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Lecture 8: The Jordan Canonical Form

Weeks 9-10 UCSB 2014

In these last two weeks, we will prove our last major theorem, which is the claim that
all matrices admit something called a Jordan Canonical Form. First, recall the following
definition from last week’s classes:

Definition. If A is a matrix in the form

A =


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


,

where each Bi is some li × li matrix and the rest of the entries of A are zeroes, we say that
A is a block-diagonal matrix. We call the matrices B1, . . . Bk the blocks of A.

For example, the matrix

A =



2 1 0 0 0 0 0 0
0 2 1 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0 0 3 1 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 0 0

0 0 0 0 0 0 π 1
0 0 0 0 0 0 0 π


.

is written in block-diagonal form, with blocks B1 =

2 1 0
0 2 1
0 0 2

, B2 =

3 1 0
0 3 1
0 0 3

, and

B3 =

[
π 1
0 π

]
.

The blocks of A in our example above are particularly nice; each of them consists
entirely of some repeated value on their diagonals, 1’s on the entries directly above the
main diagonal, and 0’s everywhere else. These blocks are sufficiently nice that we give them
a name here:

Definition. A block Bi of some block-diagonal matrix is called a Jordan block if it is in
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the form 

λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


.

In other words, there is some value λ such that Bi is a matrix with λ on its main diagonal,
1’s in the cells directly above this diagonal, and 0’s elsewhere.

Using this definition, we can create the notion of a Jordan normal form:

Theorem. Suppose that A is similar to an n× n block-diagonal matrix B in which all of
its blocks are Jordan blocks; in other words, that A = UBU−1, for some invertible U . We
say that any such matrix A has been written in Jordan canonical form. (Some authors
will say “Jordan normal form” instead of “Jordan canonical form:” these expressions define
the same object.)

The theorem we are going to try to prove this week is the following:

Theorem. Any n× n matrix A can be written in Jordan canonical form.

This result is (along with the Schur decomposition and the spectral theorem) one of the
crown jewels of linear algebra; it is a remarkably strong result about what (up to similarity)
any linear map must look like, and one of the more powerful tools a linear algebraicist has
at their disposal.

Perhaps surprisingly, though, its proof is not very involved! In this talk, we present a
somewhat more esoteric and interesting proof than most textbooks traditionally develop,
as described by Brualdi in his paper “The Jordan Canonical Form: an Old Proof.” Most
modern textbooks use the concept of generalized eigenvectors and null spaces to show that
the Jordan Canonical Form must exist; while these proofs are certainly enlightening and
worth reading (if we have time in week 10, I’ll say a word about how they go) I find them
to be less interesting from the perspective of explaining how one actually constructs a
Jordan canonical form (as they tend to mostly be proofs that assert that such things exist!)

Our proof here, however, is quite explicitly constructive, and to boot fairly elementary!
All we will need to perform this proof are the following results:

• The Schur decomposition, which will tell us that every matrix is similar to some
upper-triangular matrix.

• Our results last week on how conjugating by elementary matrices changes a matrix.

• Our results last week about how conjugating a matrix by a permutation matrix shuffles
its rows and columns.

We construct our proof via a series of lemmas, based on these three results above:
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Lemma 1. Suppose that R is some upper-triangular matrix, and that rii, rjj are a pair of
distinct diagonal entries of R. Without loss of generality, assume that i < j. Consider the
matrix ERE−1, where E is the elementary matrix E add h copies of entry j to entry i.

Suppose that h is chosen such that rij + h(rjj − rii) = 0. Then ERE−1 is a matrix
in which its (i, j)-th entry is 0, and moreover agrees with R everywhere except for at the
entries of row i with coordinates j, . . . n and the entries of column j with coordinates 1, . . . i.

