
Math/CS 103 Professor: Padraic Bartlett

Homework + Lecture 7: Linear Map Properties

Due 10/18/13, at the start of class UCSB 2013

More definitions! In theory, we talked about all of these at the end of class on Monday.

1 Background.

Definition. Let V be a vector space, like R4 or P2(R). We say that some collection of
vectors S from V is a subspace of V if it satisfies the following three properties:

• Plays well with addition. Given any two vectors ~v, ~w ∈ S, the sum ~v + ~w is also
contained in S.

• Plays well with scalar multiplication. Given any vector ~v and any real number
a ∈ R, the vector a~v is also contained in S.

• Not stupid. S contains something: i.e. S is not the empty set ∅.

For example, you’ve shown on a previous problem set (HW#4, problem 4) that

S = {p(x) ∈ P2(R) : p(2) = 0}

is a subspace of P2(R). In particular, we did this by noticing that this subset

• plays well with addition. Given any two polynomials p(x), q(x), if p(2) = 0 = q(2),
then p(2) + q(2) = 0 + 0 = 0. Therefore, p(x) + q(x) is also contained in S.

• plays well with scalar multiplication. Given any polynomial p(x) and any real
number a ∈ R, if p(2) = 0, then a · p(2) = a · 0 = 0, Therefore, ap(x) is also contained
in S.

• isn’t stupid. S contains many elements, like (for example) p(x) = x + 2.

Similarly, on HW#3 problem 2(a), you showed that the set

R = {(x, y, z)|x + y + z = 1}

is not a subspace of R3. In particular, you noticed that it was possible to combine elements
of R to get things outside of R itself: in particular, you guys found combinations of elements
in R that could get any element in all of R3! For example,

(1, 0, 0) + (0, 1, 0) = (1, 1, 0),

which demonstrates that a sum of elements in R may not necessarily lie in R. Therefore,
R is not a subspace.

In this problem set, we’re going to study the following two objects:
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Definition. Pick two vector spaces V,W . Let T : V →W be a linear map from V to W .
The image of T is the following set:

im(T ) = {T (~v) | ~v ∈ V }

In other words, the image of a linear map is the collection of all possible outputs of T under
all possible inputs from V . Some people call this the range of T , and denote this range(T ).
Others will denote this T (V ), the idea being that you’ve put “all” of V into T itself.

Definition. Pick two vector spaces V,W . Let T : V →W be a linear map from V to W .
The null space of T is the following set:

null(T ) = {~v | T (~v) = ~0 ∈ V }

In other words, the null space of a linear map is the collection of all of the elements in V
that T maps to 0.

For example, consider the second linear map from HW#6: T : R4 → R2,

T (w, x, y, z) = (0, 0).

For this map,

• The image of T is the set {(0, 0)}, because T outputs (0, 0) on every input.

• The null space of T is all of R4, because T sends every element of R4 to (0, 0).

Similarly, consider the map T : R4 → R, defined such that

T (x, y, z) = x + y + z.

Thing you should do if you don’t believe it: show this is a linear map. Once you’ve done
this, then you can easily check the following:

• The image of T is all of R. This is because on input (a, 0, 0), for any real number
a, T outputs a + 0 + 0 = a. Therefore, we can get any real number as an output of
T . Because T ’s output is restricted to R, there’s nothing else to worry about getting;
consequently, the image of T is precisely T .

• The null space of T is the collection of all triples (a, b, c) such that T (a, b, c) =
a+ b+ c = 0. In other words, if we solve for c in terms of the other two variables, it’s
the collection {(a, b,−a− b) : a, b ∈ R} of vectors in R3.

2 Problems.

First, pick one of the two below to prove:

1. Show that for any linear map T : V →W , the image of T is a subspace of W .

2. Show that for any linear map T : V →W , the null space of T is a subspace of V .
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Now, choose four of the eight maps below. For each map chosen, do the following:

• Calculate the image of the chosen map.

• Calculate the null space of the chosen map.

• Calculate the dimension1 of both the image and the null space.

As always, show your work, and be ready to present your solutions in class!

3. T : P3(R)→ R, defined such that

T (p(x)) = p(3).

4. T : P2(R)→ P5(R), defined such that

T (p(x)) = x3 · p(x).

5. T : Rn → Rn−1, defined such that

T (x1, . . . xn) = (x2, x3, . . . xn).

6. T : R4 → R4, defined such that

T (w, x, y, z) = (w,w + x,w + x + y, w + x + y + z).

7. T : P4(R)→ T : P3(R), defined such that

T (p(x)) =
d

dx
p(x).

8. T : R4 → R2, defined such that

T (w, x, y, z) = (w + x, y + z) .

9. T : P1(R)→ P2(R), defined such that

T (p(x)) = (x− 3) · p(x).

10. T : R6 → R6, defined such that

T (u, v, w, x, y, z) = (z, y, x, w, v, u).

1 If you’ve forgotten what dimension is, refer back to the third problem set / fourth set of lecture notes!
In essence, however, the dimension of a given space is the number of elements in any basis for that space.
For example, consider the linear map T (x, y, z) = x+y+z we studied above. This space has image R, which
is one-dimensional because R has a basis with one element in it, namely {1}. Similarly, this space has null
space {(a, b,−a − b) : a, b ∈ R}. This null space has dimension 2, because we can find a basis for this set
with two elements in it, namely {(1, 0,−1), (0, 1,−1)}. Because we can write any (a, b,−a − b) as the sum
a(1, 0,−1) + b(0, 1,−1), and the only way for a(1, 0,−1) + b(0, 1,−1) = (0, 0, 0) is if a, b = 0, this is a basis,
and thus the dimension is 2.
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