
Math 108B Professor: Padraic Bartlett

Lecture 7: Similar/Elementary Matrices; Jordan Canonical Form

Week 8 UCSB 2014

Over the last two weeks of lecture, we proved the spectral theorem, which stated
that any real-valued symmetric matrix A can be written as the product UDUT , for some
real-valued diagonal matrix D and orthogonal real-valued matrix U . This was a remarkably
strong result as contrasted with the Schur decomposition, which stated that any arbitrary
matrix A can be written in the form URU∗, for some upper-triangular R and unitary U .

Over the next two weeks, we are going to attempt to study another decomposition result,
namely the Jordan canonical form! In next week’s talks we will explicitly state what the
Jordan canonical form is. For now, however, consider the following question: suppose we
take an arbitrary matrix A. What kinds of matrices B can we find such that A = UBU−1,
for some U? We know that if we restrict U to be unitary, the best we can get is upper-
triangular (Schur!), but what if we weaken our restrictions on U? Can we make B into
something nicer? How much nicer?

With this desire in mind, we introduce our first topic of the week: similar matrices!

1 Similar Matrices

We have been working with the concept of similarity for essentially this entire course, so
this definition should look fairly familiar:

Definition. Two matrices A, B are called similar if there is some matrix U such that
A = UBU−1. If we want to specify what U is, we can specifically state that A and B are
similar via U .

To illustrate this definition, we rephrase some of the results we’ve recently proven using
this language of similarity:

Theorem. (Spectral theorem.) Any real-valued symmetric matrix is similar to a real-
valued diagonal matrix via a real-valued orthogonal matrix.

Theorem. (Schur decomposition.) Any n × n matrix A is similar to an upper-triangular
matrix via a unitary matrix.

Theorem. The matrix

[
1 1
0 1

]
is not similar to any diagonal matrix D.

Notice that similarity is an equivalence relation: i.e.

1. Reflexivity: any matrix A is similar to itself, because A = IAI−1.

2. Symmetry: If A is similar to B via a matrix U , then B is similar to A via the matrix
U−1; this is because A = UBU−1 ⇒ B = U−1AU .
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3. Transitivity: If A is similar to B via a matrix U , and B is similar to C via a matrix
V , then A is similar to C; this is because we can write A = UBU−1 = UV CV −1U−1 =
(UV )C(UV )−1.

This is a nice property! In particular, to show that two matrices A,B are similar we
will often just show that they are both similar to some matrix C, and use symmetry and
transitivity to conclude that A and B are similar to each other.

In this language, the question we mentioned at the start of class is the following: given
an arbitrary n× n matrix A, what “nice” kinds of matrices can we find that are similar to
A? The Schur decomposition tells us that A is similar to an upper-triangular matrix: can
we improve this to something nicer than upper-triangular?

Working with general matrices is a pain; they can do lots of awful things. Instead, let’s
work with upper-triangular matrices! Because any matrix is similar to an upper-triangular
matrix, if we can find some “nicer” form that upper-triangular matrices are similar to, then
(by transitivity) every matrix will be similar to that “nicer” form!

This simplifies things somewhat. However, we can simplify things more: instead of
looking at similarities via arbitrary matrices, why not look at similarity via particularly
nice and easy-to-understand matrices? In particular, recall the concept of elementary
matrices, from last quarter:

2 Review: Elementary Matrices

Definition. The first matrix, Emultiply entry k by λ, is the matrix corresponding to the linear
map that multiplies its k-th coördinate by λ and does not change any of the others:

Emultiply entry k by λ =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value at
(k, k), which is λ.

The second matrix, Eswitch entry k and entry l, corresponds to the linear map that swaps
its k-th coördinate with its l-th coördinate, and does not change any of the others:

Eswitch entry k and entry l =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


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You can create this matrix by starting with a matrix with 1’s down its diagonal and 0’s
elsewhere, and switching the k-th and l-th columns.

Finally, the third matrix, Eadd λ copies of entry k to entry l, for k 6= l, corresponds to the
linear map that adds λ copies of its k-th coördinate to its l-th coördinate and does not
change any of the others:

Eadd λ copies of entry k to entry l =



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value in
row l, column k, which is λ.

These three matrices are called the elementary matrices, if you don’t remember them
from the previous quarter of 108.

