Math/CS 103	Professor: Padraic Bartlett
Homework + Lecture 7: Linear Map Properties	
Due 10/18/13, at the start of class	UCSB 2013

More definitions! In theory, we talked about all of these at the end of class on Monday.

1 Background.

Definition. Let V be a vector space, like \mathbb{R}^{4} or $\mathcal{P}_{2}(\mathbb{R})$. We say that some collection of vectors S from V is a subspace of V if it satisfies the following three properties:

- Plays well with addition. Given any two vectors $\vec{v}, \vec{w} \in S$, the sum $\vec{v}+\vec{w}$ is also contained in S.
- Plays well with scalar multiplication. Given any vector \vec{v} and any real number $a \in \mathbb{R}$, the vector $a \vec{v}$ is also contained in S.
- Not stupid. S contains something: i.e. S is not the empty set \emptyset.

For example, you've shown on a previous problem set (HW\#4, problem 4) that

$$
S=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}): p(2)=0\right\}
$$

is a subspace of $\mathcal{P}_{2}(\mathbb{R})$. In particular, we did this by noticing that this subset

- plays well with addition. Given any two polynomials $p(x), q(x)$, if $p(2)=0=q(2)$, then $p(2)+q(2)=0+0=0$. Therefore, $p(x)+q(x)$ is also contained in S.
- plays well with scalar multiplication. Given any polynomial $p(x)$ and any real number $a \in \mathbb{R}$, if $p(2)=0$, then $a \cdot p(2)=a \cdot 0=0$, Therefore, $a p(x)$ is also contained in S.
- isn't stupid. S contains many elements, like (for example) $p(x)=x+2$.

Similarly, on HW\#3 problem 2(a), you showed that the set

$$
R=\{(x, y, z) \mid x+y+z=1\}
$$

is not a subspace of \mathbb{R}^{3}. In particular, you noticed that it was possible to combine elements of R to get things outside of R itself: in particular, you guys found combinations of elements in R that could get any element in all of \mathbb{R}^{3} ! For example,

$$
(1,0,0)+(0,1,0)=(1,1,0),
$$

which demonstrates that a sum of elements in R may not necessarily lie in R. Therefore, R is not a subspace.

In this problem set, we're going to study the following two objects:

Definition. Pick two vector spaces V, W. Let $T: V \rightarrow W$ be a linear map from V to W. The image of T is the following set:

$$
\operatorname{im}(T)=\{T(\vec{v}) \mid \vec{v} \in V\}
$$

In other words, the image of a linear map is the collection of all possible outputs of T under all possible inputs from V. Some people call this the range of T, and denote this range (T). Others will denote this $T(V)$, the idea being that you've put "all" of V into T itself.

Definition. Pick two vector spaces V, W. Let $T: V \rightarrow W$ be a linear map from V to W.
The null space of T is the following set:

$$
\operatorname{null}(T)=\{\vec{v} \mid T(\vec{v})=\overrightarrow{0} \in V\}
$$

In other words, the null space of a linear map is the collection of all of the elements in V that T maps to 0 .

For example, consider the second linear map from $H W \# 6: T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$,

$$
T(w, x, y, z)=(0,0) .
$$

For this map,

- The image of T is the set $\{(0,0)\}$, because T outputs $(0,0)$ on every input.
- The null space of T is all of \mathbb{R}^{4}, because T sends every element of \mathbb{R}^{4} to $(0,0)$.

Similarly, consider the map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$, defined such that

$$
T(x, y, z)=x+y+z
$$

Thing you should do if you don't believe it: show this is a linear map. Once you've done this, then you can easily check the following:

- The image of T is all of \mathbb{R}. This is because on input $(a, 0,0)$, for any real number a, T outputs $a+0+0=a$. Therefore, we can get any real number as an output of T. Because T 's output is restricted to \mathbb{R}, there's nothing else to worry about getting; consequently, the image of T is precisely T.
- The null space of T is the collection of all triples (a, b, c) such that $T(a, b, c)=$ $a+b+c=0$. In other words, if we solve for c in terms of the other two variables, it's the collection $\{(a, b,-a-b): a, b \in \mathbb{R}\}$ of vectors in \mathbb{R}^{3}.

2 Problems.

First, pick one of the two below to prove:

1. Show that for any linear map $T: V \rightarrow W$, the image of T is a subspace of W.
2. Show that for any linear map $T: V \rightarrow W$, the null space of T is a subspace of V.

Now, choose four of the eight maps below. For each map chosen, do the following:

- Calculate the image of the chosen map.
- Calculate the null space of the chosen map.
- Calculate the dimension ${ }^{1}$ of both the image and the null space.

As always, show your work, and be ready to present your solutions in class!
3. $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}$, defined such that

$$
T(p(x))=p(3)
$$

4. $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{5}(\mathbb{R})$, defined such that

$$
T(p(x))=x^{3} \cdot p(x) .
$$

5. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$, defined such that

$$
T\left(x_{1}, \ldots x_{n}\right)=\left(x_{2}, x_{3}, \ldots x_{n}\right) .
$$

6. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, defined such that

$$
T(w, x, y, z)=(w, w+x, w+x+y, w+x+y+z) .
$$

7. $T: \mathcal{P}_{4}(\mathbb{R}) \rightarrow T: \mathcal{P}_{3}(\mathbb{R})$, defined such that

$$
T(p(x))=\frac{d}{d x} p(x) .
$$

8. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, defined such that

$$
T(w, x, y, z)=(w+x, y+z) .
$$

9. $T: \mathcal{P}_{1}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$, defined such that

$$
T(p(x))=(x-3) \cdot p(x)
$$

10. $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$, defined such that

$$
T(u, v, w, x, y, z)=(z, y, x, w, v, u) .
$$

[^0]
[^0]: ${ }^{1}$ If you've forgotten what dimension is, refer back to the third problem set / fourth set of lecture notes! In essence, however, the dimension of a given space is the number of elements in any basis for that space. For example, consider the linear map $T(x, y, z)=x+y+z$ we studied above. This space has image \mathbb{R}, which is one-dimensional because \mathbb{R} has a basis with one element in it, namely $\{1\}$. Similarly, this space has null space $\{(a, b,-a-b): a, b \in \mathbb{R}\}$. This null space has dimension 2 , because we can find a basis for this set with two elements in it, namely $\{(1,0,-1),(0,1,-1)\}$. Because we can write any $(a, b,-a-b)$ as the sum $a(1,0,-1)+b(0,1,-1)$, and the only way for $a(1,0,-1)+b(0,1,-1)=(0,0,0)$ is if $a, b=0$, this is a basis, and thus the dimension is 2 .

