
Math 137B Professor: Padraic Bartlett

Lecture 2: Cayley Graphs

Week 3 UCSB 2014

(Relevant source material: Section VIII.1 of Bollobas’s Modern Graph Theory; 3.7 of
Godsil and Royle’s Algebraic Graph Theory; various papers I’ve read and cannot remem-
ber.)

This week’s lecture continues last’s week’s discussion of the interplay between groups
and graphs. In specific, we define the Schreier diagram in these notes, calculate some
examples, and (if there is time) look at some applications of these techniques!

First, a few additional group theory definitions:

1 Cosets

Definition. Suppose that G is a group, s ∈ G is some element of G, and H is a subgroup
of G. We define the right coset of H corresponding to s as the set

Hs = {hs | h ∈ H}.

We will often omit the “right” part of this definition and simply call these objects cosets.

Example. Consider the group G = 〈Z,+〉. One subgroup of this group is the collection of
all multiples of 5: i.e.

H = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .}

This subgroup has several cosets:

• s = 0: this forms the coset

H + 0 = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .},

which is just H itself.

• s = 1: this forms the coset

H + 1 = {. . .− 14,−9,−4, 1, 6, 11, 16 . . .}.

• s = 2: this forms the coset

H + 2 = {. . .− 13,−8,−3, 2, 7, 12, 17 . . .}.

• s = 3: this forms the coset

H + 3 = {. . .− 12,−7,−2, 3, 8, 13, 18 . . .}.
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• s = 4: this forms the coset

H + 4 = {. . .− 11,−6,−1, 4, 9, 14, 19 . . .}.

Notice that this collection of cosets above is indeed the collection of all of the possible
cosets of H within G: if we take any other element in Z, like say 13, we’ll get one of the
five cosets above: i.e.

H + 13 = {. . .− 2, 3, 8, 13, 18 . . .} = H + 3.

In general, H + x = H + y for any x ≡ y mod 5.

Example. Consider the group G = 〈(Z/7Z)×, ·〉, i.e. the nonzero integers mod 7 with
respect to the multiplication operation. This has the set

H = {1, 6}

as a subgroup (check this if you don’t see why!)
This group has the following cosets:

• s = 1, which creates the cosets H · 1 = H,

• s = 2, which creates the coset

H · 2 = {2, 5}.

• s = 3, which creates the coset

H · 3 = {3, 4}.

• s = 4, which creates the coset

H · 4 = {4, 3}.

Notice that this coset is the same as H · 3.

• s = 5, which creates the coset

H · 5 = {5, 2}.

Notice that this coset is the same as H · 2.

• s = 6, which creates the coset

H · 6 = {6, 1}.

Notice that this coset is the same as H.
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Example. Consider the group S3. This group has the subgroup

H = {id, (123), (132)}

as a subgroup. This subgroup has two possible distinct cosets:

• H · id = H · (123) = H · (132) are all the same coset, which is just H.

• H · (12) = H · (13) = H · (23) = {(12), (13), (23)}.

The cosets that we’ve examined above have a number of interesting properties:

Theorem. The following facts about cosets of a subgroup H of a group G are true:

1. For any s ∈ G, the right coset Hs is equal to H if and only if s ∈ H.

2. Two cosets Hs,Ht are either completely identical or completely disjoint.

3. If K is a coset and we form the set Ks = {k · s | k ∈ K}, this set is also a coset.

4. The various possible cosets of H partition G into a collection of disjoint subsets. (In
particular, this proves that the number of elements in H must divide the number of
elements in G.)

5. If K is a coset of H and k is any element in K, then Hk = K.

These are not hard facts to prove! Because this is not an algebra class, we reserve these
proofs for you to check on your own.

Instead, we focus on the applications of this idea to graphs: the notion of a Schreier
graph!

2 Schreier graphs

Definition. Take a group G, a subgroup H of G, and some collection of elements S that
(along with the elements in H) generate G. We create the Schreier diagram corresponding
to this collection of information as follows:

• Vertices: the various right cosets of H in G.