As a reminder, this is how elementary matrices interact with matrix multiplication:

Theorem 1. Take any n× n matrix A. Suppose that we are looking at the products E ·A,
A ·E, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• If E = Emultiply entry k by λ, then E ·A would be the matrix A with its k-th row multiplied
by λ, and A · E is the matrix A with its k-th columns multiplied by λ.

• If E = Eswitch entry k and entry l, then E ·A would be the matrix A with its k-th and l-th
rows swapped, and A · E is the matrix A with its k-th and l-th columns swapped.

• If E = Eadd λ copies of entry k to entry l, then E · A would be the matrix A with λ copies
of its k-th row added to its l-th row, and A ·E is a matrix A with λ copies of its l-th
column added to its k-th column.

Finally, we also calculated the inverses of these matrices:

Theorem 2. Take any n× n elementary matrix E. Then, we have the following:

• If E = Emultiply entry k by λ, then E
−1 = Emultiply entry k by 1

λ
, whenever λ 6= 0.

• If E = Eswitch entry k and entry l, then E
−1 = E; i.e. E is its own inverse.

• If E = Eadd λ copies of entry k to entry l, then E
−1 = Eadd −λ copies of entry k to entry l.

We calculate a few quick examples to illustrate what’s going on here:
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Example. Suppose that A is some arbitrary 5× 5 matrix. Calculate EAE−1, where E is
one of the following matrices:

• Emultiply entry 2 by λ, for λ 6= 0.

• Eswitch entry 1 and entry 4.

• Eadd λ copies of entry 2 to entry 5

Proof. We simply calculate, starting first with Emultiply entry 2 by λ:
1 0 0 0 0
0 λ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ·

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ·


1 0 0 0 0
0 1/λ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



=


a11 a12 a13 a14 a15
λa21 λa22 λa23 λa24 λa25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ·


1 0 0 0 0
0 1/λ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



=


a11 a12/λ a13 a14 a15
λa21 a22 λa23 λa24 λa25
a31 a32/λ a33 a34 a35
a41 a42/λ a43 a44 a45
a51 a52/λ a53 a54 a55


.

Note that this is just the original matrix A, with its second row scaled by λ and its second
column scaled by 1/λ; furthermore, note that the entry (2, 2) that is in both this row and
this column is unchanged after this similarity transformation.

We now consider Eswitch entry 1 and entry 4:
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

 ·

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ·


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1



=


a41 a42 a43 a44 a45
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a11 a12 a13 a14 a15
a51 a52 a53 a54 a55

 ·


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1



=


a44 a42 a43 a41 a45
a24 a22 a23 a21 a25
a34 a32 a33 a31 a35
a14 a12 a13 a11 a15
a54 a52 a53 a51 a55


.
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Note that this is the original matrix A with its 1st and 4th rows swapped, as well as its 1st
and 4th columns.

We finally consider Eadd λ copies of entry 2 to entry 5:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 λ 0 0 1

 ·

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −λ 0 0 1



=


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

λa21 + a51 λa22 + a52 λa21 + a53 λa21 + a54 λa21 + a55

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −λ 0 0 1



=


a11 a12 − λa15 a13 a14 a15
a21 a22 − λa25 a23 a24 a25
a31 a32 − λa35 a33 a34 a35
a41 a42 − λa45 a43 a44 a45

λa21 + a51 λa22 + a52 − λa55 λa21 + a53 λa21 + a54 λa21 + a55


.

Note that this is just the original matrix A with λ copies of its 2nd row added to its 5th
row, and −λ copies of its 5th column added to its 2nd column.

3 The Interactions Between Elementary Matrices and Simi-
larity

The results above from our example hold in general:

Proposition. Suppose that E is an elementary matrix of the form Emultiply entry k by λ, for
λ 6= 0, and A is an n× n matrix. Then EAE−1 is the matrix A with its k-th row scaled by
λ and k-th column scaled by 1

λ . In particular, note that the entry A(k, k) is unchanged, as
it is in both the k-th row and k-th column.

Proposition. Suppose that E is an elementary matrix of the form Eswitch entry k and entry l,
and A is an n×n matrix. Then EAE−1 is the matrix A with its k-th and l-th rows swapped,
as well as its k-th and l-th columns.

Proposition. Suppose that E is an elementary matrix of the form Eadd λ copies of entry k to entry l,
and A is an n × n matrix. Then EAE−1 is the matrix A, with λ copies of its k-th row
added to its l-th row, and −λ copies of its l-th column added to its k-th column.

