Math/CS 103 Professor: Padraic Bartlett

Homework + Lecture 7: Linear Map Properties
Due 10/18/13, at the start of class UCSB 2013

More definitions! In theory, we talked about all of these at the end of class on Monday.

1 Background.

Definition. Let V be a vector space, like R* or P3(R). We say that some collection of
vectors S from V' is a subspace of V' if it satisfies the following three properties:

e Plays well with addition. Given any two vectors U, € S, the sum ¥ + @ is also
contained in S.

e Plays well with scalar multiplication. Given any vector ¢ and any real number
a € R, the vector av is also contained in S.

e Not stupid. S contains something: i.e. S is not the empty set ().
For example, you've shown on a previous problem set (HW+#4, problem 4) that
S ={p(z) € P2(R) : p(2) = 0}
is a subspace of P2(R). In particular, we did this by noticing that this subset

e plays well with addition. Given any two polynomials p(z), ¢(z), if p(2) = 0 = ¢(2),
then p(2) 4+ ¢(2) = 0+ 0 = 0. Therefore, p(z) + ¢(x) is also contained in S.

e plays well with scalar multiplication. Given any polynomial p(x) and any real
number a € R, if p(2) =0, then a-p(2) = a-0 = 0, Therefore, ap(z) is also contained
in S.

e isn’t stupid. S contains many elements, like (for example) p(z) = = + 2.

Similarly, on HW#3 problem 2(a), you showed that the set
R={(z,y,2)|lz +y+2z=1}

is not a subspace of R3. In particular, you noticed that it was possible to combine elements
of R to get things outside of R itself: in particular, you guys found combinations of elements
in R that could get any element in all of R3! For example,

(1,0,0) + (0,1,0) = (1, 1,0),

which demonstrates that a sum of elements in R may not necessarily lie in R. Therefore,
R is not a subspace.
In this problem set, we’re going to study the following two objects:



Definition. Pick two vector spaces V,W. Let T': V — W be a linear map from V to W.
The image of T is the following set:

im(T) = {T(7) | 7€ V}

In other words, the image of a linear map is the collection of all possible outputs of T" under
all possible inputs from V. Some people call this the range of 7', and denote this range(T").
Others will denote this T'(V'), the idea being that you’ve put “all” of V into T itself.

Definition. Pick two vector spaces V,W. Let T': V. — W be a linear map from V to W.
The null space of T is the following set:

null(T) = {7 | T(¥) =0 € V}

In other words, the null space of a linear map is the collection of all of the elements in V'
that T maps to 0.

For example, consider the second linear map from HW#6: T : R* — R?,
T(w,z,y,z) = (0,0).
For this map,
e The image of T is the set {(0,0)}, because T outputs (0,0) on every input.
e The null space of T is all of R*, because T sends every element of R* to (0,0).

Similarly, consider the map T : R* — R, defined such that
T(z,y,z) =x+y+=z.

Thing you should do if you don’t believe it: show this is a linear map. Once you’ve done
this, then you can easily check the following;:

e The image of T' is all of R. This is because on input (a,0,0), for any real number
a, T outputs a + 0 + 0 = a. Therefore, we can get any real number as an output of
T. Because T’s output is restricted to R, there’s nothing else to worry about getting;
consequently, the image of T is precisely T'.

e The null space of T is the collection of all triples (a,b,c) such that T'(a,b,c) =
a+ b+ c= 0. In other words, if we solve for ¢ in terms of the other two variables, it’s
the collection {(a,b, —a —b) : a,b € R} of vectors in R3.

2 Problems.
First, pick one of the two below to prove:
1. Show that for any linear map T : V' — W, the image of T is a subspace of W.

2. Show that for any linear map 7" : V' — W, the null space of T is a subspace of V.



Now, choose four of the eight maps below. For each map chosen, do the following:
e Calculate the image of the chosen map.

e Calculate the null space of the chosen map.

e Calculate the dimension' of both the image and the null space.

As always, show your work, and be ready to present your solutions in class!

3. T : P3(R) — R, defined such that

5. T : R* — R*" ! defined such that

T(z1,...2n) = (x2,23,...2y).
6. T :R* = R*, defined such that

T(w,z,y,z) = (w,w+z,w+x+y,w+x+y+2).
7. T : Py(R) — T : P3(R), defined such that
T(p(x)) = ().

8. T : R* = R?, defined such that

T(w,z,y,2) = (w+z,y+ 2).
9. T:P1(R) = P2(R), defined such that

T(p(x)) = (x = 3) - p(x).
10. T : R% — RS, defined such that

T(u7 /U7 w? :E, y? Z) = (z7 y’ x? w? /U’ u)'

L If you’ve forgotten what dimension is, refer back to the third problem set / fourth set of lecture notes!
In essence, however, the dimension of a given space is the number of elements in any basis for that space.
For example, consider the linear map T'(z,vy, z) = z+y+ z we studied above. This space has image R, which
is one-dimensional because R has a basis with one element in it, namely {1}. Similarly, this space has null
space {(a,b,—a —b) : a,b € R}. This null space has dimension 2, because we can find a basis for this set
with two elements in it, namely {(1,0,—1),(0,1,—1)}. Because we can write any (a,b, —a — b) as the sum
a(1,0,—1) 4+ b(0,1, —1), and the only way for a(1,0,—1) 4+ 5(0,1,—1) = (0,0,0) is if a,b = 0, this is a basis,
and thus the dimension is 2.
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