Before we give our proof, we first illustrate what we’re talking about with an example:

Example. Consider the matrix

R =



2 1 0 1 1 1 7 0
0 3 1 4 5 2 3 2
0 0 5 0 2 2 3 6
0 0 0 5 1 0 3 4
0 0 0 0 5 1 1 2
0 0 0 0 0 3 2 2
0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 1


Notice that the entries r33 = 5, r77 = 2 are distinct. So: let’s examine what happens if we
multiply R on the left by

E = E add h copies of entry 7 to entry 3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 h 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

and on the right by E−1, which we know from last week is

E−1 = E add −h copies of entry 3 to entry 1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 −h 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Well: on one hand we know that ER is the matrix R with h copies of its seventh row
added to its third row, because this is what elementary matrices do when you multiply
them. On the other hand, we know that (ER)E−1 is just the matrix ER with -h copies of
its third column added to its seventh column, again as we’ve proven in week 8!

3



Therefore, ERE−1 is just the matrix R with h copies of its seventh row added to its
third row, and −h copies of its third column added to its seventh column. In other words,

ERE−1 =



2 1 0 1 1 1 7− 0h 0
0 3 1 4 5 2 3− 1h 2
0 0 5 0 2 2 3 + 2h− 5h 6 + 2h
0 0 0 5 1 0 3 4
0 0 0 0 5 1 1 2
0 0 0 0 0 3 2 2
0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 1


Suppose we pick h such that r37 + h(r33 − r77) = 5 + 2h − 5h = 0; i.e. h = 1. In this
situation, we have that

ERE−1 =



2 1 0 1 1 1 7 0
0 3 1 4 5 2 2 2
0 0 5 0 2 2 0 8
0 0 0 5 1 0 3 4
0 0 0 0 5 1 1 2
0 0 0 0 0 3 2 2
0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 1


.

In other words, R is similar to a matrix in which entry (3, 7) is now zero, and that differs
from A only in the entries in the same column as (3, 7) with smaller x-coordinate, or the
same row as (3, 7) with larger y-coordinate.

Proof. Literally do what we did in the example, but with a general matrix. Specifically:
take any matrix a11 . . . a1n

. . .
. . . . . .

an1 . . . ann

 ,
and suppose that aii 6= ajj . Consider the matrix E = E add h copies of entry j to entry i. We
know that E−1 is the matrix E add −h copies of entry j to entry i, and thus that ERE−1 will be
the matrix that has h copies of its j-th row added to its i-th row, and −h copies of its i-th
column added to its j-th column.

In particular, this means that the only entries that will be changed are those in the i-th
row and j-th column; furthermore, the only entries that will be changed are those of the
form (i, k), j ≤ k or (k, j), k ≤ i; this is because the only entries that get changed when
we add the i-th row or j-th column to something are those where that row/column are
nonzero! Because our matrix is upper-triangular, this means that the only changed entries
are precisely those in column i or row j and either above or to the right of (i, j).

Also, in particular, the entry in (i, j) is now aij + hajj − haii. If we pick h such that
aij + h(ajj − aii) = 0 (which we can do whenever ajj − aii 6= 0, then the cell (i, j) = 0! So
we’ve proven our claim.
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Lemma 2. Suppose that R is an upper-triangular matrix. Then R is similar to another
upper-triangular matrix R′, such that

• R and R′ share the same entries on their diagonal: in other words, rii = r′ii.

• If r′ii and r
′
jj are distinct, with i < j, then the entry r′ij of R is zero.

This is essentially just repeated application of Lemma 1. Again, we illustrate our proof
with an example before starting the proof itself. It’s pretty long, so feel free to read through
it until you feel like you get the idea!

Example. Consider the matrix

R =



1 4 4 0 14 1
0 2 1 0 3 0
0 0 2 1 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.

We’re going to repeatedly use Lemma 1, starting on the second column and working bottom-
to-top through each column in order, until we get a matrix R′ where whenever r′ii and r′jj
are distinct, i < j, we have r′ij = 0.

We start with (1, 2). Because r11 = 1 6= r22 = 2, Lemma 1 tells us to try mul-
tiplying on the left by E = E add h copies of entry 2 to entry 1 and on the right by E−1 =
E add −h copies of entry 2 to entry 1. (In general, this process of multiplying on the left by E
and on the right by E−1 is called conjugating by E.)

