
Math 7h Professor: Padraic Bartlett

Lecture 9: Latin Squares

Week 9 UCSB 2013

1 Latin Squares: Definitions

Definition. A latin square of order n is a n× n array filled with n distinct symbols (by
convention {1, . . . n}), such that no symbol is repeated twice in any row or column.

Example. Here are all of the latin squares of order 2:[
1 2
2 1

] [
2 1
1 2

]
.

A quick observation we should make is the following:

Proposition. Latin squares exist for all n.

Proof. Behold! 
1 2 . . . n− 1 n
2 3 . . . n 1
...

...
. . .

...
...

n 1 . . . n− 2 n− 1



Given this observation, a natural question to ask might be “How many Latin squares
exist of a given order n?” And indeed, this is an excellent question! So excellent, in fact,
that it turns out that we have no idea what the answer to it is; indeed, we only know the
true number of Latin squares of any given order up to 11!

n reduced Latin squares of size n1 all Latin squares of size n

1 1 1

2 1 2

3 1 12

4 4 576

5 56 161280

6 9408 812851200

7 16942080 61479419904000

8 535281401856 108776032459082956800

9 377597570964258816 5524751496156892842531225600

10 7580721483160132811489280 9982437658213039871725064756920320000

11 5363937773277371298119673540771840 776966836171770144107444346734230682311065600000

12 ? ?

Asymptotically, the best we know (and you could show, given a lot of linear algebra tools)
that

L(n) ∼
( n

e2

)n2

.

Instead of this question, we’re going to spend this lecture starting to study the concept
of partial Latin squares, which we discuss below:

1(A reduced Latin square of size n is a Latin square where the first column and row are both
(1, 2, 3 . . . n).)
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2 Partial Latin Squares

Definition. A partial latin square of order n is a n × n array where each cell is filled
with either blanks or symbols {1, . . . n}, such that no symbol is repeated twice in any row
or column.

Example. Here are a pair of partial 4× 4 latin squares:
4

2
3 4
4 1 2




1
1

1
2


The most obvious question we can ask about partial latin squares is the following: when

can we complete them into filled-in latin squares? There are clearly cases where this is
possible: the first array above, for example, can be completed as illustrated below.

4
2
3 4
4 1 2

 7→


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3


However, there are also clearly partial Latin squares that cannot be completed. For

example, if we look at the second array
1

1
1

2

 ,

we can pretty quickly see that there is no way to complete this array to a Latin square:
any 4× 4 Latin square will have to have a 1 in its last column somewhere, yet it cannot be
in any of the three available slots in that last column, because there’s already a 1 in those
three rows.

Deciding whether a given partial Latin square is completeable to a Latin square is,
practically speaking, a useful thing to be able to do. Consider the following simplistic
model of a router:

• Setup: suppose you have a box with n fiber-optic cables entering it and n fiber-
optic cables leaving it. On any of these cables, you have at most n distinct possible
wavelengths of light that can be transmitted through that cable simultaneously. As
well, you have some sort of magical/electronical device that is capable of “routing”
signals from incoming cables to outgoing cables: i.e. it’s a list of rules of the form
(r, c, s), each of which send mean “send all signals of wavelength s from incoming cable
r to outgoing cable s.” These rules cannot conflict: i.e. if we’re sending wavelength
s from incoming cable r to outgoing cable s, we cannot also send s from r to t, for
some other outgoing cable t. (Similarly, we cannot have two transmits of the form
{(r, c, s), (r, t, s)} or {(r, c, s), (t, c, s)}.)

• Now, suppose that your box currently has some predefined set of rules it would like to
keep preserving: i.e. it already has some set of rules {(r1, c1, s1), . . .}. We can model
this as a partial Latin square, by simply interpreting each rule (r, c, s) as “fill entry
(r, c) of our partial Latin square with symbol s.”

• With this analogy made, adding more symbols to our partial Latin square is equivalent
to increasing the amount of traffic being handled by our router.

This example hopefully motivates why we care about completing partial Latin squares,
which lets us turn to the “what” part of our mathematical question: what kinds of partial
Latin squares have completions?

Let’s start simple.

Question. Suppose that we have a n × n partial Latin square L in which we’ve already
filled in the first n−1 rows. Can we always complete this partial Latin square to a complete
Latin square: i.e. can we always fill in the last row?
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Proof. The answer to this question is yes (as trying a few examples may lead you to believe.)
To prove this, consider the following simple algorithm for filling in our partial Latin square:

• Look at row n.