• Edges: connect two cosets K,L with an edge if and only if there is some element s ∈ S
such that Ks = L.

In this sense, a Cayley graph is simply a Schreier diagram where we set H = {id}.

We consider a pair of examples:

Example. Let’s take G = S3 as before, with the subgroup H = {id, (12)} and generating
set a = (123). This group has three possible cosets for H to bounce between:

H = H · (12) ={id, (12)},
H · (13) = H · (132) ={(13), (132)},
H · (23) = H · (123) ={(23), (123)}.

This gives us a fairly simple Schreier diagram, if we use the fact that a2 = (132):
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id H(123)

H(132) =a

Example. Consider the group G = D8 = the collection of all symmetries of a square. We
denote its eight elements, defined in last week’s lecture notes, as the set

{id, rot(90◦), rot(180◦), rot(270◦), flip( | ),flip(−), flip(�), flip(�)}.

By the “flip(line)” expressions, we mean the four symmetries of the square that consist of
flipping the square over some axis, with the appropriate axis given in parentheses next to
each flip.

Take the subgroup H = {id, rot(180◦)} along with the generators S = {a = flip(�), b =
flip(−)}. Our subgroup has four possible cosets:

H = H · rot(180◦) = {id, rot(180◦)},
H · rot(90◦) = H · rot(270◦) = {rot(90◦), rot(270◦)},

H · flip( | ) = H · flip(−) = {flip( | ), flip(−)},
H · flip(�) = H · flip(�) = {flip(�),flip(�)}.

This gives us another fairly simple Schreier diagram:

id H·f(-)

  
=a

H·f( ) H·r(90°)

=b

The ease of the above two calculations indicates part of the reason why we might like
Schreier diagrams: they are often easier to calculate than Cayley graphs. In exchange,
however, we’re only getting information about the cosets of H instead of the elements of
our group — but if we only care about the elements of our group “up to” the elements H
of our coset, this is still pretty great!
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To illustrate a situation where working with the Schreier diagram is markedly easier
than the Cayley graph, consider the following problem:

Problem. Consider the presented group

〈a, b | a2 = b5 = (ba)3 = id〉,

which has < b | b5 = id >= {id, b, b2, b3, b4} as a subgroup. What is the Schreier diagram
of this group with the generators {a, b}?

Answer. We use the same heuristics to find this Schreier graph that we used to find the
Cayley graph for a presented group. We copy these heuristics from our earlier set of notes
here:

0. Start by placing one vertex that corresponds to the “identity” coset H.

1. Take any vertex corresponding to a coset K that currently has a corresponding vertex
in our graph. Because our graph is a Schreier graph, it must have one edge leaving
that vertex for each generator in our generating set. Add edges and vertices to our
graph so that this property holds.

2. If some word Ri is a word that is equal to the identity in our group, then in our graph
the path corresponding to that word must be a cycle: this is because if this word
is the identity, then multiplying any element in our group by that word should not
change that element.

Identify vertices only where absolutely necessary to insure that this property holds
at every vertex. (This may be a bit trickier here, because we are dealing with cosets
instead of group elements; consequently, it may take a bit of thought to determine
what this condition is asking of us.)

We run this process here. We start with one vertex corresponding to the coset H:

H

=a

=b

Ha

Note that because Hb = H, the b-edge leaving H returns to H itself, forming a loop. (This
illustrates some of the slightly trickier aspects of working with cosets instead of groups.
This, however, is the only time this will come up, which perhaps illustrates that cosets
aren’t so bad after all.)

We now take our one new vertex Ha and draw the two a, b-edges leaving Ha:

H

=a

=b

Ha

Hab
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Here, we use the relation a2 = id to conclude that Ha2 = H.
We now draw the edges leaving Hab:

H

=a

=b

Ha

Hab
Hab2

Hab4

And repeat this process on Hab2, Haba:

H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Haba

Notice here that the relation a2 = id means that the a-edge leaving Haba returns to Hab;
in general, this property will always insure that these a-edges come in pairs, and we will
use this identification throughout the rest of this proof without calling it out.