This yields (using the observations we’ve been making about how elementary matrix
multiplication works) the matrix

1 4 + 2h− 1h 4 + 1h 0 14 + 3h 1
0 2 1 0 3 0
0 0 2 1 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.

If we set h = −4, this zeroes out the entry (1, 2), and changes the entries (1, 3) and (1, 5)
to 0, 2 respectively. In other words, we get the matrix

1 0 0 0 2 1
0 2 1 0 3 0
0 0 2 1 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.
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We now move to the third column. The entry (2, 3) is nonzero, but r33 = r22 = 1, so we
can’t do anything about it, and the entry (1, 3) is already 0, so we don’t do anything here
as well.

In the four column, we can do a bit more. We start by looking at (3, 4), which is
nonzero and features r33 = 2 6= r44 = 3, our lemma suggests that we conjugate by E =
E add h copies of entry 4 to entry 3. This gives us

1 0 0 0 2 1
0 2 1 0− 1h 3 0
0 0 2 1 + 3h− 2h 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.

To zero out entry (3, 4), we set h = −1. This gives us the matrix

1 0 0 0 2 1
0 2 1 1 3 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.

We proceed in this manner throughout the entire matrix. Our next entry in column 4that
is nonzero and changeable is (2, 4), which is currently 1 and opposite r22 = 2, r44 = 3.
Conjugating by E = E add −1 copies of entry 4 to entry 2 zeroes out this entry and doesn’t change
anything else in our matrix.

In column 5, the entries (4, 5), (3, 5) are already 0, and the entry (2, 5) has r22 = r55, so
we can’t do anything there. We can do something about (1, 5); once again, Lemma 1 says
that if we conjugate by E add −2 copies of entry 5 to entry 1, we will zero out that entry. This
results in the matrix

1 0 0 0 2 + 2h− h 1 + h
0 2 1 0 3 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1

 =



1 0 0 0 0 −1
0 2 1 0 3 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


Finally, in column 6 we note that we can zero out entry (5, 6) by conjugating by

E add 1 copy of entry 6 to entry 5. This yields

1 0 0 0 0 −1
0 2 1 0 3 0− 3h
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 1 + h− 2h
0 0 0 0 0 1

 =



1 0 0 0 0 −1
0 2 1 0 3 −3
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1
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We can also zero out entry (2, 6) by conjugating by E add −3 copies of entry 6 to entry 2. This
yields 

1 0 0 0 0 −1
0 2 1 0 3 −3 + h− 2h
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1

 =



1 0 0 0 0 −1
0 2 1 0 3 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1


The last nonzero entry in this column, (1, 6), is across from a11 = a66 = 1, so we can do
nothing more.

So what have we done? We took R, and repeatedly conjugated it by elementary matrices
until we got a matrix with our desired property (i.e. that whenever r′ii and r′jj are distinct,
with i < j, we have r′ij = 0.)

Proof. Our proof is precisely the same algorithm as described above, but in abstract. Take
any upper-triangular matrix R. Starting with the second column of R and working left to
right, run the following algorithm:

1. Suppose that we are currently on column j.

2. Starting from (j − 1, j) and working our way up the column, run Lemma 1 on each
cell (i, j) that it can be ran on. This zeroes out (i, j) whenever rii 6= rjj .

3. Notice that Lemma 1 in particular guarantees that the only cells changed by conju-
gating by E are those in the same column as (i, j) but in rows k ≤ i, or in the same
row as (i, j) but in columns j ≤ k, this does not change any cells that we’ve already
checked.

4. Once you are done with column j, go to the next column and repeat this process.

By Lemma 1, this creates a matrix that is similar to our original matrix R by some chain
of elementary matrices, and has our desired property (i.e. whenever r′ii and r′jj are distinct,
with i < j, we have r′ij = 0.)

Lemma 3. Suppose that R is an n × n upper-triangular matrix. Then R is similar to a
block-diagonal matrix 

B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bk


,

where each block Bi is of the following form:

• Bi is upper-triangular.

