Math/CS 103	Professor: Padraic Bartlett
Due 11/25/13, at the start of class.	UCSB 2013

On Wednesday we talked about volume! We have some exercises to expand on the ideas in that lecture. Recall the following concepts we defined in the last lecture and previous HW:

Definition. Let \vec{v}, \vec{w} be a pair of vectors in \mathbb{R}^{n}. The projection of \vec{v} onto \vec{w}, denoted $\operatorname{proj}(\vec{v}$ onto $\vec{w})$, is the following vector:

- Take the vector \vec{w}.
- Draw a line perpindicular to the vector \vec{w}, that goes through the point \vec{v} and intersects the line spanned by the vector \vec{w}.
- $\operatorname{proj}(\vec{v}$ onto $\vec{w})$ is precisely the point at which this perpindicular line intersects \vec{w}.

We illustrate this below:

On the HW, you proved that

$$
\operatorname{proj}(\vec{v} \text { onto } \vec{w})=\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} \cdot \vec{w} .
$$

Using this concept, we created the vector orth:

$$
\operatorname{orth}(\vec{v} \text { onto } \vec{w})=\vec{v}-\operatorname{proj}(\vec{v} \text { onto } \vec{w}) .
$$

Geometrically, we interpreted the length of this vector as the "height" of \vec{v} of \vec{w}. We used this idea of "height" when studying parallelograms:

Definition. Take n vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}$ in \mathbb{R}^{n}. We define the parallelotope spanned by these n vectors as the collection of points

$$
\operatorname{partope}\left(\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{n}}\right)=\left\{a_{1} \overrightarrow{v_{1}}+\ldots a_{n} \overrightarrow{v_{n}} \mid\right\}
$$

If $n=2$, we call these objects parallelograms. If $n=3$, we call these things parallelepipeds.

Using this, we noticed the following property:
Theorem. Let \vec{v}, \vec{w} be two vectors that span a parallelogram. Then the area of this parallelogram is simply the length of the base (i.e. $\|\vec{w}\|)$ times its height (i.e. $\| \operatorname{orth}(\vec{v}$ over $\vec{w}) \|$). We draw this below, where \vec{r} is short for $\operatorname{orth}(\vec{v}$ over $\vec{w})$.

We generalized this to n-dimensions via a tricky construction written up in the notes. For this HW, however, you just need the three-dimensional version:
Theorem. Let $\vec{v}, \overrightarrow{w_{1}}, \overrightarrow{w_{2}}$ be three vectors that span a parallelepiped. Then the volume of this parallelepiped is simply

- the length of one side of the base (i.e. $\left\|\overrightarrow{w_{1}}\right\|$),
- times the height of the other side of the base (i.e. $\|$ orth $\left(\overrightarrow{w_{2}}\right.$ over $\left.\left.\overrightarrow{w_{1}}\right) \|\right)$,
- times the height of \vec{v} over the base spanned by the two vectors $\overrightarrow{w_{1}}$, orth $\left(\overrightarrow{w_{2}}\right.$ over $\left.\overrightarrow{w_{1}}\right)$. We noted that this was in particular the length of

$$
\operatorname{orth}\left(\vec{v} \text { over } \overrightarrow{w_{2}}, \overrightarrow{w_{1}}\right)=\vec{v}-\operatorname{proj}\left(\vec{v} \text { onto } \overrightarrow{w_{1}}\right)-\operatorname{proj}\left(\vec{v} \text { onto orth }\left(\overrightarrow{w_{2}} \text { over } \overrightarrow{w_{1}}\right)\right) .
$$

We draw this below, where \vec{r} is short for $\operatorname{orth}\left(\vec{v}\right.$ over $\left.\overrightarrow{w_{2}}, \overrightarrow{w_{1}}\right)$.

We used all of this work to define the concept of the positive determinant:
Definition. Take a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The positive determinant of this map, i.e. $\operatorname{det}^{+}(T)$, is the volume of T (unit cube). (The unit cube was just the set $\left\{\left(x_{1}, \ldots x_{n}\right) \mid 0 \leq\right.$ $\left.x_{i} \leq 1,\right\}$.)

Notice that because T sends each $\overrightarrow{e_{i}}$ to $T\left(\overrightarrow{e_{i}}\right)$, the det ${ }^{+}$is just the volume of the parallelotope spanned by $T\left(\overrightarrow{e_{1}}\right), \ldots T\left(\overrightarrow{e_{n}}\right)$.

These definitions were pretty crazy. We worked some examples in class, and have other in the notes. This HW is all about getting practice with calculating these things!

1 Problems

There are eight linear maps below, given by their associated matrices. Calculate the positive determinants of four of them!
1.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

2.

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right]
$$

3.

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
2 & 3 & 0 \\
1 & 2 & 3
\end{array}\right]
$$

4.

$$
\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5.

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

6.

$$
\left[\begin{array}{lll}
1 & 5 & 5 \\
5 & 1 & 5 \\
5 & 5 & 1
\end{array}\right]
$$

7.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]
$$

8.

$$
\left[\begin{array}{ccc}
0 & k & k \\
k & 0 & k \\
k & k & 0
\end{array}\right]
$$

Alternately: feel free to substitute a proof below for any determinant calculation!

1. Take an $n \times n$ matrix A of the form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Define the transpose of this matrix, A^{T}, as the matrix where we "flip" A over its top left-bottom right diagonal, i.e. where we switch the rows and columns of A, i.e. where we put the entry $a_{j i}$ in the (i, j)-th entry of A^{T}, i.e.

$$
\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Show that $\operatorname{det}^{+}\left(A^{T}\right)=\operatorname{det}^{+}(A)$.
2. Take an arbitrary parallelotope P spanned by the vectors $\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{n}}\right\}$. Suppose that you multiply this parallelotope by an elementary matrix E. What happens to its volume? (There are three kinds of elementary matrices E to consider here.)
3. Show that for any two linear maps with associated matrices A, B, we have

$$
\operatorname{det}^{+}(A B)=\operatorname{det}^{+}(A) \operatorname{det}^{+}(B) .
$$

4. (Putnam, 2002-A-4.) In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3×3 matrix. Player 0 counters with a 0 in a vacant position, and play continues in turn until the 3×3 matrix is completed with five 1 's and four 0 's. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?
