), Im( ~uk)}.

I claim that there is some subset of k of these vectors that are linearly independent. To see
why, notice that these vectors span the same k-dimensional complex vector space spanned
by the k orthogonal vectors { ~u1, . . . ~uk}, because we can create each of the ~ui’s as a complex
linear combination Re(~ui) + i · Im(~ui). Therefore, over C there must be a subset of our
collection that is a basis for this k-dimensional space — i.e. a set of k linearly independent
vectors!

What have we made here? Well: we have made a set of k linearly independent eigen-
vectors for our eigenvalue λ! By using Gram-Schmidt on this set, we can make it into an
orthonormal basis for this eigenvalue.
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Do this sequentially for all of the eigenvalues of A. I claim that these eigenvectors form
an orthonormal basis for Rn! If this is true, then we’re done with our proof: if we write A
as a matrix under this basis, we’ve written A = UDUT , for U an orthogonal matrix and D
the diagonal matrix made out of A’s eigenvalues!

So: to properly finish our proof, we need one final lemma:

Lemma 4. Let A be a real symmetric matrix, λ, µ a pair of distinct real-valued eigenvalues,
and ~v, ~w a pair of corresponding real-valued eigenvectors. Then ~v and ~w are orthogonal.

Proof. This proof relies on the following trivial-looking but confusingly powerful linear
algebra technique: for a n× n matrix A and vector ~v ∈ Fn, we have

A~x =

 ~ar1 · ~x
...

~arn · ~x

 =
[
x1 . . . xn

]
·AT = ~xAT .

Using this, we have the following:

λ(~v · ~w) = (λ · ~v) · ~w = (A~v) · ~w = (~v ·AT ) · ~w = ~v · (A · ~w) = ~v · (µ~w) = µ(~v · ~w).

Therefore, either these two vectors are orthogonal or λ = µ. Note that if you replaced the
dot product above with an inner product, you’d get the same result for complex-valued
matrices.

Done! We’ve now proven the spectral theorem, one of the crown jewels of linear algebra!
Isn’t it cool?

11


	Lies
	No.
	Length and Orthogonality in Cn
	Applications: Real Symmetric Matrices
	Real Symmetric Matrices: The Concepts