• The entries on the diagonal of Bi are all equal.
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Again, we illustrate our proof methods (basically just using Lemma 2 along with our
results on how conjugating by a permutation matrix works) with an example before our
proof:

Example. Consider the matrix R from before:

R =



1 4 0 0 2 1
0 2 1 0 3 0
0 0 2 1 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 1


.

As we did in our earlier example, we can find a matrix R′ that is similar to R, such that
whenever r′ii 6= r′jj , i < j we have r′ij = 0:

R′ =



1 0 0 0 0 −1
0 2 1 0 3 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1


Now, what we want to do is somehow shuffle the diagonal of R′ around, so that equal

terms are collected! We can do this with a permutation matrix, Pσ. First, notice that
because P−1σ = P Tσ as shown last week, we know that P Tσ R

′Pσ is a similar matrix to R′.
Furthermore, as we studied last week, multiplying a matrix on the left by P Tσ just shuffles
its rows by σ, and multiplying it on the right by Pσ just shuffles its columns by σ. Doing
both, then, shuffles R’s rows and columns both by σ! In other words, if we denote this
matrix as C, it is a matrix such that C(i, j) = R′(σ(i), σ(j)).

So: let σ be some permutation of (1, 2, 3, 4, 5, 6) that corresponds to ordering the diag-
onal of R′ from smallest to greatest: i.e. pick some way σ to reorder the diagonal entries of
R′ such that r′σ(1),σ(1) ≤ r′σ(2),σ(2) ≤ . . . ≤ r′σ(6),σ(6). Furthermore, we have some diagonal
elements that are identical; therefore, the above criteria doesn’t fully specify what permu-
tation we should pick. In this situation, pick our permutation such that it preserves the
original ordering on those elements: in other words, if rii = rjj and i < j, we should have
σ(i) < σ(j).

If we want this property to hold for our R′ in this problem, we should pick the permu-
tation

σ :

1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓
1 6 2 3 5 4

.

Then, if we look at P Tσ R
′Pσ, i.e. the matrix whose rows and columns are shuffled by σ as
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defined above, we get

C = P Tσ R
′Pσ =



1 −1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 3 0
0 0 0 2 0 0
0 0 0 0 2 0

0 0 0 0 0 3


.

This is in the form that we were looking for. Therefore, we have shown that our original
matrix R is similar to a block diagonal matrix C with the properties requested!

Proof. Once again, our proof is just a generalization of our example above. Take any n×n
upper-triangular matrix R. First, apply Lemma 2 to find some R′ that is similar to R, such
that whenever r′ii and r′jj are distinct, with i < j, we have rij = 0.

Now, let σ be some permutation of (1, . . . n) that corresponds to ordering the diagonal
of R′ from smallest to greatest: i.e. pick some way σ to reorder the diagonal entries of R′

such that r′σ(1),σ(1) ≤ r′σ(2),σ(2) ≤ . . . ≤ r′σ(n),σ(n). Furthermore, in the event that we have
diagonal elements of R that are the same, we will have multiple different permutations
that will order our diagonal elements. In this situation, pick our permutation such that it
preserves the original ordering on those elements: in other words, if rii = rjj and i < j, we
should have σ(i) < σ(j).

Let Pσ be the permutation matrix corresponding to σ, and look at (Pσ)TR′Pσ. This is
the matrix that we get by permuting R′’s rows and columns by σ! Notice that this matrix
has the following properties:

1. The diagonal of this new matrix is the old diagonal of R′, but permuted by σ: i.e. it’s
now sorted from least to greatest. In particular, this means that every repeated value
on the diagonal of our matrix is now clumped together.

2. If we picked two diagonal elements rii, rjj that were distinct, we knew that the cell
across from them in R′ was zero. This property does not go away when we permute
rows or columns if we simply track where rii, rjj move to! Therefore, our new matrix
(Pσ)TR′Pσ still has this property.