• For each cell (n, i) in row n, look at the column i.

• There are n − 1 distinct symbols in column i, and therefore precisely one symbol s
that is not present in column i. Write symbol s in the cell (n, i).

We claim that this algorithm creates a Latin square. To check this, it suffices to check
whether any symbols are repeated in any row or column. By construction, we know that
our choice of symbol s does not cause any repetition of symbols in any column; as well,
we know that no symbol is repeated in any row other than possibly the n-th row, because
we started with a partial Latin square. Therefore, it suffices to check the n-th row for any
repeated symbols.

To do this, proceed by contradiction: i.e. suppose not, that there are two cells in the
bottom row such that we’ve placed the same symbols in those two cells. This means that
there is some symbol s that we’ve never written in our last row. But this means that this
symbol s is used somewhere in all n columns within the first n− 1 rows, which forces some
row in those first n− 1 to contain two copies of s, a contradiction.

Therefore, our algorithm works!

(As an aside, the above tactic of “make an algorithm” is ridiculously useful, and is something
we should remember and make frequent use of.)

Given our success above, it’s tempting to ask whether we can extend this result to
partial Latin squares where we’ve (say) filled in just the first n− 2 rows, or even in general
a partial Latin square where we’ve filled in the first k rows, for any value of k. As it turns
out, this is also possible! Consider the following definition and theorem:

Definition. A n × n Latin rectangle is a n × n partial Latin square in which the first
k rows are completely filled and the remaining n− k rows are completely empty, for some
value of k.

Theorem 1. Every Latin rectangle can be completed to a partial Latin square.

In order to prove this theorem, we’re going to need to use Hall’s marriage theorem, a
remarkably powerful result from graph theory! We present a number of definitions here,
then state and prove Hall’s theorem, and then use it for our result on Latin rectangles:

2.1 A Brief Detour into Graph Theory

Recall, from our earlier lecture, the following definitions related to graphs:

Definition. A simple graph G with n vertices and m edges consists of the following two
objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints. If {v, w} is an edge, we will also often say that v and w are adjacent.

A path in a graph G = (V,E) is a alternating sequence of vertices and edges v0, {v0, v1}, v1, {v1, v2}, v2, . . . vn
such that all of these edges are elements of E.

We call a graph bipartite if its vertices V can be split up into two sets V1, V2 such that
none of V ’s edges have both endpoints in V1 or V2.

Given a graph G = (V,E) and a vertex v ∈ V , let n(v) denote the neighbors of v, i.e.
the collection of vertices connected to v via edges in E. The degree of a vertex is the size
of n(v).

A subgraph H of a graph G = (V,E) is a graph H = (V ′, E′) such that V ⊂ V ′ and
E ⊂ E′: i.e. H is a graph we can make by deleting some edges and vertices from G.

A matching of a graph G is a collection of edges M , such that every vertex of G is
contained in at most one edge in M . Finally, a perfect matching of a graph G = (V,E)
is a collection of edges P such that every vertex v ∈ V is contained in precisely one edge in
P .

3



Theorem 2. Take a bipartite graph G = (V,E) with bipartition V = A ∪ B. Then, the
following conditions are equivalent:

• G has a perfect matching: i.e. there’s a way to pair off all of the elements of A with
the elements of B.

• (Hall’s condition): For any subset X ⊂ A or X ⊂ B, if N(X) denotes the neighbors
of X, then |X| ≤ |N(X)|. In other words, any collection of vertices from one side of
our bipartition cannot have less neighbors on the other side than it has elements.

Proof. Because this is an equivalence proof, we need to prove two statements: that the
second statement implies the first, and that the first implies the second. We start with the
easier direction, that the existence of a perfect matching implies Hall’s condition:

(⇒): Suppose that G has a perfect matching. Because G is bipartite, such a perfect
matching is just a pairing-up of vertices in A to vertices in B along edges in G. Thus, for
any subset X ⊂ A, because N(X) must contain the edges in this perfect matching, we have
that |X| ≤ N(X) (and similarly for X ⊂ B.)

Now, we move to the harder condition, showing that Hall’s condition implies that there
is a perfect matching.

(⇐): Take any matching M , not necessarily perfect, for G. If M is a perfect matching,
then we’re done! Otherwise, consider the following algorithm for creating a path between
vertices in A and B:

1. Pick some a0 ∈ A that’s not involved in M . We can do this because M is not a perfect
matching, and therefore there is some vertex in our graph that’s not hit by one of M ’s
edges (and it might as well be an element from A, because our labelings of A and B
are arbitrary.)