Note that on the HW, you studied this product! In particular, you proved that whenever
A is upper-triangular and l < k, then EAE−1 is still an upper-triangular matrix.

The second of these properties can be generalized in a fairly beautiful way:
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4 Permutation Matrices and Similarity

Definition. A permutation σ of the list (1, . . . n) is simply some way to reorder this
list into some other (σ(1), . . . σ(n)). (If you prefer to think about functions, σ is simply a
bijection from {1, . . . n} to {1, . . . n}.)

Given a permutation σ, there is clearly some way to “undo” σ and return our list to
its original state. This “unshuffling” is itself a permutation, as it gives us a way to reorder
the elements (1, . . . n); we denote it by σ−1. (Again, if you prefer functions, σ−1 is jus the
inverse of the map σ.)

For example, the map

σ(1) = 2, σ(2) = 3, σ(3) = 1

is a permutation of the list (1, 2, 3). The inverse of this map is easy to construct; just
“undo” the above, i.e. set

σ−1(2) = 1, σ−1(3) = 2, σ−1(1) = 3.

Definition. Given any permutation σ of (1, . . . n), the permutation matrix Pσ is simply
the n× n matrix whose i-th column is given by eσ(i). In other words,

Pσ =


...

...
...

~eσ(1) ~eσ(2) . . . ~eσ(n)
...

...
...


For example, if we use the permutation σ on the list (1, 2, 3) that we defined above, we

have

Pσ =


...

...
...

~eσ(1) ~eσ(2) ~eσ(3)
...

...
...

 =


...

...
...

~e2 ~e3 ~e1
...

...
...

 =

0 0 1
1 0 0
0 1 0


.

Proposition. If σ is a permutation of (1, . . . n) with inverse σ−1, then Pσ is an invertible
matrix with inverse PσT .

Proof. The rows of Pσ form an orthonormal basis for Rn, because they’re all just ~ei’s but
reordered. Therefore Pσ is an orthonormal matrix, and we know that orthonormal matrices
have inverses given by their transposes!

These matrices interact with arbitrary matrices in the following way:

Proposition. Take an arbitrary n × n matrix A, and an arbitrary permutation σ of
(1, . . . n). Then APσ is just the matrix A, but with its columns permuted by σ.

6



Proof. Just look at the product:a11 . . . a1n
...

. . .
...

an1 . . . ann

 ·


...
...

...
~eσ(1) ~eσ(2) . . . ~eσ(n)
...

...
...


.

An entry (i, j) in this product is simply the dot product of the row (ai1, . . . ain) of A with
the j-th column ~eσ(j) of Pσ. This is precisely ai,σ(j)! In other words, the entry in (i, j) of
our product is just the entry in (i, σ(j)) of A itself. This just means that that APσ is the
matrix A with its columns permuted by σ, as claimed.

Proposition. Take an arbitrary n × n matrix A, and an arbitrary permutation σ of
(1, . . . n). Then P Tσ A is just the matrix A, but with its rows permuted by σ.

Proof. Again, just look at the product:
. . . ~eσ(1) . . .

. . . ~eσ(2) . . .
...

. . . ~eσ(n) . . .

 ·
a11 . . . a1n

...
. . .

...
an1 . . . ann


.

An entry (i, j) in this product is simply the dot product of the row eσ(i) of P Tσ with the
j-th column (a1j , . . . anj) of A. This is precisely aσ(i),j ! In other words, the entry in (i, j)

of our product is just the entry in (σ(i), j) of A itself. This just means that that P Tσ A is
the matrix A with its rows permuted by σ, as claimed.

The reason we care about this is the following proposition. It’s kinda complicated, but
the result we get from it is really useful:

Proposition. Suppose that A is a n× n matrix with the following form:
B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


.

In the above matrix, the matrix B1 is a l1× l1 matrix, B2 is a l2× l2 matrix, and in general
Bi is a li × li matrix, with the constants l1, . . . lk chosen so that l1 + . . .+ lk = n. The rest
of the n× n matrix A is filled in with 0’s, as indicated.