3. Moreover, our new matrix is still upper-triangular. To see why, simply take any cell
in the new matrix, with coordinates (σ(i), σ(j)). We want this cell to contain a zero if
σ(j) < σ(i), as these are precisely the cells with coordinates below the main diagonal.

There are two possibilities: either

(a) the diagonal entries rσ(i),σ(i), rσ(j),σ(j) are distinct, and therefore this cell contains
a zero by property 2, or

(b) these diagonal entries are the same. In this case, we know that if σ(i) > σ(j), we
constructed our permutation such that i > j as well. But this means that our
new matrix’s cell (σ(i), σ(j)) came from a cell (i, j) in our original matrix with
i > j. But these cells are precisely those that are below the main diagonal, and
thus contain a 0!
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So our matrix is upper-triangular.

4. If we combine properties 1 and 2 above, this tells us that our matrix is in block
diagonal form! In particular, for each distinct value λ1 ≤ . . . ≤ λk that shows up on
the diagonal of (Pσ)TR′Pσ, associate a block Bλi . Because the entries (i, j) across from
distinct λi, λj are all zero from (2), these blocks are each in fact blocks, as nothing
outside of them is zero.

5. Now look within any given ki × ki block Bi. These blocks, by construction, are
upper-triangular with a repeated value λi on their diagonal. This is precisely what
we wanted!

So we have proven our claim: any upper-triangular matrix is similar to a block-diagonal
matrix where each block is upper-triangular, and each block’s diagonal consists of a repeated
value.

At this stage, we have something that is nearly in Jordan canonical form! We just have
to slightly modify these blocks. We do this with the following lemma:

Lemma 4. Suppose that A is a block-diagonal matrix with a block B of the following form:

• Bi is upper-triangular.

• The entries on the diagonal of Bi are all equal.

Then we can conjugate A by appropriate elementary matrices so that B is replaced with
a block-diagonal matrix made out of Jordan blocks, and no other blocks of A are changed.
In other words, A is similar to a matrix in which block B is replaced with a block-diagonal
matrix made out of Jordan blocks.

Again, we illustrate our proof methods with an example before our proof:

Example. Consider the following matrix C:

C =



1 −1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 3 0
0 0 0 2 0 0
0 0 0 0 2 0

0 0 0 0 0 3


.

We’ll perform the process that Lemma 4 wants us to calculate an example of, on each of its
blocks. The only tools we will use here are the following:

1. Conjugating a matrix by an elementary matrix of the form Emultiply entry k by h, for
nonzero h. Notice that doing this will scale all of the entries in row k by h and all of
the entries in column k by 1

h . In particular, note that this will not change the entry
(k, k) on the diagonal that is in both that row and that column. Also note that this
will only change entries in whichever block contains the cell (k, k), as no other blocks
contain elements from the k-th row or column.
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2. Conjugating a matrix by an elementary matrix of the form Eadd h copies of entry k to entry l.
As used many times in these notes, this will add h copies of row k to row l, and also
add −h copies of column l to column k. In particular, note that if we ask for l < k,
this property preserves that our matrix is upper-triangular. Also note that if l, k come
from within the same block, then the only entries changed are in that block, as no
other blocks contain those rows/columns.

3. Conjugating a matrix by a permutation matrix Pσ, where the elements permuted by σ
all correspond to the rows/columns of one specific block. This, by construction, only
messes with one of our blocks, and if we’re careful (as shown earlier) will preserve our
upper-triangular structure as well.

We start with the top block

[
1 −1
0 1

]
. We want this to become a Jordan block; i.e.

we want that −1 to become a 1. This is not hard to do: just conjugate by the matrix
E = Emultiply entry 2 by −1. This scales row 2 by −1 and column 2 by 1/ − 1 = −1; i.e. we
get

ECE−1 =



1 1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 3 0
0 0 0 2 0 0
0 0 0 0 2 0

0 0 0 0 0 3


.