More interestingly, note that Habab = Ha. This is because bababa = id is equivalent to
asking that the walk corresponding to bababa starting at the origin returns to the origin.
After the first four steps, we are at Haba; to return to H along an a-edge, we must go to
Ha, which forces our connection.

We draw more edges:

H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Hab2ab
Haba

Notice that Haba = Hab4; this is because if we start at Haba and take the walk of length
5 given by the b-edges, we should return to ourselves. Also notice that Hab3a = Hab2ab;
this is because the walk bababa starting at Hab3 must return to itself, and therefore that
the a-edge leaving Hab3 must go to whatever b-edge leaves Hab2a.
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H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Nothing nontrivial was identified above, so we continue our process:

=a

=b

Hab2ab3

Hab2ab2a

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Still nothing. More edges!

Hab2ab3

=a

=b

Hab2ab3a

Hab2ab2a

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Ok, now some interesting things have happened. Notice that we’ve identified Hab2ab2a
with Hab2ab4; this is again because of the walk bababa = id, starting this time from the
vertex Hab2. In particular, because walking baba from Hab2 takes us to Hab2ab2a and
walking ba more must return us to Hab2, we know that our b-edge leaving Hab2ab2a must
go to Hab2a. Similarly, taking the walk b5 starting from this Hab2ab2a vertex must return
us to ourselves, forcing the b-edge leaving Hab2ab3 to go to Hab2ab2a.

We draw our last batch of edges:
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=a

=b

Hab2ab3 Hab2ab3a

Hab2ab4

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Note that the b-edge leaving Hab2ab3a must return to itself, as the walk bababa = id starting
from the vertex Hab2ab3 forces the b-edge leaving Hab2ab3a to return to itself.

This gives us a ton of useful information about our group: it tells us that there are 60
elements (as we have 12 cosets, each containing 5 elements), and moreover it tells us how
these cosets get moved around by a and b (in particular, looking at our graph tells us that
b keeps two cosets constant and moves the other 10 around in two groups of 5.) For those
of you who have done some group theory before, this actually is enough to tell us what this
group is in its entirety (it’s A5, the alternating group on 5 elements!)

It turns out that adding a bit more information to our diagram can make them even
more useful:

3 Decorated Schreier Diagrams

Definition. Given a Schreier diagram for a group G with subgroup H and generators S
that we’ve labeled our edges with, we can decorate it! We do this as follows:

• Take all of the vertices of our Schreier diagram. Each vertex corresponds to a coset K.
Pick some element k ∈ K, and use that element to decorate the vertex corresponding
to that coset.

Notice that if we have decorated a coset K with some element k ∈ K, then we can
actually write K = Hk. So this decoration is a pretty natural one to use.

• Now, suppose that there is an a-edge going from one coset K = Hk to another coset
L = Hl. We decorate this edge with the group element α such that ka = αl.

Notice that because L = Ka = Hka, we can write l = hka for some h ∈ H, and thus
have ka = αhka⇒ α = h−1. In particular, this means that all of the edge decorations
(1) exist, as we found a formula to find them, and (2) are all elements from our coset
H.

Decorated Schreier diagrams satisfy a fairly interesting property:
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Proposition. Take any Schreier diagram for a group G with subgroup H. Decorate it.
Take any closed walk in our Schreier diagram that starts and ends at the H-vertex1. The
product of the group elements used to label the edges of this closed walk, in the order given
by our closed walk, is the same thing as the product of the group elements used to decorate
our edges (in the order given by our closed walk.)

Proof. To illustrate the idea, let’s take an arbitrary decorated three-vertex cycle starting
from some coset Hk, where the edges are oriented as drawn below:

Hl

=a

=b

Hm

Hk

=c

[γ]

[β]

[α]

A decorated three-cycle from within some Schreier graph. The vertices Hk,Hl,Hm are all decorated via

their representatives k, l,m. There is an edge Hk → Hl given by the generator a, Hl → Hm given by the

generator b, and Hm→ Hk given by c; as well, these three edges are decorated by the labels α, β, γ.