Consider the permutation σa,b on (1, . . . n) defined as follows:

σa,b(x) = x, if x ≤ a.
σa,b(x) = x+ b, if a < x ≤ n− b.
σa,b(x) = x+ 2b− n− 1, if n− b < x ≤ n.
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In other words, σa,b fixes the first a elements of (1, . . . n), and then cycles the remain-
ing elements of (1, . . . n) by b. For example, σ2,3 can be thought of as a permutation of
(1, 2, 3, 4, 5, 6, 7) such that

σ(1) = 1, σ(2) = 2, σ(3) = 3 + 3 = 6, σ(4) = 4 + 3 = 7, σ(5) = 5 + 2 · 3− 7− 1 = 3,

σ(6) = 6 + 2 · 3− 7− 1 = 4, σ(7) = 7 + 2 · 3− 7− 1 = 5 : in other words,

⇒(1, 2, 3, 4, 5, 6, 7)
σ−→ (1, 2, 6, 7, 3, 4, 5).

Pick any integer i, and let a = l1 + . . . li−1, b = lk. Then

P Tσa,bAPσa,b =



B1 . . . 0 0 0 0 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . Bi−1 0 0 0 . . . 0

0 . . . 0 Bk 0 0 . . . 0

0 . . . 0 0 Bi 0 . . . 0

0 . . . 0 0 0 Bi+1 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . 0 0 0 0 . . . Bk−1


.

In other words, P Tσa,bAPσa,b is the same original matrix as A, except the “blocks” Bi, . . . Bk
have been “cycled through:” i.e. block Bk is where Bi used to be, Bi is where Bi+1 was,
Bi+1 is where Bi+2 was, and so on/so forth.

Proof. Again, just look at the product! In particular, start with P Tσ A:

P Tσa,bA =


. . . ~eσ(1) . . .

. . . ~eσ(2) . . .
...

. . . ~eσ(n) . . .

 ·



B1 . . . 0 0 0 0 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . Bi−1 0 0 0 . . . 0

0 . . . 0 Bi 0 0 . . . 0

0 . . . 0 0 Bi+1 0 . . . 0

0 . . . 0 0 0 Bi+2 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . 0 0 0 0 . . . Bk



As noted before, this is the matrix A but with its rows permuted by σ. But what does this
mean? Well, σ does nothing to the first l1 + . . . li−1 rows, so the blocks B1, . . . Bi−1 are
untouched. After that, σ shifts the remaining rows by lk forward: i.e. it sends A to the
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following matrix: 

B1 . . . 0 0 0 0 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . Bi−1 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0 Bk
0 . . . 0 Bi 0 . . . 0 0

0 . . . 0 0 Bi+1 . . . 0 0
...

. . .
...

...
...

. . .
...

...

0 . . . 0 0 0 . . . Bk−1 0



Now, what happens if we multiply this on the right by Pσ? Well, we know that mul-
tiplying by Pσ on the right just permutes columns by σ. Again, what does this mean?
Well, σ does nothing to the first l1 + . . . li−1 columns, so the blocks B1, . . . Bi−1 are again
untouched. After that, σ shifts the remaining columns by lk forward: i.e. we get

P Tσa,bAPσa,b =



B1 . . . 0 0 0 0 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . Bi−1 0 0 0 . . . 0

0 . . . 0 Bk 0 0 . . . 0

0 . . . 0 0 Bi 0 . . . 0

0 . . . 0 0 0 Bi+1 . . . 0
...

. . .
...

...
...

...
. . .

...

0 . . . 0 0 0 0 . . . Bk−1


.

But this is what we claimed! So we’re done with our proof.

The main reason we care about this proof is that it gives us the following remarkably
useful corollary:

Corollary 3. Suppose that A is a n× n matrix with the following form:

A =


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


.

Take any other matrix Cthat consists of the same blocks on the diagonal, except in some
other order: i.e.

C =


Bσ(1) 0 . . . 0

0 Bσ(2) . . . 0
...

...
. . .

...

0 0 . . . Bσ(k)


,

for some permutation σ of (1, . . . k). Then A and C are similar.
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Proof. Repeatedly apply our earlier proposition to move the blocks of A around using the
Pσa,b matrices. Since we performed these switches by multiplying on the left by P Tσ and
on the right by this matrix’s inverse, Pσ, these switches preserve similarity. So we can just
perform whatever sequence of switches is necessary to turn A into C, and we’re done!

For notational convenience, make the following definition:

Definition. If A is a matrix in the form

A =


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


,

call A a block-diagonal matrix.

In next week’s classes, we will prove that all matrices are similar to something called
their Jordan Canonical Form, using only three tools:

• The Schur decomposition.

• The lemmas about how conjugating by an elementary matrix changes a matrix.

• The result above about how we can “rearrange” the blocks of a block-diagonal matrix
while preserving similarity.
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