So our first block is OK!
We move to our second block. This is tricker: we need to somehow make (3, 5) zero,

even though the entries (3, 3) and (5, 5) are identical. How can we do this?
Here’s one solution: instead of using the cells (3, 3), (5, 5), which are both identical,

use the cells (3, 4) and (5, 5) which are distinct! In particular, consider conjugation by the
matrix E add h copies of entry 5 to entry 4. This will add h copies of row 5 to row 4 and then
subtract h copies of column 4 from column 5; i.e. it will produce the matrix

1 1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 3− 1h 0
0 0 0 2 0 + 2h− 2h 0
0 0 0 0 2 0

0 0 0 0 0 3


=



1 1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 3− 1h 0
0 0 0 2 0 0
0 0 0 0 2 0

0 0 0 0 0 3


Notice that the entry in (4, 5) just gets canceled out, and all we have done to our matrix is
give us a way to subtract h from (3, 5)! In particular, if we set h = 3, we have made (3, 5)
zero.

Consequently, we have now written our second block as a union of Jordan blocks. In
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other words, we have shown that our matrix is similar to the matrix

1 1 0 0 0 0
0 1 0 0 0 0

0 0 2 1 0 0
0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 3


,

This is a block-diagonal matrix made out of Jordan blocks!

Proof. Our proof here, like every proof in this lecture, is just a generalization of the methods
used in our example.

First, notice that for the reasons explained in our example, if we limit ourselves to just
using the tools

1. conjugating a matrix by an elementary matrix of the form Emultiply entry k by h, for
nonzero λ, and

2. conjugating a matrix by an elementary matrix of the form Eadd h copies of entry k to entry l,

our actions will only change entries inside of one fixed block. So, for the remainder of this
proof, we can simply pretend that we’re working within a single block

B =


λ ∗ . . . ∗
0 λ . . . ∗
...

...
. . .

...
0 0 . . . λ


.

We will turn B into a block-diagonal matrix consisting of Jordan blocks column-by-column,
working left-to-right.

We start with the second column: in this case, we are looking at the 2× 2 matrix given
by the cells in B’s first two rows and columns,

B2 =

[
λ ∗
0 λ

]
There are two possibilities here:

1. The entry ∗ in cell (1, 2) is 0. In this case, B2 is already a block-diagonal matrix

consisting of the two 1× 1 Jordan blocks λ .

2. The entry ∗ in cell (1, 2) is not 0. In this case, conjugate our matrix by the elementary
matrix E = Emultiply entry 1 by 1/∗. This scales our first row by 1/∗ and our first column
by ∗. In other words, the only cell that gets changed in our 2 × 2 matrix is (1, 2),
which gets scaled by 1/∗: i.e. it is replaced by 1! So our matrix is now in the form[
λ 1
0 λ

]
, and thus in particular is a Jordan block.
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So we’ve succeeded in our “base case;” i.e. where we’re just dealing with our second
column. We now describe a process that, assuming we’ve succeeded in making the cells in
the first k rows and columns into a block-diagonal matrix made out of Jordan blocks, will
let us extend our result to the next row and column. (In a sense, you can regard this as a
proof by induction, though I want to point out that we are describing an explicit algorithm
that we can concretely use to make Jordan blocks.)

If we’re assuming that we’ve succeeded on our first k−1 rows and columns and are now
looking at the next column k, we’re looking at the following k × k matrix:

Bk =



λ δ1 0 0 . . . 0 ∗
0 λ δ2 0 . . . 0 ∗
0 0 λ δ3 . . . 0 ∗
...

...
...

. . .
. . .

...
...

0 0 0 . . . λ δk−2 ∗
0 0 0 . . . 0 λ ∗
0 0 0 . . . 0 0 λ


.

The δi’s are all either 0’s or 1’s, because we’ve insured that the cells in the first k − 1
rows/columns form a block diagonal matrix made out of Jordan blocks. The ∗’s are all
values in the k-th column, that are arbitrary and that we don’t know yet.

We deal with the entries in this k-th column with a few different techniques:

1. Suppose that there is some nonzero entry (i, k) in this last column, (i, k) = t, such
that the entry in (i, i+ 1) (i.e. δi) is 1. In other words, suppose that our square looks
like the following:

Bk =



λ . . . 0 0 . . . ∗
...

