Math 137a Professor: Padraic Bartlett

Lecture 3: Trees and Art Galleries
Week 2 UCSB 2014

1 Cut-Edges and Spanning Trees

So: last class, we showed the following conditions were all equivalent ways to define what a
tree is:

1. G is connected and has no cycles.
2. G is connected and has n — 1 edges.
3. There exists exactly one path between any two vertices in G.

We mentioned that two other conditions were equivalent to these three. I want to start
today by returning to one of those two conditions:

4. G is connected, and every edge of G is a cut-edge’.

Specifically: I realized that I want us to actually show that this condition is equivalent
to being a tree, because we need it today! To do this, we merely need to prove the following
lemma:

Lemma 1. An edge e = {u,v} of a graph G is a cut-edge iff it doesn’t belong to any cycle.

Proof. Take any edge e = {u,v}. Remove this edge from our graph: if the graph is still
connected, then there is some path from w to v not involving e; consequently, if we add e
to the end of this path, we get a cycle. Thus, if e is not a cut-edge, it’s involved in a cycle.

Conversely: suppose that e = {u,v} lies in a cycle. Let P be the path from u to v that
doesn’t use e (i.e. go the other way around the cycle.) Pick any z, y in G; because G is
connected, there’s a path from z to y in G. Take this path, and edit it as follows: whenever
the edge e shows up, replace this with the path P (or P traced backwards, as needed.) This
then creates a walk from x to y; by deleting cycles, this walk will always become a path,
and thus G is connected. So if e is involved in a cycle, it’s not a cut-edge. U

Corollary 2. G is a tree if and only if it’s connected and all of its edges are cut-edges.

Proof. By the above lemma, G is connected and all of its edges are cut-edges if and only if
G is connected and acyclic, which we know to be equivalent to being a tree. L]

1A cut-edge of a connected graph is an edge e such that if e is deleted from our graph, our graph is
disconnected.



2 The Art Gallery Problem

Ok! Tree prelude over. Now I can state the main goal of this set of lecture notes: the art
gallery problem! Consider the following question:

Question 3. Suppose that you have an art gallery that is shaped like some sort of n-polygon,
and you want to place cameras with 360°-viewing angles along the vertices of your polygon
in such a way that the entire gallery is under surveillance. How many cameras do you need?

A gallery guarded by 2 guards, Red and Green.

One trivial upper bound you can come up with is n guards: just put one guard on each
vertex of our polygon with n sides!
Can we do better? As it turns out, we can!

Claim. (Chvatal) You need at most |n/3]-many cameras to guard a n-polygon.

It bears noting that this bound of |n/3] is sharp. Consider the following art gallery:




A crown-shaped art gallery.

In the above sort-of “crown-shaped” art gallery, each prong of the crown (i.e. triangle)
needs to have a guard on one of its three vertices to guard the entire triangle, as no other
vertices can “see” the entirety of that prong. Therefore, you need one guard for each prong;
i.e. n/3 guards, for a crown with n/3 prongs (i.e. n vertices.)

To prove Chvatal’s theorem, we need a few lemmas first:

Lemma 4. If G is a n-polygon with n > 4, then there is some line segment formed by two
of the vertices in G that lies entirely in G.

Proof. Let v be the leftmost vertex of G. (If there is a tie, take v to be the top leftmost
vertex of G.) Let u and w be v’s neighbors, and examine the line segment uw. If this lies
entirely in G, great! Otherwise, it must cross some edge of G; consequently, there must be
a vertex of G that lies inside of the triangle spanned by the three points u,v,w. Let x be
the vertex furthest from the line segment ww that lies in this triangle. Then, look at the
line segment Ux; because z is the furthest point in Auvw from ww, there can’t be any edges
of G that are crossed by this line segment (as one of their endpoints would necessarily be
closer to v.) So UT lies entirely in G. ]

Corollary 5. Any n-polygon can be divided into n — 2-triangles.