Notice that because the a-edge Hk → Hm is decorated with an α, we have ka = αl;
similarly, because the b-edge Hl→ Hm is decorated with β, we have lb = βm, and because
the c-edge Hm→ Hk is decorated with γ, we have mc = γk.

Consequently, if we look at the product kabc, we have

kabc = αlbc = αβmc = αβγk.

In particular, if k = id — in other words, if Hk = H — we have abc = αβγ. In other
words, the product of the “labels” on our cycle is the same thing as the product of the
“decorations” on our cycle!

This proof generalizes to oriented cycles of length n by almost exactly the same proof:
simply take any cycle with vertices decorated k1, . . . kn, edges ki → ki+1 labeled ai and
decorated αi. Then by the exact same argument as above, we have

k1a1a2 . . . an = α1k2a2 . . . an = . . . α1α2 . . . αnk1,

which gives us a1a2 . . . an = α1α2 . . . αn in the case that the vertex corresponding to k1 is
the subgroup H (i.e. k1 = id.)

1In a directed walk, this is potentially ambiguous. For this talk, we mean any subgraph that when we
forget the orientations of our edges, we get something that would be a closed walk in an unoriented graph.
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We finally note that because the condition ka = αl is equivalent to the request αk =
la−1, we can deal with the situation where edges are oriented in the “wrong” directions by
simply replacing the a, α’s with their inverses. For example, suppose we returned to our
triangle from before, but messed with some of the orientations:

Hl

=a

=b

Hm

Hk

=c

[γ]

[β]

[α]

In this situation, we would use the relations

• la = αk ⇒ ka−1 = α−1l,

• lb = βm,

• kc = γm⇒ mc−1 = γ−1k

to perform the transformation

ka−1bc−1 = α−1lbc−1 = α−1βmc−1 = α−1βγ−1k.

Again, setting k = 1 gives us that the product of the labels of edges in our closed walk is
the same as the product of the decorations of edges in our closed walk, provided that we
interpret the “orientation” of each edge as telling us whether a group element is represented
by itself or its inverse.

One convenient way to decorate a Schreier diagram is via the following process:

Proposition. Take any Schreier diagram for a group G with subgroup H. The following
process induces a unique decoration of this diagram:

• Decorate the H-vertex with the element id ∈ H.

• Pick out some spanning tree2 T in our graph. Decorate all of the edges in this spanning
tree with the element id ∈ H.

2Recall that a spanning tree of a graph G is a subgraph of G that (1) is a tree, and (2) contains every
vertex in our graph. In this setting, where we are dealing with directed graphs, this notion might again be
ambiguous; for this talk, we further define a tree as any subgraph that when we forget the orientations of
our edges, we get something that would be a tree in an unoriented graph.

10



Proof. This is not too hard to see. Look at any vertex K that is distance 1 from H, where
we measure distance from the origin via our spanning tree: i.e. we are declaring that a vertex
is distance n from H if there is a path of length n from H to that vertex in our spanning
tree T . Because T is a spanning tree, this gives a well-defined distance function.

Suppose that the edge in our spanning tree connecting K to the origin is labeled a, and
goes from H → K. If we want H to be decorated as id and this a-edge to be labeled id,
we are asking that the decoration of K is some element k ∈ K such that id · a = k · id: i.e.
that each of these vertices K has a unique decoration, given (in this particular case) by the
edge-labeling that led to that coset.

The other case, where the edge goes from K to H, is similar; if we want H decorated
as id and the a-edge K → H to be decorated id, then we must have K decorated with
a k such that ka = id · 1 = id, which again uniquely determines k. (This is like the
orientations-corresponding-to-inverses relationship we saw in our earlier result.)