. . .
...

...
. . .

...
0 . . . λ 1 . . . t
0 . . . 0 λ . . . ∗
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . λ


.

In this situation, our life is pretty easy. Just conjugate by the elementary matrix
Eadd t copies of entry k to entry i+1. This adds t copies of the k-th row of our matrix to the
i+ 1-th row, and subtracts t copies of the i+ 1-th column of our matrix from the k-th
column. In other words, it gives us the matrix

λ . . . 0 0 . . . ∗
...

. . .
...

...
. . .

...
0 . . . λ 1 . . . t− 1t
0 . . . 0 λ . . . ∗ − λt+ λt
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . λ


=



λ . . . 0 0 . . . ∗
...

. . .
...

...
. . .

...
0 . . . λ 1 . . . 0
0 . . . 0 λ . . . ∗
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . λ


.

This is the same matrix as we had before, except (i, k) is now zero! Therefore, by
conjugating our block by elementary matrices, we can zero out these kinds of cells.
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2. This means that if we have any nonzero cells in our last column, there isn’t a 1 in the
cell (i, i+ 1); i.e. we have δi = 0, in our earlier notation for Bk.

Consider first the case where there are two such values in our last column: i.e. we
have cells (i, k), (j, k) such that (i, k) = s 6= 0, (j, k) = t 6= 0, and δi = δj = 0:

Bk =



λ . . . 0 0 . . . 0 0 . . . ∗
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . λ 0 . . . 0 0 . . . s
0 . . . 0 λ . . . 0 0 . . . ∗
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . λ 0 . . . t
0 . . . 0 0 . . . 0 λ . . . ∗
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . λ


.

Take the first k − 1 rows/columns of Bk. These form a block-diagonal matrix whose
blocks are Jordan blocks! In particular, notice that because the entries δi, δj = 0,
these Jordan blocks do not contain the cells (i, i+ 1), (j, j + 1). Therefore, if we look
at Bk and draw in the Jordan blocks that contain the cells (i, i), (j, j), our matrix is
actually in the following form:

Bk =



λ ∗
. . .

Js
...

0 s

λ
...

. . .

Jt
...

0 t

λ
...

. . .

λ


.

Assume that Js is a ks× ks matrix and Jt is a kt× kt matrix. Assume without loss of
generality that ks ≥ kt (the opposite case will have an identical proof to what we do
here, with s and t’s roles exchanged.) In this situation, perform the following sequence
of conjugations:

• First, conjugate by Eadd −s/t copies of entry j to entry i.

• Then, conjugate by Eadd −s/t copies of entry j−1 to entry i−1.
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• Then, conjugate by Eadd −s/t copies of entry j−2 to entry i−2.

...

• Then, conjugate by Eadd −s/t copies of entry j−ks to entry i−ks .

Claim: this makes entry (j, k) = 0 without changing the values of any other cells
in our matrix! To see this, simply draw a few stages in our process. After the first
conjugation by Eadd −s/t copies of entry j to entry i, our matrix (when zoomed in on the
appropriate rows/columns) looks like

. . .

λ

Js︷ ︸︸ ︷
1
λ 1

. . .

λ 1 s/t
λ (s/t)λ− (s/t)λ . . . s− (s/t)t

. . .

λ

Jt︷ ︸︸ ︷
1
λ 1

. . .

λ 1
λ . . . t

. . .


Note that the contents of cells (i, j), (i, k) are both 0 above, and the only nonzero cell
outside of the last column and our blocks is the s/t in cell (i− 1, j).

After performing the second conjugation by Eadd −s/t copies of entry j−1 to entry i−1, we
have

. . .

λ

Js︷ ︸︸ ︷
1
λ 1

. . . s/t
λ 1 (s/t)λ− (s/t)λ (s/t)− (s/t)1

λ 0 . . . 0
. . .

λ

Jt︷ ︸︸ ︷
1
λ 1

. . .