Proof. Using the process above, repeatedly divide our n-polygon into a pair of smaller
polygons, one with k vertices and the other with n+2—k vertices, until all of these polygons
are triangles. By induction, it is not hard to see that the number of these triangles is n — 2.

O

So: we can turn any polygon into a number of triangles stuck to each other! We use
this to turn any art gallery on n vertices into a graph on n — 2 vertices, as follows:

e Start by taking our polygon G and turning it into a collection {7; ;:12 of triangles.
e For each triangle T;, associate a vertex t;.

e Connect two vertices ¢;,t; with an edge if their corresponding triangles 73,7} share a
face.

Call this graph T” the dual graph of T.



Turning the crown into a tree.

This is a graph! Furthermore, it’s a fairly special kind of graph: it’s a tree! We prove
this here:

Lemma 6. Let G be a polygon, T be a triangulation of G performed as above, and let T’
be the dual graph to this triangulation (i.e. put a vertexr in the center of every face of T,
and connect two faces iff they share an edge.) This graph is a tree.

Proof. Let T be our triangulated polygon. In our construction above, each of the edges of
T’ corresponds to a diagonal of the polygon G, that divides our polygon into two distinct
smaller polygons. Because cutting our polygon G along one of those diagonals will always
divide the polygon into two disconnected pieces, doing so will always result in two triangles
that are no longer connected by a chain of triangles with adjacent faces!

In other words: in the dual graph 7" that we made above, removing any edge disconnects
our graph! Consequently, we know that in the dual graph T of T', every remaining edge of
T’ is a cut-edge. Therefore, as we showed earlier in lecture, 7/ must be a tree. U

This tree is remarkably useful; in particular, we can use its structure to create a system
for assigning guards! We do this here:

Lemma 7. Toke a polygon G that has been triangulated as described earlier. Then we can
color each of the vertices of G either red, blue or green, so that each triangle contains one
vertex of each color.

Proof. For our triangulated polygon G, take the dual graph/tree T’ that we constructed
above, and pick some vertex ¢g in it. For all relevant integers k, let T}, be the collection of
vertices that are distance k away from v, for every k. (The distance of two vertices from
each other is the length of the shortest path between them.)

Color the vertices of T" as follows:

e Take the triangle in G associated to ¢y — i.e. the only element in T — and color its
three vertices red, green and blue.



e Suppose we’ve colored all of the vertices attached to triangles with corresponding
vertices in 7}, for some i. Now, look at the triangles corresponding to vertices in Tj ;.
Fach triangle associated to a vertex ;41 in this set shares exactly one edge with some
triangle associated to a vertex in T7; this is because if our vertex is distance i+ 1 from
to, then (by taking the path of distance i + 1 and walking one step closer to tg) there
is an adjacent vertex (and thus face-sharing triangle) at distance ¢, i.e. in 77.

Furthermore, because T” is a tree, there is exactly one edge from any ¢;11 to vertices
in the set U;J;BTJ’ This is because the existence of any other edge would create a
cycle, because it would give us two distinct paths to ¢y! (Two different paths for the
two different ways to get to vertices in some 7T}, and then from there we can get to tg

by taking the unique path from that ¢; vertex to ¢o.)

Therefore, the triangle associated to t;11 shares a face with only one other triangle
in all of the sets that we’ve already colored! Therefore, only two of its vertices have
been assigned colors. Thus, there is always some spare third color to use to color its
third vertex! Use this to color its third vertex, and repeat for all vertices in T;41.

e Repeat this process until every vertex in 7" is colored. By construction, every triangle
has one vertex of each color.

O

Corollary 8. You need at most |n/3|-many cameras to guard a n-polygon.

Proof. By the above, create a triangulation and 3-coloring of our polygon G with the colors
{R, G, B}. Now, station guards at whichever color is used the least number of times in this
triangulation! Each guard can see everything in their assigned triangle, as there are no walls
of our art gallery (i.e. lines of our polygon) that intersect these triangles, by construction.
Therefore, the entire art gallery is guarded. L]

To guard this crown, simply pick one of (red, green, blue,) and station guards at vertices
of that color.
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