Now, suppose that we have decorated all of the vertices out to distance n, and want to
decorate vertices at distance n+ 1. Take any K at distance n+ 1: because T is a spanning
tree, there is some unique edge connecting a previously-decorated vertex L at distance n to
our vertex K via an edge in T . Assume this edge is labeled with some element a, decorated
by id, and that L is decorated with some element l.

Then, if the edge goes from L→ K, K must be decorated with an element k such that
la = id · k; similarly, if the edge goes from K → L, K must be decorated with some k
such that ka = id · l. Notice that this uniquely defines K’s labeling. Furthermore, notice
that this labeling is conflict-free: because T is a tree, there is no way for us to have two
conflicting claims as to what K’s decoration should be.

This decorates all of the vertices in our graph. Now, take any edge K → L in our graph
that we have not yet labeled (i.e. any edge not in the spanning tree.) Consider the closed
walk formed by starting at H, walking to K along the unique path to K in our spanning
tree, taking the edge K → L, and walking back to H via the unique path back to H in our
spanning tree. This is a closed walk; therefore, the product of the decorations of edges on
this walk must be equal to the product of the labelings of edges on this walk!

But every edge in our walk is decorated by 1’s, except for the K → L edge which we’re
trying to decorate. Therefore, this gives us a unique decoration of this edge, given by the
labelings of the walks H → K and L→ H. So we’ve decorated our graph!

This method of decoration has an interesting consequence:

Theorem. Take any Schreier diagram for a group G with subgroup H, along with a gen-
erating set S for G. Decorate this diagram as described above. Then the subgroup H is
generated by the decorations of the edges in our graph.

Proof. Take any element h ∈ H. Because S generates G, we can write h as some product
s1 . . . sn of elements (possibly repeated and with inverses) from S. This corresponds to a
walk on our Schreier graph: furthermore, because s1 · . . . · sn = h ∈ H, this walk must start
and end at H.

Decorate our Schreier diagram using the decoration given above. Then the product of
labels on this walk must be equal to the product of the decorations of the edges on this
walk: in other words, we can write h as the product of some of the decorations of the edges
in our graph! So any h can be written as the product of decorations in our graph.

11



Furthermore, by using walks that start at H and walk along edges in the spanning
tree to get to any edge in our graph, walking on that edge, and then returning along our
spanning tree edges, we can see that the decoration of any edge in our graph is an element
in our subgraph. Therefore H is generated by these decorations, as claimed!

This theorem has the following very beautiful extension:

Corollary. Take any Schreier diagram for a group G with subgroup H, along with a gen-
erating set S for G. Decorate this diagram as described above. Suppose that G has a
presentation 〈a1, a2, . . . | R1, R2, . . .〉. Then the subgroup H has a remarkably nice presen-
tation:

H = 〈d1, d2, . . . | D1,1D1,2 . . . , D2,1, D2,2, . . .〉,

where

• The generators d1, d2, . . . are all of the decorations of edges in our graph.

• The relations D1, D2, . . . are given by the following process: take any relation Ri from
G. This corresponds to a labeled walk in our graph, that starting from any vertex
must return to that vertex: in other words, in our group, the product of the labelings
on those edges must be the identity.

Now, we know that the product of the labels on this walk must be equal to the product
of the decorations on this walk. In other words, a relation Ri on our generators
can create several relations on the generators d1, d2, . . .! Call these new relations
Di,1, . . . Di,n.

If we consider the case where G is a free group (i.e. a group with no relations) we get
the following result “for free:”

Corollary. Any subgroup of a free group is free.

For those of you who haven’t done group theory before, this might not be very surprising,
and seem like it should be a relatively “trivial” result. This is far from the truth; what
we’ve presented here is the closest to a purely algebraic proof that is known, and is one
of the simplest proofs I am aware of3! On the homework, I’ve put a few subgroups of free
groups to illustrate why this is actually a powerful result; have fun!

3The other one I know goes through algebraic topology, and is similar in difficulty.
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