λ 1
λ . . . t

. . .
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Note that the contents of cells (i−1, j), (i−1, j−1) are both 0 above, and furthermore
that we’ve moved our s/t exactly one cell up and to the left to (i− 2, j − 1).

Just to hammer the point home, look at the third conjugation by Eadd −s/t copies of entry j−2 to entry i−2:

. . .

λ

Js︷ ︸︸ ︷
1
λ 1 s/t

. . . (s/t)λ− (s/t)λ (s/t)− (s/t)
λ 1 0 0

λ 0 . . . 0
. . .

λ

Jt︷ ︸︸ ︷
1
λ 1

. . .

λ 1
λ . . . t

. . .


Again, the cells (i− 2, j − 1), (i− 2, j − 2) above are both 0, and we’ve again moved
our s/t one cell up and to the left to the cell (i− 3, j − 2).

So: we keep doing this! After each conjugation, we are effectively just moving the
s/t cell up one and to the left one; we can do this as long as we have rows of Jt
and columns of Js to combine! In particular, because there are more rows of Jt than
columns of Js by assumption, we can do this up until we get to our last conjugation
Eadd −s/t copies of entry j−ks to entry i−ks . At this stage, we start with a s/t in cell (i −
ks, j + 1− ks), and our conjugation gives us the following:

. . .

λ 1 (s/t)λ− (s/t)λ (s/t)− (s/t)
λ 1

. . .
. . .

. . .

λ 1 0 0
λ 0 . . . 0

. . .

λ 1
λ 1

. . .

λ 1
λ . . . t

. . .
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In particular, notice that when we add s/t copies of the i− ks-th column, we’re only
adding a λ, because we’re at the end of the block Js (and therefore there’s a 0 above
the λ at (i− ks, i− ks).)
So, what’s the net result of all of these conjugations? We’ve zeroed out the entry
(i, k), and not changed any of the other entries in our matrix!

3. Therefore, by 2, if there are two nonzero entries still left in the last column, we can
repeatedly get rid of one of them until we have at most one nonzero cell (i, k) in the
last column. If there are no nonzero entries, we are done! Otherwise there is exactly
one left. We know that by 1 this nonzero entry is not across from a 1 in (i, i+ 1): in
other words, our square looks like the following:

Bk =



λ . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . λ 0 . . . t
0 . . . 0 λ . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . λ


.

Conjugate by the following pair of matrices:

• First, conjugate by Emultiply entry k by t. This scales row k by t and column k by
1/t: i.e. it scales (i, k) to 1, and doesn’t change anything else.

• Finally, pick out some permutation σ that cycles the values i + 1, . . . k forward
by 1 (i.e. it sends k to i+ 1, i+ 1 to i+ 2, . . . and k− 1 to k.) Then conjugating
by Pσ just permutes the rows and columns of Bk in the same way: i.e. it uses
the k-th row and column as its i + 1-th row and column, and shuffles the other
rows and columns forward by one. But what is this matrix? It’s mostly just the
same matrix as Bk was before, except now the 1-cell (i, k) is in (i, i+1). In other
words, our matrix is now in Jordan normal form!

So we’re done!

Finally, if we combine all of our results together, we get our claimed proof:

Theorem. Any n× n matrix A can be written in Jordan canonical form.

Proof. Simply use all of our results at once! I.e.

1. The Schur decomposition tells us that any n × n matrix A is similar to an upper-
triangular matrix.

2. Lemma 2 lets us say that any upper-triangular matrix is similar to a block-diagonal
matrix in which each block is upper-triangular and has the same values on its diagonal.

3. Repeatedly applying Lemma 4 to any matrix of the above form tells us that any
matrix of the above form is similar to some matrix in Jordan canonical form.
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Therefore, by simply chaining our similarity results together, we have that any n×n matrix
A is similar to some other matrix in Jordan canonical form.

So we’re done! We’ve proven one of the strongest classification theorems in linear al-
gebra, and furthermore done so in a beautifully concrete and algorithmic fashion that we
could easily implement on a computer. A nice place to end our course, right?
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