2. We seek to create a path starting from a0 that’s as long as possible. We do so by
creating an alternating sequence of vertices from A and B, along with a collection of
specially marked edges that we will use to find this path.

3. Suppose that the sequence a0b1a1b2a2 . . . bk−1ak−1 has been created. Then, because
the set {a0 . . . ak−1} of chosen A-vertices is strictly larger than the set {b1 . . . bk−1}of
chosen B-vertices, there must be some element bk ∈ B that’s connected by some edge
{bk, ai} to some previously-chosen ai, by Hall’s condition. Define ek to be this edge
{bk, af(k)}.

4. If bk is in M , let ak be the vertex across from bk in M , and return to (2) to continue
to grow our sequence. Otherwise, end our sequence!

5. By construction, we know that bk is unique amongst the previously chosen bi’s; sim-
ilarly, because we picked the ai up to this point by using the matching M , we know
that they’re all distinct. So this is still a sequence of distinct vertices!

6. Using this sequence, we can construct the following path, made by alternately follow-
ing the edges of M and the edges recorded by the function f :

(a) Start at bk.

(b) If you are at some element bj in B, travel along the specially marked edge ej to
an element in A, and go to step (c).

(c) Otherwise, if you are at an element ai in A that’s not a0, by construction there
is some element bi that you’re directly across from using an edge in M . Travel
along that edge to bj , and then go to step (b).

(d) Otherwise, you’re at a0. Stop.

How can we use this path to make M a perfect matching? Well, take M , and (1) delete
all of the M edges we used above, while (2) adding to M all of the ei-edges. This
collection has precisely one more edge than the old collection, and only deals with
the vertices a0, bk (which weren’t in M anyways) and a1 . . . ak−1, b1 . . . bk−1 (which
were only involved in edges we removed from M) — so it preserves M ’s status as a
matching! Therefore, this matching is strictly larger than the one it replaced. If it
is now a perfect matching, stop! Otherwise, repeat this process to keep adding edges
until it becomes a perfect matching.
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Corollary 3. Suppose that G = (V,E) is a bipartite graph with bipartition V = A ∪ B,
such that every vertex of V has degree k. Then G can be decomposed into k different perfect
matchings, none of which have any edges in common.

Proof. Pick any subset X ⊂ A or X ⊂ B of size n. Because every vertex in G has degree k,
there are kn distinct edges leaving X and entering N(X). Consequently, as each vertex has
degree k, there must be at least n vertices in N(X) to absorb these edges! – so |N(X)| ≥ |X|.

Thus, by Hall’s Marriage theorem, there is a perfect matching in G. Deleting it from G
leaves a graph in which every vertex has degree k − 1; therefore, we can simply repeat this
process until we get the desired k disjoint perfect matchings.

Excellent. So. . . how does this help us with Latin rectangles?

2.2 Completing Latin Rectangles

As it turns out, Hall’s marriage theorem is useful to us because another way to view a Latin
square (or indeed a partial Latin square) is as a graph! Specifically, given a n × n Latin
rectangle L with its first k rows filled, we can create a bipartite graph G = (V,E) with
V = A ∪B,E defined as follows:

• A = {1 . . . n}.

• B = {B1 . . . Bn}.

• Associate to each Bj the collection of elements that don’t occur in column j. Draw
an edge from i ∈ A to Bj ∈ B if and only if i is one of those symbols that does not
occur in Bj .

By construction, the degree of any Bj is just the number of elements that don’t occur in a
given column: i.e. n−k. As well, the degree of any i ∈ A is just the number of columns that
i doesn’t show up, which is also n − k; so this is a bipartite graph in which every vertex
has degree k.

We claim that this graph satisfies Hall’s marriage theorem. To see why, pick any subset
X ⊂ A or X ⊂ B of size n. Because every vertex in G has degree n− k, there are n(n− k)
distinct edges leaving X and entering N(X). Consequently, as each vertex has degree n−k,
there must be at least n vertices in N(X) to absorb these edges! Therefore, |N(X)| ≥ |X|.

If we apply Hall’s marriage theorem, then, we have a perfect matching: i.e. a bijection
between elements in {1, . . . n} and columns where they do not occur. Use this perfect
matching to fill in row k + 1, by placing in each column the element given by our bijection
that does not occur in that column. This gives us another Latin rectangle: by repeating
this process, we get a Latin square.
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